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Abstract
Prediction of different lung pathologies using chest X-ray images is a challenging task requiring robust
training and testing accuracies. In this article, one-class classifier (OCC) and binary classification
algorithms have been tested to classify 14 different diseases (atelectasis, cardiomegaly, consolidation,
effusion, edema, emphysema, fibrosis, hernia, infiltration, mass, nodule, pneumonia, pneumothorax and
pleural-thickening). We have utilized 3 different neural network architectures (MobileNetV1, Alexnet, and
DenseNet-121) with four different optimizers (SGD, Adam, and RMSProp) for comparing best possible
accuracies. Cyclical learning rate (CLR), a tuning hyperparameters technique was found to have a faster
convergence of the cost towards the minima of cost function. Here, we present a unique approach of
utilizing previously trained binary classification models with a learning rate decay technique for re-
training models using CLR’s. Doing so, we found significant improvement in training accuracies for each
of the selected conditions. Thus, utilizing CLR’s in callback functions seems a promising strategy for
image classification problems.

Introduction:
Speech recognition, computer vision and text analysis are major fields in which deep learning is
prominently used for image classification [1, 2, 3]. Cyclical learning rates (CLR’s) allow the learning rates
to vary between a range of boundary values. Selecting learning rate manually is a time consuming and
computationally costly task [4]. Optimal learning rate is important as the model can converge slowly if
the learning rate is too slow or the model can diverge from the minima of the cost function if the learning
rate is too high [5]. Even if an optimal learning rate for the model is achieved, the model can take many
epochs to reach the minima of the loss function. The model doesn't have a regular cost function,
moreover, the gradient of the cost function is different in different parts of the cost function curve [6]. To
overcome this issue, instead of using constant single learning rate, a learning rate decay policy can be
used to obtain better results. However, the learning rate decay also has several drawbacks including
getting stuck in a local minimum or plateau of cost function due to very small learning rates in later
epochs [7]. CLR’s can be an effective technique to make the model converge faster in minimal number of
epochs and to decrease the efforts of finding optimal learning rates.

Experimental Results and Analysis:

A. Data collection, preprocessing, model architecture, and learning rates:

A1. Data collection:

The publicly open accessed data used for binary and one-class classification has been made available by
National Institutes of Health (NIH), USA [8]. This dataset consists of 112,120 chest X-ray images, each
with a 1024*1024-pixel resolution. Images belong to 15 classes, 14 classes of diseased individuals and 1
class of healthy individuals ('No Finding'). The disease classes contain 'Atelectasis', 'Cardiomegaly',
'Consolidation', 'Effusion'; 'Emphysema', 'Edema', 'Fibrosis', 'Infiltration', 'Mass', 'Nodule', 'Pneumonia',
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'Pneumothorax', 'Pleural Thickening' and 'Hernia'. A metadata associated with the image dataset consists
of patient's age, gender, unique patient id, and the view position (anterior-posterior and posterior-anterior)
of the X-ray image. All methods were performed in accordance with the relevant guidelines and
regulations with human participants.

A2. Exploratory data analysis:

From the total set, 60,361 images have the label 'No Finding' (healthy), while others have multiple labels
with combinations of 14 classes. Overall, the unique constitutes to around 836 labels. Unique can be any
of the 14 primary classes (‘No Finding’ label excluded) or any combination of these 14 primary classes.
Figure 1 depicts the distribution of these 15 unique labels.

A one-hot encoding was applied to convert 836 unique labels to 15 primary class labels [9]. Comparison
of the number of images in 15 primary classes before and after performing one-hot encoding is shown in
Table 1. A plot for the number of images after performing one-hot encoding is shown in figure 2.
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Table 1
Counts per class for primary labels before and after one-hot encoding.

Image Label No. of Images before One Hot
Encoding

No. of Image before One Hot
Encoding

No Finding 60361 60361

Atelectasis 4215 11559

Cardiomegaly 1093 2776

Consolidation 1310 4667

Edema 628 2303

Emphysema 892 2516

Effusion 3955 13317

Fibrosis 727 1686

Infiltration 9547 19894

Mass 2139 5782

Nodule 2705 6331

Pneumothorax 2194 5302

Pneumonia 322 1431

Pleural
Thickening

1126 3385

Hernia 110 227

Binary classifiers have been developed on each disease and the 'No Finding' class. The 'No Finding' class
has approximately 3 times more images than the 'Infiltration' class, this type of unbalanced dataset can
raise a state where the algorithm will overfit the class having more images. To avoid this, the number of
images in the 'No Finding' class has been taken approximately the same as the number of images in the
class for which the binary classifier was developed.

