[1] Colquhoun DJ, Duodu S. Francisella infections in farmed and wild aquatic organisms. Vet Res. 2011;42, 47.
[2] Bakkemo KR, Mikkelsen H, Bordevik M, Torgersen J, Winther-Larsen HC, Vanberg C, Olsen R, Johansen LH, Seppola M. Intracellular localisation and innate immune responses following Francisella noatunensis infection of Atlantic cod (Gadus morhua) macrophages. Fish Shellfish Immun. 2011;31, 993–1004.
[3] Bakkemo KR, Mikkelsen H, Johansen A, Robertsen B, Seppola M. Francisella noatunensis subsp. noatunensis invades, survives and replicates in Atlantic cod cells. Dis Aquat Organ. 2016;121, 149–159.
[4] Vestvik N, Rønneseth A, Kalgraff CA, Winther-Larsen HC, Wergeland HI, Haugland GT. Francisella noatunensis subsp. noatunensis replicates within Atlantic cod (Gadus morhua L.) leukocytes and inhibits respiratory burst activity. Fish Shellfish Immun. 2013;35, 725–733.
[5] Furevik A, Pettersen EF, Colquhoun D, Wergeland HI. The intracellular lifestyle of Francisella noatunensis in Atlantic cod (Gadus morhua L.) leucocytes. Fish Shellfish Immun. 2011;30, 488–494.
[6] Brudal E, Ulanova LS, Lampe EO. Rishovd AL, Griffiths G, Winther-Larsen HC. Establishment of three Francisella infections in zebrafish embryos at different temperatures. Infect Immun. 2014;82, 2180–2194.
[7] Soto E, Fernandez D, Hawke JP. Attenuation of the fish pathogen Francisella sp. by mutation of the iglC* gene. J Aquat Anim Health 2009;21, 140–149.
[8] Soto E, Hawke JP, Fernandez D, Morales JA. Francisella sp., an emerging pathogen of tilapia, Oreochromis niloticus (L.), in Costa Rica. J Fish Dis. 2009;32, 713–722.
[9] Soto E, Fernandez D, Thune R, Hawke JP. Interaction of Francisella asiatica with tilapia (Oreochromis niloticus) innate immunity. Infect Immun. 2010;78, 2070–2078.
[10] Ramírez-Paredes JG, Larsson PE, Wehner S, Bekaert M, Öhrman C, Metselaar M, Thompson KD, Richards RH, Penman DJ, Adams A. Draft genome sequence of Francisella noatunensis subsp. orientalis STIRGUS- F2f7, a highly virulent strain recovered from diseased red Nile tilapia farmed in Europe. Genome Announc. 2017;5, 16–17.
[11] Soto E, Yun S, Lewis J, Kearney MT, Hansen J. Interaction of Francisella noatunensis subsp. orientalis with Oreochromis mossambicus bulbus arteriosus cell line. Microb Pathog. 2017;105, 326–333.
[12] Chern R, Chao C. Outbreaks of a disease caused by rickettsia-like organism in cultured tilapias in Taiwan. Fish Pathol. 1994;29, 61–71.
[13] Soto E, Abrams SB, Revan F. Effects of temperature and salt concentration on Francisella noatunensis subsp. orientalis infections in Nile tilapia Oreochromis niloticus. Dis Aquat Organ. 2012;101, 217–223.
[14] Shahin K, Shinn AP, Metselaar M, Ramirez-Paredes JG, Monaghan SJ, Thompson KD, Hoare R, Adams A. Efficacy of an inactivated whole-cell injection vaccine for Nile tilapia, Oreochromis niloticus (L), against multiple isolates of Francisella noatunensis subsp. orientalis from diverse geographical regions. Fish Shellfish Immun. 2019;89, 217–227.
[15] Vojtech LN, Sanders GE, Conway C, Ostland V, Hansen JD. Host immune response and acute disease in a zebrafish model of Francisella pathogenesis. Infect Immun. 2009;77, 914–925.
[16] Hartung T. Comparative analysis of the revised Directive 2010/63/EU for the protection of laboratory animals with its predecessor 86/609/EEC - a t4 report. ALTEX 2010;27, 285–303.
