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Abstract

The bark extract of Rhizophora mucronata (BERM) was recently reported for its prominent in vitro
protective effects against liver cell line toxicity caused by various toxicants, including ethanol. Here, we
aimed to verify the in vivo hepatoprotective effects of BERM against ethanol intoxication. An oral
administration of different concentrations (100, 200, and 400 mg/kg) of BERM prior to high-dose ethanol
via intraperitoneal injection was performed in mice. On the 7th day, liver and kidney sections were
dissected out for histopathological examination. The ethanol intoxication caused large areas of liver
necrosis while the kidneys were not affected. Pre-BERM administration decreased ethanol-induced liver
injury, as compared to the mice treated with ethanol alone. In addition, the pre-BERM administration
resulted in a decrement in the level of ethanol-induced oxidative stress, revealed by a concomitant
increase of GSH and a decrease of MDA hepatic levels. The BERM extract also reversed the ethanol-
induced liver injury and hepatotoxicity, characterized by the low detection of TNF-a gene expression level
and fragmented DNA, respectively. Altogether, BERM extract exerts antioxidative activities and present
promising hepatoprotective effects against ethanol intoxication. The identification of the related
bioactive compounds will be of interest for future use at physiological concentrations in ethanol-
intoxicated individuals.

1. Introduction

Ethanol, also called ethyl alcohol or alcohol, is considered one of the potent hepatotoxins capable of
causing chronic liver damage (Julien et al., 2020). Liver diseases including alcoholic liver disorder (ALD)
have been associated to chronic alcohol abuse leading to highest morbidity and mortality worldwide
(Asrani et al., 2019; Crabb et al., 2020). The time and dosage contingent intake of alcohol increase the
risk of ALD (Marugame et al., 2007). ALD progression is revealed by a series of liver diseases, which
begins from fatty liver to swelling and noxious cells such as steatohepatitis, cholecystitis, and cirrhosis to
ultimately develop into hepatocellular carcinoma (HCC) (Morgan et al., 2004). To overcome any side
effects caused by toxicants or conventional chemotherapeutic drugs causing liver cell damage
(hepatotoxicity) and tissue injury, cost-effective plant and plant-based preparations posing no side
effects could be valuable for the treatment of liver disorders (Mondal et al., 2014; Anwanwan et al., 2020).

Ethanol consumption followed by its metabolism results in high toxic levels of acetaldehyde via alcohol
dehydrogenase, which generates oxidative stress (Yin et al., 1999; Zima et al., 2001; Zhou et al., 2003).
Through its highly reactive nature, acetaldehyde interacts with cellular proteins, lipids, and
deoxyribonucleic acid (DNA) leading to the production of adducts and reactive species, which
subsequently cause elevated hepatotoxicity and severe liver injury. Acetaldehydes mainly cause the
formation of protein adducts that are toxic and highly immunogenic (Niemel&, 2001). Consequently,
acetaldehyde-adducted proteins and alcohol-induced oxidative stress increase the synthesis and release
of tumor necrosis factor-alpha (TNF-a), an inflammatory cytokine mainly secreted by the macrophages
and demonstrated to contribute to liver injury and damage (Sapkota et al., 2016; ). In addition, one of the
factors playing major roles in the alcohol toxicity is the oxidative stress caused by excessive generation
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of reactive oxygen species (ROS) (Bailey and Cunningham, 1998). Under normal physiological situations,
the liver oxidative stress is regulated by the hepatic enzymatic (i.e., glutathione reductase) and non-
enzymatic (i.e, reduced glutathione (GSH) and malondialdehyde (MDA)) antioxidant systems to maintain
the cellular redox homeostasis. An excessive consumption of alcohol impairs the hepatic antioxidant
system and results in lipid peroxidation, indicated by MDA, and in GSH deficiency (Chen et al., 2016;
Pérez-Hernandez et al., 2017).

Consumption of ethanol leads to another major consequence leading to cell fate towards programmed
cell death (i.e,, apoptosis), a complex process characterized by DNA fragmentation, which is occurred not
only in the liver (Nanji, 1998) but also in other tissues including brain (Slomiany et al., 1997), salivary
gland (Zhang et al., 1998) and gastric mucosa (Piotrowski et al., 1997). Furthermore, ethanol toxicity also
interferes with the electron transport chain that provokes mitochondrial dysfunction, apoptosis, cellular
damage, and ultimately necrosis, a form of a premature cell death caused by autolysis and occurring in
response to injury (Hoek et al., 2002; Manzo-Avalos et al., 2010; Songet al., 2014; Wang et al., 2016).