A3. Pre-processing of data:

A3.1. Binary classifier:

A 1:4-fold split of test to training set was performed for 14 binary classifiers (Table 2). To save overhead
memory and making model more robust, we passed all the images through a ImageDataGenerator class
of Keras [10] (shear range of 0.05, zoom range of 0.1, rotation range of 7 degrees, width, and height shift
range of 0.1, brightness range of 0.4 to 1.5 with a horizontal flip), while subsequently applying image
augmentation technique. These techniques helped the model to generalize and reduce the overfitting
state.
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Table 2

List of binary classifiers and the number of images in their training and test sets.
Binary
Classifier

No. of images
containing
respective disease
label

No. of Images
with ‘No
Finding’ Label

Total
Images

No. of training
images (80%
of total
images)

No. of test
images (20%
of total
images)

Atelectasis 11559 12000 23599 18847 4712

Cardiomegaly 2776 2800 5576 4460 1116

Consolidation 4667 4700 9367 7493 1874

Edema 2303 2300 4603 3682 921

Emphysema 2516 2600 5116 4092 1024

Effusion 13317 13500 26817 21453 5364

Fibrosis 1686 1700 3386 2708 678

Infiltration 19894 20000 39894 31915 7979

Mass 5782 6000 11782 9425 2357

Nodule 6331 6500 12831 10264 2567

Pneumothorax 5302 5500 10802 8641 2161

Pneumonia 1431 1500 2931 2344 587

Pleural
Thickening

3385 3500 6885 5508 1377

Hernia 227 250 447 381 96

A dynamic batch training was utilized to decrease computational time and memory. Based on optimal
performance, an iterative loop of 32 images/batch was used for training till all the images in batch were
exhausted (Table 3). Apart from utilizing less memory, this method helps to save fewer errors in the
memory for updating hyperparameters through backpropagation which increases the training speed
drastically. The high-resolution X-ray images for training have higher fractional improvements in area
under curve (AUC) [11], and also can help localize a disease pattern.
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Table 3
Number of training and testing batches with respective batch sizes for all the binary classifiers.

Binary Classifier Total Images Batch Size No. of training batches No. of test batches

Atelectasis 23599 16 1178 295

Cardiomegaly 5576 32 140 35

Consolidation 9367 32 235 59

Edema 4603 32 116 29

Emphysema 5116 32 128 32

Effusion 26817 32 671 168

Fibrosis 3386 32 85 22

Infiltration 39894 16 1995 499

Mass 11782 32 295 74

Nodule 12831 32 321 81

Pneumothorax 10802 32 271 68

Pneumonia 2931 16 147 37

Pleural Thickening 6885 32 173 44

Hernia 447 4 96 24

A3.2. One class classifier:

With the idea of choosing a balanced data, the dataset for one-class classifier contains 2,800 images of
"No Finding" class and 200 images from each disease class. We again choose 1:4-fold split of test to
training set to be consistent with binary classifiers. Further, the preprocessing through
ImageDataGenerator class with same parameters as binary classifiers was performed for this split.
Dynamic training with an optimal batch of 16 images/batch was performed.

A4. Model architectures for binary & one-class classifiers:

A4.1. Binary classifier:

A 2D convolutional neural network is applied using an MobileNetV1 network architecture [12]. The model
parameters of MobileNet previously trained on ImageNet have been utilized using transfer learning
(Figure 3).

For MobileNetV1 previously trained ImageNet weights are passed through a global average pooling layer
considering averages of each feature map instead of adding fully connected layers. This technique helps
to easily interpret feature maps as categories confidence maps, to reduce overfitting, and is more robust
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to spatial translations of the input as it sums out the spatial information [13]. To further reduce
overfitting, a dropout regularization layer to drop ~50% of the input units for variance reduction has been
applied after the global average pooling layer. The model is then passed through 4 dense layers of output
nodes 250, 50, 10, and 2 with linear activation functions in them. In each dense layer, L1 and/or L2
regularization is applied to the layer's kernel, bias, and activity. Kernel regularizer with both L1 and L2
penalties of 0.001 and 0.01 respectively are applied on the kernel’s layer. A bias regularizer with an L2
penalty of 0.01 is applied on the layer's bias. Activity regularizer with an L2 penalty of 0.001 is applied on
the layer's output. After each dense layer, batch normalization is used to stabilize the learning process
and dramatically reduce the number of training epochs required to train a deep neural network. Finally,
the model architecture is complete with application of a dense layer comprising of sigmoid activation
function and 1 output node. The stochastic gradient descent (SGD) optimizer with learning rate decay
has been used to train the model as it gave a superior performance compared to RMSProp and adam
optimizer for all the classifiers except “Hernia”. Adam optimizer with a learning rate of 0.01 has been
found to perform better in case of “Hernia”. A momentum parameter has been used to help accelerate
gradient vectors in right directions (Table 4).