[17] European Union. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Official Journal of the European Union 2010;276, 33–79.
[18] Froquet R, Cherix N, Burr SE, Frey J, Vilches S, Tomas JM, Cosson P. Alternative host model to evaluate Aeromonas virulence. Appl Environ Microbiol. 2007;73, 5657–5659.
[19] Lampe EO, Brenz Y, Herrmann L, Repnik U, Griffiths G, Zingmark C, Winther-Larsen HC, Hagedorn M. Dissection of Francisella-host cell interactions in Dictyostelium discoideum. Appl Environ Microbiol. 2016;82, 1586–1598.
[20] Pang M-D, Lin X-Q, Hu M, Li J, Lu C-P, Liu Y-J. Tetrahymena: An alternative model host for evaluating virulence of Aeromonas strains. PLoS ONE 2012;7, e48922.
[21] Brackman G, Celen S, Hillaert U, van Calenbergh S, Cos P, Maes L, Nelis HJ, Coenye T. Structure-activity relationship of cinnamaldehyde analogs as inhibitors of AI-2 based quorum sensing and their effect on virulence of Vibrio spp. PLoS ONE 2011;6, e16084.
[22] Defoirdt T, Bossier P, Sorgeloos P, Verstraete W. The impact of mutations in the quorum sensing systems of Aeromonas hydrophila, Vibrio anguillarum and Vibrio harveyi on their virulence towards gnotobiotically cultured Artemia franciscana. Environ Microbiol. 2005;7, 1239–1247.
[23] McMillan S, Verner-Jeffreys D, Weeks J, Austin B, Desbois AP. Larva of the greater wax moth, Galleria mellonella, is a suitable alternative host for studying virulence of fish pathogenic Vibrio anguillarum. BMC Microbiol. 2015;15, 127.
[24] Desbois AP, Coote PJ. Utility of greater wax moth larva (Galleria mellonella) for evaluating the toxicity and efficacy of new antimicrobial agents. Adv Appl Microbiol. 2012;78, 25–53.
[25] Jorjão AL, Oliveira LD, Scorzoni L, Figueiredo-Godoi LMA, Cristina A, Prata M, Jorge AOC, Junqueira JC. From moths to caterpillars: ideal conditions for Galleria mellonella rearing for in vivo microbiological studies. Virulence 2018;9, 383–389.
[26] Jander G, Rahme LG, Ausubel FM. Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol. 2000;182, 3843–3845.
[27] Olsen RJ, Watkins ME, Cantu CC, Beres SB, Musser JM. Virulence of serotype M3 Group A Streptococcus strains in wax worms (Galleria mellonella) larvae. Virulence 2011;2, 111–119.
[28] Jiang H, Vilcinskas A, Kanost MR. Immunity in lepidopteran insects. In: Söderhäll, K., (ed.) Invertebrate Immunity, New York: Springer US; 2010. pp. 1–24.
[29] Browne N, Heelan M, Kavanagh K. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence 2013;4, 597–603.
[30] Neumann NF, Stafford JL, Barreda D, Ainsworth AJ, Belosevic M. Antimicrobial mechanisms of fish phagocytes and their role in host defense. Dev Comp Immunol. 2001;25, 807–825.
[31] Lavine MD, Strand MR. Insect hemocytes and their role in immunity. Insect Biochem Molec. 2002;32, 1295–1309.
[32] Agius C, Roberts RJ. Melano-macrophage centres and their role in fish pathology. J Fish Dis. 2003;26, 499–509.
[33] Magnadóttir B. Innate immunity of fish (overview). Fish Shellfish Immun. 2006;20, 137–151.
[34] Cytryńska M, Mak P, Zdybicka-Barabas A, Suder P, Jakubowicz T. Purification and characterization of eight peptides from Galleria mellonella immune hemolymph. Peptides 2007;28, 533–546.
[35] Vogel H, Altincicek B, Glockner G, Vilcinskas A. A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella. BMC Genomics 2011;12, 308.