Based on a previous report, using human hepatocarcinoma cell line HepG2, the plant parts of Rhizophora
mucronata Lam. (R. mucronata), also known as Mangrove, including leaves, roots, flowers, bark and
fruits were shown to have promising therapeutic values and to be capable of neutralizing various
toxicants, including ethanol intoxication (Jairaman et al., 2019). However, no studies have explored the in
vivo biological protective impact of the bark extract of R. mucronata (BERM) against ethanol-induced
liver injury and hepatotoxicity. Thus, in this present study, BERM was tested for its hepatoprotective
properties against ethanol intoxication in Swiss albino mice. This in vivo assessment was made in an
attempt to find a novel and safe hepatoprotective drug against ethanol-induced liver injury. This study
primarily focused on the evaluation of liver injury biomarkers, including the measurements of non-
enzymatic antioxidant components, MDA and GSH, using oxidative stress-related biochemical assays;
the monitoring of TNF-a gene expression level using real time-polymerase chain reaction (RT-PCR)
technique; and the evaluation of cell damage based on apoptotic status using terminal deoxynucleotidyl
transferase dUTP nick-end labelling (TUNEL) assay. Hepatoprotective flavonoid milk thistle seeds-derived
Silybum marianum (Silymarin), well-known for its anti-oxidative properties, was used as a positive control
throughout this study.

2. Materials And Methods
2.1. Sample Collection and Extract Preparation

During January 2018, the barks of R. mucronata Lam. were collected from Pichavaram Mangrove forest
and were authenticated by Prof. P. Jayaraman with the specimen no: PARC/2018/3854 at Plant Anatomy
Research Centre, West Tambaram, Chennai, India for future reference. The barks were dried in shade for
15 days, roughly powdered and kept in containers, which were impermeable to air and later used for
further study.
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The pre-weighed 500 g of powdered bark of R. mucronata were brought in a tight glass container with lid
and soaked with ethanol: water (3:1 v/v) weighing about 1500 mL. The container was sealed and kept for
a period of 2 weeks with sporadic mixing and agitation. The extract was then filtered through Grade |
Whatmann filter paper. In order to get the crude bark extract of R. mucronata (BERM), the filtrate was
evaporated at room temperature and stored in refrigeration at 4°C for further use.

2.3. Animal Procurement and Maintenance

The animals were procured from Biogen Laboratory Animal Facility (Bangalore, Karnataka, India). For the
present study, healthy male Swiss C57/BL/6 Albino mouse strains (n = 36) aged between 8 and 10
weeks, weighing approximately 25 to 30 g, were obtained. The animal experiments were conducted in
accordance with the ethical norms and guidelines of Committee for the Purpose of Control and
Supervision of Experiments on Animals (CPCSEA) (New Delhi, India) and was also approved by the
Institutional Animal Ethical Committee (IAEC) of Saveetha Medical College (SU/CLAR/RD/002/2018).

The mice were shifted 10 days before the start of the experiment to the laboratory conditions for
acclimation. The mice were kept in plastic cages and were marked on the tail for the identification of
each individual. Throughout the experiment, the mice were fed with ADILAID Hemster pellets vegetable
(Mumbai, India) and drank potable water ad /ibitum, except during the short fasting period where the
supply of food was still in ad-lib but potable water was not supplied 2 h before the treatment.

2.4. Animal Study Design and Sample Preparation

The experiment was designed as per the previously published protocol (Padmanabhan and Jangle,
2014). The 36 Swiss Albino mice were sorted into 6 groups consisting of 6 animals in each group. Group
1: standard control group. For 6 days, the mice were orally administered with distilled water (5 mL/kg
body weight (b.w.)). Group 2: ethanol-induced liver injury group. The mice were administered with ethanol
(cat. #64-17-1, Sigma-Aldrich Corp.) alone. Group 3: silymarin (cat. #50292, Sigma-Aldrich Corp.) +
ethanol group. The mice were orally administered with a single dose of silymarin (50 mg/kg b.w.) prior to
ethanol administration. Group 4: 100 BERM + ethanol group. The mice were orally administered with a
single dose of 100 mg/kg b.w. BERM prior to ethanol administration. Group 5: 200 BERM + ethanol
group. The mice were orally administered with a single dose of 200 mg/kg b.w. BERM prior to ethanol
administration. Group 6: 400 BERM + ethanol group. The mice were orally administered with a single
dose of 400 mg/kg b.w. BERM prior to ethanol administration. Except the untreated mice in Group 1, all
the treated mice were given ethanol (5 mL/kg b.w. of 25% v/w ethanol), via intraperitoneal (i.p.) injection
for 6 days, after half-hour oral administration of the plant extract.

