[1] USEPA (United States of Environmental Protection Agency, Improving Indoor Air Quality. Accessed on October 13, 2021. https://www.epa.gov/indoor-air-quality- iaq/improving-indoor-air-quality.
[2] M.U. Ali, Y. Yu, B. Yousaf, M.A.M. Munir, S. Ullah, C. Zheng, X. Kuang, M.H. Wong, Health impacts of indoor air pollution from household solid fuel on children and Women, J. Hazard. Mater. 416 (2021) 126127.
[3] M.N. Anwar, M. Shabbir, E. Tahir, M. Iftikhar, H. Saif, A. Tahir, M.A. Murtaza, M.F. Khokhar, M. Rehan, M. Aghbashlo, M. Tabatabaei, A.-S. Nizami, Emerging challenges of air pollution and particulate matter in China, India, and Pakistan and mitigating solutions, J. Hazard. Mater. 416 (2021) 125851.
[4] M. Wang, S. Jia, S.H. Lee, A. Chow, M. Fang, Polycyclic aromatic hydrocarbons (PAHs) in indoor environments are still imposing carcinogenic risk, J. Hazard. Mater. 409 (2021) 124531.
[5] Z. Nováková, J. Novák, M. Bittner, P. Čupr, P. Přiby;ová, P. Kukučka, M. Smutná, B.I. Escher, H. Demirtepe, A.Miralles-Marco, K. Hilscherová, Toxicity to bronchial cells and endocrine disruptive potentials of indoor air and dust extracts and their association with multiple chemical classes, J. Hazard. Mater. 424 (2022) 127306.
[6] W. Liang, Volatile organic compounds, odor, and inhalation health risks during interior construction of a fully furnished residential unit in Nanjing, China, Build. Environ. 186 (2020) 107366.
[7] N. Fu, P. Wei, Y. Jia, X. Zheng, J. Guan, Indoor volatile organic compounds in densely occupied education buildings of four universities: target list, concentration levels and correlation analysis, Build. Environ. 191 (2021) 107599.
[8] D. Licina, S. Langer, Indoor air quality investigation before and after relocation to WELL-certified office buildings, Build. Environ. 204 (2021) 108182.
[9] W.A. Saoud, A. Kane, P.L. Cann, A. Gerard, L. Lamaa, L. Peruchon, C. Brochier, A. Bouzaza, D. Wolbert, A.A. Assadi, Innovative photocatalytic reactor for the degradation of VOCs and microorganism under simulated indoor air conditions: Cu- Ag/TiO2-based optical fibers at a pilot scale, Chem. Eng. J. 411 (2021) 128622.
[10] H. Li, K. Zhong, Z. (John) Zhai, A new double-skin façade system integrated with TiO2 plates for decomposing BTEX, Build. Environ. 180 (2020) 107037.
[11] X. Hu, C. Li, Z. Sun, J. Song, S. Zheng, Enhanced photocatalytic removal of indoor formaldehyde by ternary heterogeneous BiOCl/TiO2/sepiolite composite under solar and visible light, Build. Environ. 168 (2020) 106481.
[12] X. Li, H. Li, Y. Huang, J. Cao, T. Huang, R. Li, Q. Zhang, S.-c. Lee, W. Hi, Exploring the photocatalytic conversion mechanism of gaseous formaldehyde degradation on TiO2–x-OV surface, J. Hazard. Mater, 424 (2022) 127217.
[13] J. Wu, Y. Alipouri, H. Luo, L. Zhong, Ultraviolet photocatalytic oxidation technology for indoor volatile organic compound removal: a critical review with particular focus on byproduct formation and modeling, J. Hazard. Mater. 421 (2022) 126766.
[14] X. Yu, N.L. Ma, C. Sonne, R. Guan, S.S. Lam, Q.V. Le, X. Chen, Y. Yang, H. Gu, J. Rinklebe, Mitigation of indoor air pollution: a review of recent advances in adsorption materials and catalytic oxidation, J. Hazard. Mater. 405 (2021) 124138.
