Bai, L., Huan, S., Zhu, Y., Chu, G., McClements, D. J., & Rojas, O. J. (2021). Recent advances in food emulsions and engineering foodstuffs using plant-based nanocelluloses. Annual Review of Food Science and Technology, 12, 383-406. https://doi.org/10.1146/annurev-food-061920-123242
Bai, L., Xiang, W., Huan, S., & Rojas, O. J. (2018). Formulation and stabilization of concentrated edible oil-in-water emulsions based on electrostatic complexes of a food-grade cationic surfactant (ethyl lauroyl arginate) and cellulose nanocrystals. Biomacromolecules, 19(5), 1674-1685. https://doi.org/10.1021/acs.biomac.8b00233
Ben Azouz, K., Ramires, E. C., Van den Fonteyne, W., El Kissi, N., & Dufresne, A. (2012). Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Letters, 1(1), 236-240. https://doi.org/10.1021/mz2001737
Binks, B. P., Muijlwijk, K., Koman, H., & Poortinga, A. T. (2017). Food-grade Pickering stabilisation of foams by in situ hydrophobisation of calcium carbonate particles. Food Hydrocolloids, 63, 585-592. https://doi.org/10.1016/j.foodhyd.2016.10.002
Bollhorst, T., Rezwan, K., & Maas, M. (2017). Colloidal capsules: nano-and microcapsules with colloidal particle shells. Chemical Society Reviews, 46(8), 2091-2126. https://doi.org/10.1039/C6CS00632A
Capron, I., Rojas, O. J., & Bordes, R. (2017). Behavior of nanocelluloses at interfaces. Current Opinion in Colloid & Interface Science, 29, 83-95. https://doi.org/10.1016/j.cocis.2017.04.001
Chen, Q.-H., Liu, T.-X., & Tang, C.-H. (2019). Tuning the stability and microstructure of fine Pickering emulsions stabilized by cellulose nanocrystals. Industrial Crops and Products, 141, 111733. https://doi.org/10.1016/j.indcrop.2019.111733
Chi, K., & Catchmark, J. M. (2017). Crystalline nanocellulose/lauric arginate complexes. Carbohydrate Polymers, 175, 320-329. https://doi.org/10.1016/j.carbpol.2017.08.005
Chu, Y., Sun, Y., Wu, W., & Xiao, H. (2020). Dispersion properties of nanocellulose: a review. Carbohydrate Polymers, 116892. https://doi.org/10.1016/j.carbpol.2020.116892
Cunha, A. G., Mougel, J.-B., Cathala, B., Berglund, L. A., & Capron, I. (2014). Preparation of double Pickering emulsions stabilized by chemically tailored nanocelluloses. Langmuir, 30(31), 9327-9335. https://doi.org/10.1021/la5017577
Dickinson, E. (2017). Biopolymer-based particles as stabilizing agents for emulsions and foams. Food Hydrocolloids, 68, 219-231. https://doi.org/10.1016/j.foodhyd.2016.06.024
Du, W., Guo, J., Li, H., & Gao, Y. (2017). Heterogeneously modified cellulose nanocrystals-stabilized pickering emulsion: preparation and their template application for the creation of PS microspheres with amino-rich surfaces. ACS Sustainable Chemistry & Engineering, 5(9), 7514-7523. https://doi.org/10.1021/acssuschemeng.7b00375
Gong, X., Wang, Y., & Chen, L. (2017). Enhanced emulsifying properties of wood-based cellulose nanocrystals as Pickering emulsion stabilizer. Carbohydrate Polymers, 169, 295-303. https://doi.org/10.1016/j.carbpol.2017.04.024
Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical reviews, 110(6), 3479-3500. https://doi.org/10.1021/cr900339w
Hong, C.-S., Park, J. H., Lee, S., Rhoo, K. Y., Lee, J. T., & Paik, S. R. (2018). Fabrication of protease-sensitive and light-responsive microcapsules encompassed with single layer of gold nanoparticles by using self-assembly protein of α-synuclein. ACS applied materials & interfaces, 10(31), 26628-26640. https://doi.org/10.1021/acsami.8b07661
Huang, L., Ye, Z., & Berry, R. (2016). Modification of cellulose nanocrystals with quaternary ammonium-containing hyperbranched polyethylene ionomers by ionic assembly. ACS Sustainable Chemistry & Engineering, 4(9), 4937-4950. https://doi.org/10.1021/acssuschemeng.6b01253
Hubbe, M. A. (2007). Paper’s resistance to wetting–A review of internal sizing chemicals and their effects. BioResources, 2(1), 106-145.
