This paper describes an approximation algorithm for solving standard quadratic optimization problems(StQPs) over the standard simplex by using fuzzification technique. We show that the approximate solution of the algorithm is an epsilon -critical point and satisfies epsilon-delta condition. The algorithm is compared with IBM ILOG CPLEX (short for CPLEX). The computational results indicate that the new algorithm is faster than CPLEX. Especially for infeasible problems. Furthermore, we calculate 100 instances for different size StQP problems. The numerical experiments show that the average computational time of the new algorithm for calculating the first local minimizer is in BigO(n) when the size of the problems is less or equal to 450.