[15] A. Mahmood, G. Shi, Z. Wang, Z. Rao, W. Xiao, X. Xie, J. Sun. Carbon quantum dots-TiO2 nanocomposite as an efficient photocatalyst for the photodegradation of aromatic ring-containing mixed VOCs: an experimental and DFT studies of adsorption and electronic structure of the interface, J. Hazard. Mater. 401 (2021) 123402.
[16] C. Li, Z. Lou, Y. Yang, Y. Wang, Y. Lu, Z. Ye, L. Zhu, Hollowsphere nanoheterojunction of g-C3N4@TiO2 with high visible light photocatalytic property, Langmuir 35 (2019) 779−786.
[17] A. Ben-Refael, I. Benisti, Y. Paz, Transient photoinduced phenomena in graphitic carbon nitride as measured at nanoseconds resolution by step-scan FTIR, Catal. Today 340 (2020) 97−105.
[18] B. Zhu, L. Zhang, B. Cheng, J. Yu, First-principle calculation study of tri-s-triazine- based g-C3N4: a review, Appl. Catal. B 224 (2018) 983−999.
[19] K. Wang, J. Li, G. Zhang, Ag-bridged Z-scheme 2D/2D Bi5FeTi3O15/g-C3N4 heterojunction for enhanced photocatalysis: mediator-induced interfacial charge transfer and mechanism insights, ACS Appl. Mater. Interfaces 11 (2019) 27686–27696.
[20] X. Zhou, Y. Fang, X. Cai, S. Zhang, S. Yang, H. Wang, X. Zhong, Y. Fang, In Situ photodeposited construction of Pt-Cds/g-C3N4−MnOx composite photocatalyst for efficient visible-light-driven overall water splitting, ACS Appl. Mater Interfaces 12 (2020) 20579−20588.
[21] J. Ren, Y.Z. Wu, J.M. Pan, X.H. Yan, M. Chen, J.J. Wang, D.F. Wang, C. Zhou, Q. Wang, X.N. Cheng, Novel ternary Ag/CeVO4/g-C3N4 nanocomposite as a highly efficient visible-light-driven photocatalyst, J. Adv. Ceramics 7 (2018) 50−57.
[22] H.S. EL-Sheshtawy, H.M. El-Hosainy, K.R. Shoueir, I.M. El-Mehasseb, M. El-Kemary, Facile immobilization of Ag nanoparticles on g-C3N4/V2O5 surface for enhancement of post-illumination, catalytic, and photocatalytic activity removal of organic and inorganic pollutants, Appl. Surf. Sci. 467–468 (2019) 268–276.
[23] M. Tahir, M. Siraj, B. Tahir, M. Umer, H. Alias, N. Othman, Au-NPs embedded Z- scheme WO3/TiO2 nanocomposite for plasmon-assisted photocatalytic glycerol-water reforming towards enhanced H2 evolution, Appl. Surf. Sci. 503 (2020) 144344.
[24] R. Lei, H. Zhang, H. Ni, R. Chen, H. Gu, B. Zhang, Novel ZnO nanoparticles modified WO3 nanosheet arrays for enhanced photocatalytic properties under solar light illumination, Appl. Surf. Sci. 463 (2019) 363–373.
[25] X. Wang, M. Sun, M. Murugananthan, Y. Zhang, L. Zhang, Electrochemically self- doped WO3/TiO2 nanotubes for photocatalytic degradation of volatile organic compounds, Appl. Catal. B 260 (2020) 118205.
[26] S.B. Rawal, H.J. Kang, D.I. Won, W.I. Lee, Novel ZnFe2O4/WO3, a highly efficient visible-light photocatalytic system operated by a Z-scheme mechanism, Appl. Catal. B 256 (2019) 117856.
[27] H. Zhou, Z. Wen, J. Liu, J. Ke, X. Duan, S. Wang, Z-scheme plasmonic Ag decorated WO3/Bi2WO6 hybrids for enhanced photocatalytic abatement of chlorinated-VOCs under solar light irradiation, Appl. Catal. B 242 (2019) 76–84.