Johnson, R. K., Zink-Sharp, A., & Glasser, W. G. (2011). Preparation and characterization of hydrophobic derivatives of TEMPO-oxidized nanocelluloses. Cellulose, 18(6), 1599-1609. https://doi.org/10.1007/s10570-011-9579-y
Kedzior, S. A., Gabriel, V. A., Dubé, M. A., & Cranston, E. D. (2020). Nanocellulose in emulsions and heterogeneous water‐based polymer systems: A review. Advanced Materials, 2002404. https://doi.org/10.1002/adma.202002404
Li, G., Song, Z., Liu, W., Yu, D., & Wang, H. (2017). Alkyl ketene dimer emulsions stabilized by layered double hydroxide particles modified with glutamic acid. Industrial & Engineering Chemistry Research, 56(40), 11435-11442. https://doi.org/10.1021/acs.iecr.7b02532
Li, Y., Liu, X., Zhang, Z., Zhao, S., Tian, G., Zheng, J., . . . Russell, T. P. (2018). Adaptive structured pickering emulsions and porous materials based on cellulose nanocrystal surfactants. Angewandte Chemie International Edition, 57(41), 13560-13564. https://doi.org/10.1002/anie.201808888
Li, Y., Zhao, R., Hu, F., Lu, P., Ji, D., Luo, Q., . . . Song, Z. (2021). Laponite/lauric arginate stabilized AKD Pickering emulsions with shell-tunable hydrolytic resistance for use in sizing paper. Applied Clay Science, 206, 106085. https://doi.org/10.1016/j.clay.2021.106085
Lu, Z., Huang, J., Songfeng, E., Li, J., Si, L., Yao, C., . . . Zhang, M. (2020). All cellulose composites prepared by hydroxyethyl cellulose and cellulose nanocrystals through the crosslink of polyisocyanate. Carbohydrate Polymers, 250, 116919. https://doi.org/10.1016/j.carbpol.2020.116919
McClements, D. J., & Gumus, C. E. (2016). Natural emulsifiers—Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance. Advances in Colloid and interface Science, 234, 3-26. https://doi.org/10.1016/j.cis.2016.03.002
Mohit, T., Bhadra, K., Goswami, S., & Agarwal, N. (2007). Successful trials & optimization of ASA sizing. IPPTA, 19(4), 143.
Niu, F., Han, B., Fan, J., Kou, M., Zhang, B., Feng, Z.-J., . . . Zhou, W. (2018). Characterization of structure and stability of emulsions stabilized with cellulose macro/nano particles. Carbohydrate Polymers, 199, 314-319. https://doi.org/10.1016/j.carbpol.2018.07.025
Patel, A. S., Lakshmibalasubramaniam, S., Nayak, B., & Camire, M. E. (2021). Lauric acid adsorbed cellulose nanocrystals retained the physical stability of oil-in-water Pickering emulsion during different dilutions, pH, and storage periods. Food Hydrocolloids, 107139. https://doi.org/10.1016/j.foodhyd.2021.107139
Pickering, S. (1907). Cxcvi. J. Chem. Soc., Trans, 91(0), 2001-2021.
Qiao, X., Wang, L., Shao, Z., Sun, K., & Miller, R. (2015). Stability and rheological behaviors of different oil/water emulsions stabilized by natural silk fibroin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 475, 84-93. https://doi.org/10.1016/j.colsurfa.2015.01.094
Rey, M., Fernandez-Rodriguez, M. A., Karg, M., Isa, L., & Vogel, N. (2020). Poly-N-isopropylacrylamide nanogels and microgels at fluid interfaces. Accounts of chemical research, 53(2), 414-424. https://doi.org/10.1021/acs.accounts.9b00528
Robert, J. (1990). Overview and theories of neutral and alkaline sizing. In: Neutral/Alkaline Papermaking: TAPPI Short Course Notes.