 
Table 4

Chart showing optimizer, its momentum, learning rates, and the decay constants used with
SGD optimizer for all binary classifiers (Except Hernia which has Adam optimizer).

Binary Classifier Optimizer Used Learning Rate Decay constant Momentum

Atelectasis SGD 0.01 0.001 0.9

Cardiomegaly SGD 0.1 0.0005 0.9

Consolidation SGD 0.05 0.0005 0.9

Edema SGD 0.01 0.0005 0.9

Emphysema SGD 0.01 0.0005 0.9

Effusion SGD 0.01 0.001 0.9

Fibrosis SGD 0.001 0.00005 0.9

Infiltration SGD 0.01 0.001 0.9

Mass SGD 0.01 0.001 0.9

Nodule SGD 0.01 0.001 0.9

Pneumothorax SGD 0.01 0.0005 0.9

Pneumonia SGD 0.01 0.0001 0.9

Pleural Thickening SGD 0.05 0.0005 0.9

Hernia Adam 0.01 0.0001 0.9
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A4.2. One class classifier:

A false-positive predictions arise when the algorithm is unable to identify the "No Finding" class, a
problem falling under the category of "Anomaly Detection". One-class classifier is an unsupervised
learning algorithm focusing on the problem of anomaly detection [14]. The model contains a negative
class (inlier or normal class) and a positive class (outlier or anomaly class). In our case, the normal class
or inlier class is the "No Finding" class. The anomaly class is formed by combining 200 images of each
disease class. The benefit of this approach is that if the prediction/test image fed to the algorithm is not
from any of the 14 disease classes, it will still categorize it as an "Anomaly" simply because the algorithm
could not classify it as an image with "No Finding" class. If the algorithm classifies the image with a
disease other than these 14 diseases as a "No Finding" class, it will give rise to a problem of false
negative prediction. One-class classifier serves the purpose of solving the problem of both false positives
and false negative predictions. The model architecture for one-class classifier is same as the binary
classifier.

A5. Cyclical learning rates:

The first step in applying CLR’s is to define a maximum learning rate and a base learning rate [4]. The
learning rate can then be allowed to vary between maximum learning rate and base learning rate. We
have utilized learning rate finder technique (described in section A6) to decide maximum learning and the
base learning rates. For one condition, “Pneumothorax” binary classifier, maximum and the base learning
rates of 0.03 and 0.0075 respectively were obtained using learning rate finder. A step size is an important
parameter which simply is the number of batches in which the learning rate will become equal to the
maximum learning rate starting from the base learning rate or vice-versa. It is the number of training
batches to reach half cycle. Typically, the step size of 2-8 times the number of training batches in 1 epoch
is ideal [4]. For “Pneumothorax”, the total number of training batches in 1 epoch is equal to 541.
Therefore, a step size of 1082 was used for learning rate finder. Finally, a mode policy needs to be defined
for calculating learning rates. Mode is the pattern in which the learning rate will vary within the bounds of
maximum and minimum learning rates. The "triangular" policy for “Pneumothorax” binary classifier is
shown in figure 4. The learning rate monotonically increases to maximum learning rate from base
learning rate in two epochs and decreases back to base learning rate in the next two epochs. Since the
“Pneumothorax” model with CLR technique and "triangular" policy is trained for 36 epochs, a total of 9
full cycles can be observed in figure 4.

We also have parallelly utilized a more complex policy called a "modified triangular2" policy. In this policy,
the maximum learning rate is not taken to be the average of previous maximum learning rate unlike
"triangular2" policy. After 3 complete cycles of the "triangular2" policy, the training is continued with
"triangular2 policy" with original maximum learning rate obtained from the learning rate finder technique.
This process is carried out until whole training is exhausted. In the “Pneumothorax” binary classifier, the
maximum learning rate in the first cycle is 0.03 from the first learning rate finder cycle, followed by
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second cycle with maximum learning rate of 0.01875, followed by third cycle with maximum learning rate
of 0.013125 (figure 5), etc.

