1. Hartline, H. K. (1940). The receptive fields of optic nerve fibers. American Journal of Physiology-Legacy Content, 130(4), 690-699. https://doi.org/10.1152/ajplegacy.1940.130.4.690
2. Kuffler, S. W. (1953). Discharge patterns and functional organization of mammalian retina. Journal of neurophysiology, 16(1), 37-68. https://doi.org/10.1152/jn.1953.16.1.37
3. Mitra, P., & Miller, R. F. (2007). Normal and rebound impulse firing in retinal ganglion cells. Visual neuroscience, 24(1), 79-90. https://doi.org/10.1017/S0952523807070101.
4. Li, H., Liu, X., Andolina, I. M., Li, X., Lu, Y., Spillmann, L., & Wang, W. (2017). Asymmetries of dark and bright negative afterimages are paralleled by subcortical ON and OFF poststimulus responses. Journal of Neuroscience, 37(8), 1984-1996. https://doi.org/10.1523/JNEUROSCI.2021-16.2017
5. Spitzer, H., Almon, M., & Sherman, I. (1994). A model for the early stages of motion processing based on spatial and temporal edge detection by X-cells. Spatial vision. https://doi.org/10.1163/156856894X00035
6. Marmarelis, P. Z., & Naka, K. I. (1972). White-noise analysis of a neuron chain: an application of the Wiener theory. Science, 175(4027), 1276-1278. https://doi.org/10.1126/science.175.4027.1276
7. Chichilnisky, E. J. (2001). A simple white noise analysis of neuronal light responses. Network: computation in neural systems, 12(2), 199. http://dx.doi.org/10.1080/net.12.2.199.213
8. Cai, D., DeAngelis, G. C., & Freeman, R. D. (1997). Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. Journal of neurophysiology, 78(2), 1045-1061. https://doi.org/10.1152/jn.1997.78.2.1045
9. DeAngelis, G. C., Ohzawa, I., & Freeman, R. D. (1995). Receptive-field dynamics in the central visual pathways. Trends in neurosciences, 18(10), 451-458. https://doi.org/10.1016/0166-2236(95)94496-R
10. Kruk, P. J., & Wrobel, A. (1986). Spatiotemporal organization of the receptive fields of retinal ganglion cells in the cat: a phenomenological model. Acta neurobiol. exp, 46, 153-169. https://doi.org/10.1016/0166-2236(95)94496-R
11. Maunsell, J. H., Nealey, T. A., & DePriest, D. D. (1990). Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. Journal of Neuroscience, 10(10), 3323-3334. https://doi.org/10.1523/JNEUROSCI.10-10-03323.1990
12. Merigan, W. H., Byrne, C. E., & Maunsell, J. H. (1991). Does primate motion perception depend on the magnocellular pathway?. Journal of Neuroscience, 11(11), 3422-3429. https://doi.org/10.1523/jneurosci.11-11-03422.1991
13. Schiller, P. H., Logothetis, N. K., & Charles, E. R. (1990). Functions of the colour-opponent and broad-band channels of the visual system. Nature, 343(6253), 68-70. https://doi.org/10.1038/343068a0
14. Schiller, P. H., Logothetis, N. K., & Charles, E. R. (1990). Role of the color-opponent and broad-band channels in vision. Visual neuroscience, 5(4), 321-346. https://doi.org/10.1017/s0952523800000420
15. Alonso, J. M., Yeh, C. I., Weng, C., & Stoelzel, C. (2006). Retinogeniculate connections: a balancing act between connection specificity and receptive field diversity. Progress in brain research, 154, 3-13. https://doi.org/10.1016/S0079-6123(06)54001-4
16. Pillow, J. W., Paninski, L., Uzzell, V. J., Simoncelli, E. P., & Chichilnisky, E. J. (2005). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. Journal of Neuroscience, 25(47), 11003-11013. https://doi.org/10.1523/jneurosci.3305-05.2005
17. Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. nature, 381(6582), 520-522. https://doi.org/10.1038/381520a0
18. Potter, M. C., Wyble, B., Hagmann, C. E., & McCourt, E. S. (2014). Detecting meaning in RSVP at 13 ms per picture. Attention, Perception, & Psychophysics, 76(2), 270-279. https://doi.org/10.3758/s13414-013-0605-z
19. Maguire, J. F., & Howe, P. D. (2016). Failure to detect meaning in RSVP at 27 ms per picture. Attention, Perception, & Psychophysics, 78(5), 1405-1413. https://doi.org/10.3758/s13414-016-1096-5
20. Koskela, S., Turunen, T., & Ala-Laurila, P. (2020). Mice reach higher visual sensitivity at night by using a more efficient behavioral strategy. Current Biology, 30(1), 42-53. https://doi.org/10.1016/j.cub.2019.11.021
21. Smeds, L., Takeshita, D., Turunen, T., Tiihonen, J., Westö, J., Martyniuk, N., ... & Ala-Laurila, P. (2019). Paradoxical rules of spike train decoding revealed at the sensitivity limit of vision. Neuron, 104(3), 576-587. https://doi.org/10.1016/j.neuron.2019.08.005
22. Turner, M. H., Schwartz, G. W., & Rieke, F. (2018). Receptive field center-surround interactions mediate context-dependent spatial contrast encoding in the retina. Elife, 7, e38841. https://doi.org/10.7554/elife.38841
23. Enroth-Cugell, C., & Jones, R. W. (1963). Responses of cat retinal ganglion cells to exponentially changing light intensities. Journal of neurophysiology, 26(6), 894-907. https://doi.org/10.1152/jn.1963.26.6.894
24. Bair, W., Cavanaugh, J. R., Smith, M. A., & Movshon, J. A. (2002). The timing of response onset and offset in macaque visual neurons. Journal of Neuroscience, 22(8), 3189-3205. https://doi.org/10.1523/jneurosci.22-08-03189.2002
25. Llinas, R., & Yarom, Y. (1981). Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage‐dependent ionic conductances. The Journal of physiology, 315(1), 549-567. https://doi.org/10.1113/jphysiol.1981.sp013763
26. MacWilliams, F. J., & Sloane, N. J. (1976). Pseudo-random sequences and arrays. Proceedings of the IEEE, 64(12), 1715-1729. https://doi.org/10.1109/PROC.1976.10411