Saidane, D., Perrin, E., Cherhal, F., Guellec, F., & Capron, I. (2016). Some modification of cellulose nanocrystals for functional Pickering emulsions. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2072), 20150139. https://doi.org/10.1098/rsta.2015.0139
Scatena, L., Brown, M., & Richmond, G. (2001). Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science, 292(5518), 908-912. https://doi.org/10.1126/science.1059514
Sun, G., Liu, X., McClements, D. J., Liu, S., Li, B., & Li, Y. (2021). Chitin nanofibers improve the stability and functional performance of Pickering emulsions formed from colloidal zein. Journal of Colloid and Interface Science, 589, 388-400. https://doi.org/10.1016/j.jcis.2021.01.017
Tan, H., Liu, W., Yu, D., Li, H., Hubbe, M. A., Gong, B., . . . Li, G. (2014). ASA-in-water emulsions stabilized by laponite nanoparticles modified with tetramethylammonium chloride. Chemical Engineering Science, 116, 682-693. https://doi.org/10.1016/j.ces.2014.06.005
Tang, J., Lee, M. F. X., Zhang, W., Zhao, B., Berry, R. M., & Tam, K. C. (2014). Dual responsive pickering emulsion stabilized by poly [2-(dimethylamino) ethyl methacrylate] grafted cellulose nanocrystals. Biomacromolecules, 15(8), 3052-3060. https://doi.org/10.1021/bm500663w
Tardy, B. L., Yokota, S., Ago, M., Xiang, W., Kondo, T., Bordes, R., & Rojas, O. J. (2017). Nanocellulose–surfactant interactions. Current Opinion in Colloid & Interface Science, 29, 57-67. https://doi.org/10.1016/j.cocis.2017.02.004
Thaiphanit, S., Schleining, G., & Anprung, P. (2016). Effects of coconut (Cocos nucifera L.) protein hydrolysates obtained from enzymatic hydrolysis on the stability and rheological properties of oil-in-water emulsions. Food Hydrocolloids, 60, 252-264. https://doi.org/10.1016/j.foodhyd.2016.03.035
Tiong, A. C. Y., Tan, I. S., Foo, H. C. Y., Lam, M. K., Mahmud, H. B., & Lee, K. T. (2020). Macroalgae-derived regenerated cellulose in the stabilization of oil-in-water Pickering emulsions. Carbohydrate Polymers, 249, 116875. https://doi.org/10.1016/j.carbpol.2020.116875
Wang, J., Deng, H., Sun, Y., & Yang, C. (2020). Montmorillonite and alginate co-stabilized biocompatible Pickering emulsions with multiple-stimulus tunable rheology. Journal of Colloid and Interface Science, 562, 529-539. https://doi.org/10.1016/j.jcis.2019.11.081
Xia, Y., Wu, J., Wei, W., Du, Y., Wan, T., Ma, X., . . . Yue, H. (2018). Exploiting the pliability and lateral mobility of Pickering emulsion for enhanced vaccination. Nature materials, 17(2), 187-194. https://doi.org/10.1038/nmat5057
Yao, M., Liu, Y., Qin, C., Meng, X., Cheng, B., Zhao, H., . . . Huang, Z. (2021). Facile fabrication of hydrophobic cellulose-based organic/inorganic nanomaterial modified with POSS by plasma treatment. Carbohydrate Polymers, 253, 117193. https://doi.org/10.1016/j.carbpol.2020.117193
Yu, D., Li, G., Kong, F., Wang, H., Liu, W., Song, Z., . . . Zhao, J. R. (2020). Encapsulation of alkenylsuccinic anhydride oil droplets in Laponite nanoparticles modified by carbon nitride quantum dots: Enhancement of emulsion stability and paper sizing performance. Applied Clay Science, 191, 105608. https://doi.org/10.1016/j.clay.2020.105608
Yu, D., Lin, Z., & Li, Y. (2013). Octadecenylsuccinic anhydride Pickering emulsion stabilized by γ-methacryloxy propyl trimethoxysilane grafted montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 422, 100-109. https://doi.org/10.1016/j.clay.2020.105608
Zhang, W., Gu, X., Liu, X., & Wang, Z. (2021). Fabrication of Pickering emulsion based on particles combining pectin and zein: Effects of pectin methylation. Carbohydrate Polymers, 256, 117515. https://doi.org/10.1016/j.carbpol.2020.117515
Zhang, Y., Zhu, G., Dong, B., Wang, F., Tang, J., Stadler, F. J., . . . Xing, F. (2021). Interfacial jamming reinforced Pickering emulgel for arbitrary architected nanocomposite with connected nanomaterial matrix. Nature Communications, 12(1), 1-9. https://doi.org/10.1038/s41467-020-20299-6
Zhou, F., Zeng, T., Yin, S., Tang, C., Yuan, D., & Yang, X. (2018). Development of antioxidant gliadin particle stabilized Pickering high internal phase emulsions (HIPEs) as oral delivery systems and the in vitro digestion fate. Food & function, 9(2), 959-970. https://doi.org/10.1039/C7FO01400G
Zoppe, J. O., Venditti, R. A., & Rojas, O. J. (2012). Pickering emulsions stabilized by cellulose nanocrystals grafted with thermo-responsive polymer brushes. Journal of Colloid and Interface Science, 369(1), 202-209. https://doi.org/10.1016/j.jcis.2011.12.011