[36] Lange A, Beier S, Huson DH, Parusel R, Iglauer F, Frick J-S. Genome sequence of Galleria mellonella (greater wax moth). Genome Announc. 2018;6, e01220-17.
[37] Salamitou S, Ramisse F, Brehélin M, Bourguet D, Gilois N, Gominet M, Hernandez E, Lereclus D. The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology 2000;146, 2825–2832.
[38] Miyata S, Casey M, Frank DW, Ausubel FM, Drenkard E. Use of the Galleria mellonella caterpillar as a model host to study the role of the type III secretion system in Pseudomonas aeruginosa pathogenesis. Infect Immun. 2003;71, 2404–2413.
[39] Champion OL, Cooper IAM, James SL, Ford D, Karlyshev A, Wren BW, Duffield M, Oyston PCF, Titball RW. Galleria mellonella as an alternative infection model for Yersinia pseudotuberculosis. Microbiology 2009;155, 1516–1522.
[40] Thelaus J, Lundmark E, Lindgren P, Sjödin A, Forsman M. Galleria mellonella reveals niche differences between highly pathogenic and closely related strains of Francisella spp. Front Cell Infect Microbiol. 2018;8, 188.
[41] Propst CN, Pylypko SL, Blower RJ, Ahmad S, Mansoor M, van Hoek ML. Francisella philomiragia infection and lethality in mammalian tissue culture cell models, Galleria mellonella, and BALB/c Mice. Front Microbiol. 2016;7, 1–10.
[42] Aperis G, Fuchs BB, Anderson CA, Warner JE, Calderwood SB, Mylonakis E. Galleria mellonella as a model host to study infection by the Francisella tularensis live vaccine strain. Microbes Infect. 2007;9, 729–734.
[43] Ahmad S, Hunter L, Qin A, Mann BJ, van Hoek ML. Azithromycin effectiveness against intracellular infections of Francisella. BMC Microbiol. 2010;10, 123.
[44] Desbois AP, McMillan S. Paving the way to acceptance of Galleria mellonella as a new model insect. Virulence 2015;6, 410–411.
[45] Lagos L, Tandberg JI, Repnik U, Boysen P, Ropstad E, Varkey D, Paulsen IT, Winther-Larsen HC. Characterization and vaccine potential of membrane vesicles produced by Francisella noatunensis subsp. orientalis in an adult zebrafish model. Clin Vaccine Immunol. 2017;24, e00557-16.
[46] Sherry L, Rajendran R, Lappin DF, Borghi E, Perdoni F, Falleni M, Tosi D, Smith K, Williams C, Jones B, Nile CJ, Ramage G. Biofilms formed by Candida albicans bloodstream isolates display phenotypic and transcriptional heterogeneity that are associated with resistance and pathogenicity. BMC Microbiol. 2014;14, 182.
[47] Trevijano-Contador N, Herrero-Fernández I, García-Barbazán I, Scorzoni L, Rueda C, Rossi SA, García-Rodas R, Zaragoza O. Cryptococcus neoformans induces antimicrobial responses and behaves as a facultative intracellular pathogen in the non mammalian model Galleria mellonella. Virulence 2015;6, 66–74.
[48] Rajendran R, Borghi E, Falleni M, Perdoni F, Tosi D, Lappin DF, O’Donnell L, Greetham D, Ramage G, Nile C. Acetylcholine protects against Candida albicans infection by inhibiting biofilm formation and promoting hemocyte function in a Galleria mellonella infection model. Eukaryot Cell 2015;14, 834–844.
[49] Barnoy S, Gancz H, Zhu Y, Honnold CL, Zurawski DV, Venkatesan MM. The Galleria mellonella larvae as an in vivo model for evaluation of Shigella virulence. Gut Microbes 2017;8, 335–350.
[50] Baker CN, Hollis DG, Thornsberry C. Antimicrobial susceptibility testing of Francisella tularensis with a modified Mueller-Hinton broth. J Clin Microbiol. 1985;22, 212–215.
[51] Kamaishi T, Fukuda Y, Nishiyama M, Kawakami H, Matsuyama T, Yoshinaga T, Oseko N. Identification and pathogenicity of intracellular Francisella bacterium in three-line grunt Parapristipoma trilineatum. Fish Pathol. 2005;40, 67–71.