On day 7, the mice were euthanized by applying pressure to the neck and dislocating the spinal cord.
Kidneys and liver were removed, thoroughly rinsed with regular brine, then dried with tissue paper. The
upper left lobe of the liver was cut with sterile scissors and wrapped in the aluminum foil, and kept at
-70°C before processing RT-PCR for TNF-a gene expression level monitoring and TUNEL assay. The
remaining part of the liver was mixed evenly to get the homogenate, which was dissolved in 0.2 M
phosphate buffer (pH 7.4). By using a tissue homogenizer (MC Dalal & Co., Chennai, India), 10%
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homogenized liver tissue was made. After centrifugation at 2075 xg for 15 min, the supernatant was
utilized for the detection of MDA and GSH.

2.5. Histopathological Analysis

The liver and kidneys were first fixed in 10% formalin then they were dehydrated using gradual ethanol
(50-100%), rinsed in xylene, and were impregnated in paraffin wax. The tissue sections (5-6 pm
thickness) were generated using rotary microtome and later stained with haematoxylin and eosin (HE)
dye for histopathological examination.

2.6. Oxidative Stress-Related Non-Enzymatic Assays
2.6.1. Estimation of Reduced Glutathione

Reduced GSH was measured in the homogenized supernatant as described in (Moron et al., 1979). Briefly,
in order to precipitate the proteins, 125 pL of 25% of trichloroacetic acid (TCA) were added to 0.5 mL of
supernatant. The test tubes were cooled on ice for 5 min and the supernatant was then diluted with 0.6
mL of 5% TCA and centrifuged for 10 min at 9000 xg. To the 0.3 mL of the aliquot, 0.7 mL of 0.2 M
sodium phosphate buffer (pH 8.0) were added to make it up to 1 mL. Further, to the tubes freshly
prepared, the 5-5-dithio-bis(2-nitrobenzoic acid) (DTNB) solution (2.0 mL) was added. After 10 min, the
formed yellow color produced by the presence of 2-nitro-5-thiobenzoic acid, generated from the reduced
glutathione GSH and DTNB reaction, was read at 412 nm using a spectrophotometer (Lovibond, ACD
Company, New Delhi, India). Similarly, standards were also included to measure the content of GSH.

2.6.2 Estimation of Malondialdehyde

The measurement of MDA detected in the homogenized supernatant was carried out as described in
(Hogberg et al., 1974). Briefly, in a total volume of 2 mL, 0.2 mL of supernatant, 0.03 M Tris-HCI buffer (pH
7.4) and 0.2 mM sodium pyrophosphate were added. The mixture was incubated for 20 min at 37°C. The
reaction was stopped by the addition of 1 mL of 10% TCA, after which 1.5 mL of the organic compound
2-thiobarbituric acid (TBA) were added and the mixture was heated. The pink-colored product formed
revealing the presence of MDA due to the oxidation of fatty acids, was measured using
spectrophotometer at an absorption of 535 nm.

2.7. RNA Extraction and RT-PCR

Total ribonucleic acid (RNA) was isolated utilizing ONE STEP-RNA Reagent (Biobasic Inc.) from untreated
and treated liver tissue homogenates. Concentration and quality of RNA samples were assessed using
ultra-violet (UV) spectrophotometry. Easy Script Plus™ Reverse Transcriptase (Tinzyme, New Delhi, Indian)
was used for the reverse transcription of high-quality RNA extracts. Briefly, 0.5 pg total RNA, 2 uL oligo dT
and 0.5 pg/mL random hexamer primers in diethyl pyrocarbonate (DEPC)-treated water were inoculated
for 5 min at 65°C and instantly cooled down on ice. After the addition of 4 pL dithiothreitol (10 mM), 2 pyL
dNTP (10 mM) and 8 pL First Strand buffer, the temperature of the solution was lowered to 55°C and
completed with 200 U Superscript [I® (MiRXES, Heal Force Company, Shanghai, China). The solution was