A6. Learning rate finder:

The upper and lower bounds of the CLR have been determined by learning rate finder technique where the
cost function is minimum. Training the model with a learning rate finder as a callback for 1-5 epochs was
enough to get the learning rate with minimum cost function. In case of the “Pneumonia” binary classifier,
the minimum and maximum values for the learning rates were 1e-7 as minimum and 1 as maximum
(figure 6). The training increases exponentially after each batch on minimum learning rate. The
“Pneumothorax” model loss vs. learning rate curve trained for 10 epochs is found to have a learning rate
of 3e-2 with minimum loss (figure 6). This loss increased as the learning rate approached to 1. The base
learning rate for CLR can be accounted to one-fourth of the maximum learning rate [4].

A7. With binary classifiers CLR’s out-perform normal training with a learning rate decay policy:

We have run 3 model architectures (MobileNetV1, AlexNet, and DenseNet121) for comparing the
performance (computational cost & accuracy) of classifiers [15, 16]. MobileNetV1 with an SGD optimizer
was found to be most efficient, while DenseNet121 had good accuracy but significantly more
computational cost, AlexNet had significantly lower accuracies when trained for the same number of
epochs (Table 5).
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Table 5
Accuracies of all the binary classifiers after training for given

number of epochs.
Binary Classifier No. of Epochs Accuracy (in %)

Atelectasis 10 75.10

Cardiomegaly 12 75.78

Consolidation 10 73.32

Edema 12 93.37

Emphysema 10 85.60

Effusion 10 86.53

Fibrosis 10 66.58

Infiltration 10 64.60

Mass 10 70.11

Nodule 10 68.23

Pneumothorax 10 70.12

Pneumonia (with CLR) 30 88.43

Pleural Thickening 10 71.67

Hernia 30 90.81

The problem of false-positive predictions was addressed using one-class classifiers. For the models of
“Infiltration”, “Atelectasis”, “Fibrosis” & “Pneumothorax” the accuracies have been consistently low after
training for the selected number of epochs. So, we chose these conditions to test CLR’s on (Table 6).

 
Table 6

Comparison of the network architectures for “Atelectasis” binary classifier.
Name of Model
Architecture

Approx. training time per epoch in
hours

Training
Epochs

Accuracy (in
%)

MobileNetV1 2.5 10 75.10

DenseNet121 5 10 78.07

AlexNet 1.5 30 75.50

The problem of false-positive and false-negative predictions was resolved with one class classifiers. After
which, a selected model trained for 32 epochs using CLR’s with a maximum learning rate of 0.1, a base
learning rate of 0.025, a step size of 2, and with a "triangular" policy provided a final training accuracy of
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83.01%. CLR’s showed improved accuracy and a lower computational cost compared to training a
network with constant learning rates (Table 7 and 8).

 
Table 7

Classifier accuracies after application of CLR’s.
Binary
Classifier

Accuracy
before CLR
application
(in %)

Epochs taken to
achieve the
accuracy before
CLR application

Accuracy
after CLR
application
(in %)

Epochs taken to
achieve the
accuracy after
CLR application

Policy
Used

Atelectasis 75.10 10 79.59 32 Triangular

Infiltration 64.6 10 76.15 10 Modified
Triangular2

Fibrosis 66.58 10 88.96 32 Modified
Triangular2

Pneumothorax 70.12 10 79.83 36 Triangular

Pneumonia - - 88.43 30 Triangular

 
Table 8

Parameters and specifications of the CLR’s.
Binary
Classifier

Policy Used Step
Size

Epochs Maximum Learning
Rate

Base Learning
Rate

Atelectasis Triangular 2 32 0.1 0.025

Infiltration Modified
Triangular2

2 10 0.02 0.005

Fibrosis Modified
Triangular2

2 32 0.002 0.0005

Pneumothorax Triangular 2 36 0.03 0.0075

Pneumonia Triangular 2 30 0.01 0.0001

The “Pneumothorax” model is found to perform best when the CLR’s is used with a “triangular” policy. As
shown in figure 7, it took 47 epochs for the model with a constant learning rate to reach an accuracy of
79.26%. With CLR using “modified triangular2” policy crossed the accuracy level of 79.26% at 38 epoch
and reached the accuracy of 80.92% in 41 epochs. While, the “Pneumothorax” model with CLR using a
“triangular” policy crossed the accuracy level of 79.26% in just 36 epochs to achieve final accuracy of
79.83%.