[52] Mauel MJ, Miller DL, Styer E, Pouder DB, Yanong RPE, Goodwin AE, Schwedler TE. Occurrence of piscirickettsiosis-like syndrome in tilapia in the continental United States. J Vet Diagn Invest. 2005;17, 601–605.
[53] Kwadha CA, Ong'amo GO, Ndegwa PN, Raina SK, Fombong AT. The biology and control of the greater wax moth, Galleria mellonella. Insects 2017;8, 61.
[54] Mukherjee K, Hain T, Fischer R, Chakraborty T, Vilcinskas A. Brain infection and activation of neuronal repair mechanisms by the human pathogen Listeria monocytogenes in the lepidopteran model host Galleria mellonella. Virulence 2013;4, 324–332.
[55] Shahin K., Thompson KD, Inglis NF, Mclean K, Ramirez-Paredes JG, Monaghan SJ, Hoare R, Fontaine M, Metselaar M, Adams A. Characterisation of the outer membrane proteome of Francisella noatunensis subsp. orientalis. J Appl Microbiol. 2018;125, 686–699.
[56] Sridhar S, Sharma A, Kongshaug H, Nilsen F, Jonassen I. Whole genome sequencing of the fish pathogen Francisella noatunensis subsp. orientalis Toba04 gives novel insights into Francisella evolution and pathogenicity. BMC Genomics 2012;13, 598.
[57] Lewis J, Soto E. Gene expression of putative type VI secretion system (T6SS) genes in the emergent fish pathogen Francisella noatunensis subsp. orientalis in different physiochemical conditions. BMC Microbiol. 2019;19, 21.
[58] Brudal E, Lampe EO, Reubsaet L, Roos N, Hegna IK, Thrane IM, Koppang EO, Winther-Larsen HC. Vaccination with outer membrane vesicles from Francisella noatunensis reduces development of francisellosis in a zebrafish model. Fish Shellfish Immun. 2015;42, 50–57.
[59] Lewisch E, Dressler A, Menanteau-Ledouble S, Saleh M, El-Matbouli M. Francisellosis in ornamental African cichlids in Austria. Bull Eur Assoc Fish Pathol. 2014;34, 63–70.
[60] Ortega C, Mancera G, Enríquez R, Vargas A, Martínez S, Fajardo R, Avendaño-Herrera R, Navarrete M, Romero A. First identification of Francisella noatunensis subsp. orientalis causing mortality in Mexican tilapia Oreochromis spp. Dis Aquat Organ. 2016;120, 205–215.
[61] Frerichs GN, Millar SD. Manual for the isolation and identification of fish bacterial pathogens. Stirling: Pisces Press; 1993.
[62] Chen CY, Nace GW, Irwin PL. A 6×6 drop plate method for simultaneous colony counting and MPN enumeration of Campylobacter jejuni, Listeria monocytogenes, and Escherichia coli. J Microbiol Methods 2003;55, 475–479.
[63] Senior NJ, Bagnall MC, Champion OL, Reynolds SE, La Ragione RM, Woodward MJ, Salguero FJ, Titball RW. Galleria mellonella as an infection model for Campylobacter jejuni virulence. J Med Microbiol. 2011;60, 661–669.
[64] Desbois AP, Coote PJ. Wax moth larva (Galleria mellonella): an in vivo model for assessing the efficacy of antistaphylococcal agents. J Antimicrob Chemother. 2011;66, 1785–1790.
[65] Perdoni F, Falleni M, Tosi D, Cirasola D, Romagnoli S, Braidotti P, Clementi E, Bulfamante G, Borghi E. A histological procedure to study fungal infection in the wax moth Galleria mellonella. Eur J Histochem. 2014;58, 258–262.
[66] Forsman M, Sandström G, Sjostedt A. Analysis of 16S ribosomal DNA sequences of Francisella strains and utilization for determination of the phylogeny of the genus and for identification of strains by PCR. Int J Syst Bacteriol. 1994;44, 38–46.