Page 6/20



then incubated at 55°C for 60 min then at 85°C for 15 min thus generating complementary DNA (cDNA).
TNF-a and internal control glyceraldehyde 3-phosphate dehydrogenase (GAPDH) genes were amplified by
PCR using selected primer pairs of sequences as follows: TNF-a, 5-CCGAGGCAGTCAGATCATCTT-3'
(forward), 5-AGCTGCCCCTCAGCTTGA-3' (reverse); GAPDH, 5-GCAAGTTCAACGGCACAGTCAAG-3'
(forward), 5-ACATACTCAGCACCAGCATCACC-3' (reverse). PCRs were performed in duplicate for each
sample. To verify whether the results were confined to one single amplified product, all the reactions were
assessed through dissociation curve analysis. Each of the amplicons had different melting temperatures,
which were 83°C and 84°C for TNF-a and GAPDH, respectively. Pfaffl's mathematical model was used to
calculate the relative quantification of TNF-a transcripts (Pfaffl, 2001). In a total volume of 25 mL, 1.5%
agarose and 1X Tris-acetate-EDTA (TAE) were prepared and cascaded onto a gel tray. The loading dye
was blended with the PCR product. Along with the 1 kilobase pair (kbp) DNA ladder used as a reference;
the mixture sample was loaded to each well. The gel was run at 50 volt (V) for 90 min and then PCR
products were visualized by ethidium bromide staining and analyzed using Gel Pro Analyzer software
(version 4.0.). The quantity of TNF-a transcript was related to GAPDH.

2.8. Terminal deoxynucleotidyl transferase (TdT)-Mediated
dUTP Nick-End Labelling (TUNEL) Assay

DNA fragmentation analyses were carried out in paraffin-impregnated liver tissues using a terminal
deoxynucleotidyl TUNEL reaction conforming to manufacturer’s instructions. TUNEL reaction mixture
(250 pL) was formulated using: TdT (25 pL) diluted in the nucleotide mixture (225 pL). Nucleotide
solution excluding TdT was considered as negative control in all experiments. After lysing the cells and
the DNA strands were decondensed, the slides containing the paraffin-impregnated liver tissues were
washed twice with PBS. The TUNEL reaction mixture (25 pL) was added to each slide and a coverslip
was placed on the top for mounting. Later, the slides were incubated in a dark and highly moist chamber
for 60 min at 37°C. The coverslips were then taken off and the slides were rinsed three times with PBS.
Slides were developed with diaminobenzidine substrate, counterstained with HE dye, and scrutinized for
confirmation of programmed cell death (i.e, apoptosis), revealed by DNA fragmentation. The count of
brown apoptotic cells was normalized to total cells as visualized by HE staining. The apoptotic index was
calculated by dividing the number of apoptotic cells by the total number of cells in random fields.

2.9. Statistical Analysis

Sigma Plot-13 software (version 14.0, Systat Softwarem, CA, USA) was used to carry out statistical
analysis. The results are expressed as the mean + standard error of mean (SEM). One-way ANOVA with
Dunnett’s comparison post-hoc test was used for evaluating the significance of difference. If p < 0.001,
the data were considered statistically significant.

3. Results
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3.1. BERM Prevents Ethanol Intoxication-Induced Liver
Injury

Histopathological observations were made in gross liver and kidney tissues, dissected from all the
studied mouse groups. In the group treated with ethanol alone, spotty necrosis was visualized in the liver
tissue while the sections of kidney appeared to be normal, as seen in the Figure 1. The mouse groups,
which received treatment with either silymarin (the positive control) or BERM extract (100 mg and 200
mg) prior to ethanol administration showed a gradual improvement towards normal tissue architecture
indicated by the absence of spotty necrosis induced by ethanol, as compared to the control (Group 1), the
untreated tissues (Figure 1). The oral treatment with BERM prior to the administration of the toxic ethanol
for 7 consecutive days showed an obvious decrease in toxicant liver tissue injury, as compared with
ethanol-induced liver injury (Figure 1).