The loss compared to the number of epochs was seen to be decreased with CLR’s in both “triangular” and
“modified triangular2” policies (Figure 8). The loss of the “Pneumothorax” model with CLR reduced
quicker than the “Pneumothorax” model with a constant learning rate.



Page 12/22

The “Fibrosis” model was found to give better results in the case of the CLR technique with a “modified
triangular2” policy. A comparison of “fibrosis” model trained for 32 epochs is shown in figure 9. The
model reached an accuracy of 85.04% in 32 epochs when trained with a constant learning rate policy.
The model reached an accuracy of 86.96% in 32 epochs when trained with CLR using a “triangular”
policy. It crossed the 85% accuracy level in 30 epochs. The model reached an accuracy of 88.15% in 32
epochs when trained with CLR using a “modified triangular2” policy. It crossed the accuracy level of 85%
in just 25 epochs. The loss was observed to be always less in CLR’s with a “modified triangular2” (figure
10).

Discussion & Future Scope:
Depthwise separable convolutions like MobileNets have been gradually pruned for improving the speed
of dense network [17]. MobileNetV1 Imagenet weights with SGD optimizer is found to outperform other
optimizers and architectures in terms of training time taken and accuracy attained. Achieving a high test
accuracy is directly depended on learning rate hyper-parameter for training neural networks [18, 19, 20,
21]. Three forms of triangle CLR’s have been stated to accelerate neural network training [18, 19]. Further,
tuning the batch size hyper-parameter for adjusting learning rates have also been shown to improve
learning accuracy [22]. Some hyperparameter tools like Hyperopt, SMAC, and Optuna, using grid search,
random search and bayesian optimization have been seen efficient in tuning batch sizes [23, 24]. To the
best of our knowledge, our work is the first to present a comprehensive characterization of CLR function
on training and testing accuracy of dense network models. In general, training any model with a CLR
technique is found to perform better than training with a constant learning rate. For the “Pneumothorax”
binary classifier, the CLR technique with the "triangular" policy is found to outperform both CLR with the
"modified triangular2" policy and constant learning rate training. For the “Fibrosis” binary classifier, the
CLR with the "modified triangular2" policy was found to give better results than the rest two policies.
Primarily, we found that there are two main advantages of training with CLR’s over constant learning
rates, with decay learning rates the model can get stuck into the saddle points or local minima due to low
learning rates, and secondly CLR’s reduces the effort of choosing an optimal learning rate by hit and trial
method. Poor choice of initial learning rate can make the model circle infinitely. In setting a learning rate,
there is a trade-off between the rate of convergence and overshooting, a high learning rate will make the
learning jump over minima but a too low learning rate will either take too long to converge or get stuck in
an undesirable local minimum [25]. The CLR’s cyclically provided higher learning rates too, which helped
the model to jump out of the local minima of the cost function. With these findings, implementing CLR’s
for improving prediction accuracies seems a promising strategy for object detection and machine
translation.
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Number of top 15 unique labels.

Figure 2

Counts per class for primary labels after one-hot encoding.



Page 17/22

Figure 3

Model architecture used for all the binary classifiers.

Figure 4

Plot showing the "Triangular" policy for “Pneumothorax” binary classifier trained for 36 epochs.
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Figure 5

Plot for the "modified triangular2" policy of “Pneumothorax” binary classifier trained for 42 epochs.

Figure 6

Loss vs. learning rate plot for “Pneumothorax” binary classifier trained for 10 epochs.
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Figure 7

Accuracy plot for “Pneumothorax” binary classifier with constant learning rate, CLR with “triangular” and
CLR with “modified triangular2” policies.



Page 20/22

Figure 8

Loss for “Pneumothorax” model with constant learning rate, CLR with “triangular” policy and CLR with
“modified triangular2” policy.
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Figure 9

Accuracy plot comparing “Fibrosis” binary classifier with constant learning rate, CLR with “triangular”
policy and CLR with “modified triangular2” policy.
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Figure 10

Loss for “Fibrosis” binary classifier with constant learning rate and CLR with a “modified Triangular2”
policy.


