[1] Perez A, Plattner K (2014) Fruit and Tree Nuts Outlook : Economic Insight Econ Res Serv USDA 1–6.
[2] Koppar A, Pullammanappallil P (2013) Anaerobic digestion of peel waste and wastewater for onsite energy generation in a citrus processing facility. Energy 60:62–68.
[3] Wilkins H, Merrilees B, Herington C (2007) Towards an understanding of total service quality in hotels. Int J Hosp Manag 26:840–853.
[4] Maran JP, Manikandan S, Nivetha CV, Dinesh R (2017) Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design. Arab J Chem 10:S1145--S1157.
[5] Hosseini SS, Khodaiyan F, Yarmand MS (2016) Optimization of microwave assisted extraction of pectin from sour orange peel and its physicochemical properties. Carbohydr Polym 140:59–65.
[6] Kazemi M, Khodaiyan F, Hosseini S S (2019) Utilization of food processing wastes of eggplant as a high potential pectin source and characterization of extracted pectin. Food Chem 294:339–346.
[7] Cypriano DZ, da Silva LL, Tasic L (2018) High value-added products from the orange juice industry waste. Waste Manag 79:71–78.
[8] Lessa EF, Gularte MS, Garcia ES, Fajardo AR (2017) Orange waste: A valuable carbohydrate source for the development of beads with enhanced adsorption properties for cationic dyes. Carbohydr Polym 157:660–668.
[9] Park JY, Oh YK, Lee JS, Lee K, Jeong MJ, Choi SA (2014) Acid-catalyzed hot-water extraction of lipids from Chlorella vulgaris. Bioresour Technol 153:408–412.
[10] Aslanzadeh S, Özmen P, (2009) Biogas production from municipal waste mixed with different portions of orange peel. Dissertation, University of Borås/School of Engineering). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-19554
[11] Mantzouridou FT, Paraskevopoulou A, Lalou S (2015) Yeast flavour production by solid state fermentation of orange peel waste. Biochem Eng J 101:1–8.
[12] Lee SK, Chou H, Ham TS, Lee TS, Keasling JD (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19:556–563.
[13] Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5.
[14] Wei Z, Zeng G, Huang F, Kosa M, Sun Q, Meng X, Huang D, Ragauskas AJ (2015) Microbial lipid production by oleaginous Rhodococci cultured in lignocellulosic autohydrolysates. Appl Microbiol Biotechnol 99:7369–7377.
[15] Yan Q, Pfleger BF (2020) Revisiting metabolic engineering strategies for microbial synthesis of oleochemicals. Metab Eng 58:35–46.
[16] Beopoulos A, Cescut J, Haddouche R, Uribelarrea, JL, Molina-Jouve C, Nicaud JM (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387.
[17] Kosa M, Ragauskas AJ (2011) Lipids from heterotrophic microbes: Advances in metabolism research. Trends Biotechnol 29:53–61. doi:10.1016/j.tibtech.2010.11.002
[18] Subramaniam R, Dufreche S, Zappi M, Bajpai R (2010) Microbial lipids from renewable resources: production and characterization. J Ind Microbiol Biotechnol 37:1271–1287.
[19] Wu S Hu C Jin G Zhao X, Zhao ZK (2010) Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresour Technol 101:6124–6129.
[20] Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306.
[21] Qadeer S, Mahmood S, Anjum M, Ilyas N, Ali Z, Khalid A (2018) Synchronization of lipid-based biofuel production with waste treatment using oleaginous bacteria: A biorefinery concept. Process Saf Environ Prot 115:99–107.
[22] Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917.
[23] Cea M, Sangaletti-Gerhard N, Acuña P, Fuentes I, Jorquera M, Godoy K, Osses F, Navia R (2015) Screening transesterifiable lipid accumulating bacteria from sewage sludge for biodiesel production. Biotechnol Reports doi:10.1016/j.btre.2015.10.008
[24] APHA (2005) Standard Methods for the Examination of Water and Wastewater 21st ed. American Public health Association Wshington DC.
[24] Röttig A, Wolf S, Steinbüchel A (2016) In vitro characterization of five bacterial WS/DGAT acyltransferases regarding the synthesis of biotechnologically relevant short-chain-length esters. Eur J Lipid Sci Technol 118:124–132.
[25] Patel A, Sindhu DK, Arora N, Singh RP, Pruthi V, Pruthi PA (2015) Biodiesel production from non-edible lignocellulosic biomass of Cassia fistula L. fruit pulp using oleaginous yeast Rhodosporidium kratochvilovae HIMPA1. Bioresour Technol doi:10.1016/j.biortech.2015.08.039
[26] Bleichrodt FS, Fischer R, Gerischer UC (2010) The β-ketoadipate pathway of Acinetobacter baylyi undergoes carbon catabolite repression, cross-regulation and vertical regulation, and is affected by Crc. Microbiology 156: 1313–1322.
[27] Patrauchan MA, Florizone C, Dosanjh M, Mohn WW, Davies J, Eltis LD (2005) Catabolism of benzoate and phthalate in Rhodococcus sp. strain RHA1: redundancies and convergence. J Bacteriol 187:4050–4063.
[28] Kumar S, Gupta N, Pakshirajan K (2015) Simultaneous lipid production and dairy wastewater treatment using Rhodococcus opacus in a batch bioreactor for potential biodiesel application. J Environ Chem Eng doi:10.1016/j.jece.2015.05.030
[29] Gouda MK, Omar SH, Aouad LM (2008) Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J Microbiol Biotechnol 24:1703–1711. doi:10.1007/s11274-008-9664-z
[30] Zhang X, Yan S, Tyagi RD, Surampalli RY, Vale´ro JR (2014) Wastewater sludge as raw material for microbial oils production. Appl Energy doi:10.1016/j.apenergy.2014.08.078
[31] Van Bodegom P (2007) Microbial maintenance: a critical review on its quantification. Microb. Ecol. 53:513–523.
[32] Shruthi RBV, Kerle N, Jetten V, Stein A (2014) Object-based gully system prediction from medium resolution imagery using Random Forests. Geomorphology 216:283–294.
[33] de Carvalho CCCR (2012) Adaptation of Rhodococcus erythropolis cells for growth and bioremediation under extreme conditions. Res Microbiol 163:125–136.
[34] de Carvalho CCCR, Marques MPC, Hachicho N, Heipieper HJ (2014) Rapid adaptation of Rhodococcus erythropolis cells to salt stress by synthesizing polyunsaturated fatty acids. Appl Microbiol Biotechnol 98: 5599–5606.
[35] Kosa M, Ragauskas AJ (2012) Bioconversion of lignin model compounds with oleaginous Rhodococci. Appl Microbiol Biotechnol 93:891–900. doi:10.1007/s00253-011-3743-z
[36] Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG (2011) Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol 90:1219–1227.