Based on histopathological microsection examination of the liver and kidney tissues collected from the 6
groups of mice, different tissue characteristics were observed, however both tissues showed necrotic cells
and fibrosis due to ethanol intoxication, as seen in the Figure 2. The liver and kidney tissues collected
from ethanol-administered groups pretreated with BERM presented normal tissue architecture, as
compared with the normal untreated group, the negative control (Figure 2).

3.2. BERM Decreases Ethanol-Induced MDA Levels and
Enhances Ethanol-decreased GSH Levels in Liver Tissues

As a biomarker of ethanol-induced oxidative stress and of liperoxidation (Galicia-Moreno et al., 2016), the
content of MDA was measured in the supernatants of tissue homogenates. The administration of alcohol
significantly increased the level of MDA produced in liver tissues, as seen in the Figure 3. The oral pre-
treatment with silymarin followed by the administration of ethanol resulted in the significant decrease in
ethanol-induced MDA production, as compared with hepatic tissue MDA levels detected in the ethanol
study group (Figure 3). A significant gradual reduction in ethanol-induced MDA production was observed
by the increased concentrations of the oral pre-treatment with BERM extracts (100, 200 and 400 mg), as
compared to the ethanol group (Figure 3). The decrease in ethanol-induced MDA production by the pre-
treatment with 400 mg BERM was similar to the decrease in ethanol-induced MDA production in liver
tissues caused by the pre-treatment with silymarin (Figure 3).

GSH levels was found to be the least measured in the toxic ethanol study group and the highest in the
silymarin study group, as seen in the Figure 3. A significant gradual increase in ethanol-induced GSH
production was observed by the increased concentrations of the oral pre-treatment with BERM extracts
(100, 200 and 400 mg), as compared to the ethanol group (Figure 3). A significant difference was still
observed between the increased level of GSH content detected in ethanol-induced liver injury pre-treated
with 400 mg BERM and the increased level of GSH detected in ethanol-induced liver injury pre-treated with
silymarin (Figure 3).
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3.3. BERM Reduces Ethanol-Induced TNF-a Gene
Expression Level

Chronic ethanol consumption also leads to the increase in the gene expression level of TNF-q, a pro-
inflammatory cytokine used as a biomarker of liver injury (Yin et al., 1999). Amplified by RT-PCR then
visualized using gel electrophoresis, the liver treatment with ethanol significantly up-regulated TNF-a
mMRNA expression level, as compared to TNF-a mRNA expression level monitored in the untreated control
liver tissue, as seen in the Figure 4. The pre-treatment with either BERM or silymarin significantly
decreased ethanol-induced TNF-a mRNA expression level, as compared to TNF-a mRNA expression level
monitored in the toxic alcoholic liver tissue (Figure 4).

3.4. BERM Inhibits Apoptosis Due to Ethanol-Induced Liver
Injury

Ethanol intoxication-induced liver injury leads to premature and programmed cell death, including
apoptosis (Wang et al., 2016). Known as a hallmark of apoptosis, nuclear DNA fragmentation was
assessed using TUNEL assay under light microscope. Mainly observed in the toxic ethanolic liver tissue,
the shrunken cells of which nuclei was stained brown were identified as TUNEL-positive apoptotic cells,
as compared with the healthy cells that were observed in the untreated control liver tissue, as seen in the
Figure 5A. Fewer TUNEL-positive apoptotic cells were spotted in the ethanol-induced liver injury after pre-
treatment with either BERM or silymarin, as compared to TUNEL-positive apoptotic cell number observed
in the toxic ethanolic liver tissue (Figure 5A). The apoptotic index was significantly decreased in ethanol-
induced liver injury in the mice group pre-treated with BERM, as compared with the mice treated with
ethanol alone, as seen in the Figure 5B. The pre-treatment with silymarin decreased at a higher extent the
apoptotic index induced by ethanolic intoxication alone than the one determined following to pre-
treatment with BERM (Figure 5B).