[28] C.-Y. Pei, Y.-G. Chen, L. Wang, W. Chen, G.-B. Huang, Step-scheme WO3/CdIn2S4 hybrid system with high visible light activity for tetracycline hydrochloride photodegradation, Appl. Surf. Sci. 535 (2021) 147682.
[29] Y.G. Kim, W.K. Jo, Coupling copper and hydrogenated TiO2 to bare TiO2 structures for improved photocatalytic performance, J. Am. Ceram. Soc. 101 (2018) 1479‒1487.
[30] R. Bhosale, S. Jain, C.P. Vinod, S. Kumar, S. Ogale, Direct Z-scheme g-C3N4/FeWO4 nanocomposite for enhanced and selective photocatalytic CO2 reduction under visible light, ACS Appl. Mater. Interfaces 11 (2019) 6174–6183.
[31] H. Gong, Y. Zhang, Y. Cao, M. Luo, Z. Feng, W. Yang, K. Liu, H. Cao, H. Yan, Pt@Cu2O/WO3 composite photocatalyst for enhanced photocatalytic water oxidation performance, Appl. Catal. B 237 (2018) 309–317.
[32] J. Dong, Y. Shi, C. Huang, Q. Wu, T. Zeng, W. Yao, A new and stable Mo-Mo2C modified g-C3N4 photocatalyst for efficient visible light photocatalytic H2 production, Appl. Catal. B 243 (2019) 27–35.
[33] R. Zhang, M. Ma, Q. Zhang, F. Dong, Y. Zhou, Multifunctional g-C3N4/graphene oxide wrapped sponge monoliths as highly efficient adsorbent and photocatalyst, Appl. Catal. B 235 (2018) 17–25.
[34] Q. Zhu, Y. Xuan, K. Zhang, K. Chang, Enhancing photocatalytic CO2 reduction performance of g-C3N4-based catalysts with non-noble plasmonic nanoparticles, Appl. Catal. B 297 (2021) 120440.
[35] J. Yu, F. Dappozze, J. Martín-Gomez, J. Hidalgo-Carrillo, A. Marinas, P. Veroux, A. Caravaca, C. Guillard, Glyceraldehyde production by photocatalytic oxidation of glycerol on WO3-based materials, Appl. Catal. B 299 (2021) 120616.
[36] Y.C. Nie, F. Yu, L.C. Wang, Q.J. Xing, X. Liu, Y. Pei, J.P. Zou, W.L. Dai, Y. Li, S.L. Suib, Photocatalytic degradation of organic pollutants with simultaneous photocatalytic H2 evolution over graphene quantum dots/Mn–N-TiO2/g-C3N4 composite catalysts: performance and mechanism, App. Catal. B 227 (2018) 312–321.
[37] W.-C. Lin, J. Jayakumar, C.-L. Chang, L.-Y. Ting, M.H. Elsayed, M. Abdellah, K. Zheng, A.M. Elewa, Y.-T. Lin, J.-J. Liu, W.-S. Wang, C.-Y. Lu, H.-H. Chou, Effect ofenergy bandgap and sacrificial agents of cyclopentadithiophene-based polymers for enhanced photocatalytic hydrogen evolution, Appl. Catal. B 298 (2021) 120577.
[38] Z. Wang, A. Mahmood, X. Xie, X. Wang, H. Qiu, J. Sun, Surface adsorption configurations of H3PO4 modified TiO2 and its influence on the photodegradation intermediates of gaseous o-xylene, Chem. Eng. J. 393 (2020) 124723.
[39] Z. Huang, X. Zeng, K. Li, S. Gao, Q. Wang, J. Lu, Z-Scheme NiTiO3/g-C3N4 heterojunctions with enhanced photoelectrochemical and photocatalytic performances under visible LED light irradiation, ACS. Appl. Mater. Interfaces 9 (2017) 41120–41125.
[40] Q. Cheng, W. Yang, Q. Chen, J. Zhu, D. Li, L. Fu, L. Zhou, Fe-doped zirconia nanoparticles with highly negative conduction band potential for enhancing visible light photocatalytic performance, Appl. Surf. Sci. 530 (2020) 147291.