4. Discussion

Liver and kidneys are both vital organs that are crucial for xenobiotic and drug elimination from our body
(Galicia-Moreno et al., 2016). In contrast to the kidneys, the liver tissue, consisted of a mass of cells
tunneled through with bile ducts and blood vessels, is mainly involved in the detoxification of viral
infection, prolonged drug therapy, various toxicants (i.e, CCl, and environmental pollutants, industrial
chemicals, etc.), and chronic alcoholism (Zima et al., 2001; Ndoe et al., 2015; Unsal et al., 2020). Their
metabolism and detoxification can generate a myriad of oxidative stress-related intermediate and end-
products leading to hepatotoxicity, characterized by the hepatocyte death, capable of causing liver
damage, liver injury and eventually liver diseases (Li et al., 2015). These harmful free radicals and
reactive oxygen species may impair the prominent hepatic enzymatic and non-enzymatic antioxidant
systems, and thus decrease the detoxification capability of the liver (He et al, 2017). So far, conventional
medical therapy of liver failure or liver diseases such as drug-based treatment or even post-
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transplantation medication is still not denuded from side effects, requesting the urgent needs to discover
new plant and plant-based formulations as safe medication therapies. These last decades, numerous
studies have reported hepatoprotective activities of various natural products extracted from plants
(Jiménez-Arellanes et al., 2016), including silymarin reaching clinical trials (Gillessen and Schmidt, 2020).
We previously evaluated the in vitro hepatoprotective activities of BERM based on the reduction of the
cytotoxicity in HepG, cell line exposed to the combined BERM and toxicants (i.e.,, CCl,, ethanol and
paracetamol) treatment (Padmanabhan and Jangle, 2014). In this present study, we demonstrated the
hepatoprotective activities of BERM in ethanol-intoxicated mice associated with a decrease of ethanol-
induced MDA production, enhancement of ethanol-decreased GSH production, and with the concomitant
reduction of ethanol-induced hepatotoxicity, revealed by the down-regulation of TNF-a gene expression
level and by the quasi-disappearance of fibrosis and apoptotic hepatocytes.

Oxidative stress has been mainly associated with the pathological process of ethanol-induced liver injury
(Phaniendra et al., 2015). The production of MDA, commonly known as oxidative stress marker and as a
marker of lipid peroxidation, was considerably enhanced in the ethanol study group in comparison with
the untreated control group. The MDA overproduction due to ethanol-induced liver damage aligned with
previous research studies (Chang et al., 2021). Another study reported that oxidative stress in brain due to
ethanol consumption also elevated MDA levels (Das et al., 2007).

A crucial non-enzymatic antioxidant pertaining to oxidative stress is GSH, which removes H,0, radicals
and reacts directly with certain ROS (e.g., the hydroxyl radical) and nullify its toxic effects. In the present
study, the ethanol toxicity group exhibited decreased levels of GSH in comparison with the control and
treated groups, resulted in reduced synthesis of GSH, as previously reported (Husain et al., 2001).
Observed in rats subjected to alcohol and tobacco smoke exposure, the generation of oxidative stress
was also stated to decrease GSH levels in liver (Ignatowicz et al., 2013), which agreed with our present
findings.

Oxygen radicals generated by the ethanol intoxication-induced injury play an important role in the
stimulation of inflammation through up-regulation of inflammatory cytokines such as TNF-a ( Gutierrez-
Ruiz et al., 2001). TNF-a is a key pro-inflammatory cytokine which induces the secretion of enzymes and
other cytokines in various cells and tissues. In this present study, the prolonged exposure to ethanol leads
to increased level of TNF-a gene in the toxic study group. Similar results were obtained by Nowak and
Relja who demonstrated that NF-kB signaling pathway was activated during alcoholic liver disease,
which resulted in the increased of gene expression levels of pro-inflammatory cytokines and chemokines
(Nowak and Relja, 2020). In humans, chronic alcohol consumption is associated with increase in the
production of serum pro-inflammatory cytokines (e.g., TNF-q, IL-1, IL-6, IL-8) (McClain and Cohen, 1989,
McClain et al., 1999). Thus, the correlation between oxidative stress and inflammation within the course
of alcoholic liver injury is indisputable. Moreover, improper metabolism of ROS ends up in the expression
of hypoxia-inducible factor-1 alpha that may also increase TNF-a secretion, resulting in associate
immune reaction that intensifies the liver injury (Wilson et al., 2014). In addition to play a major role in
inflammation, TNF-a bound to its receptor, which initiates programmed death pathways such as
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apoptosis through activation of downstream kinases and proteases, including caspases (Fouad et al.,
2019). A deeper investigation of the reverse effect of ethanol intoxication inducing apoptosis-related
molecular mechanisms, including caspase-dependent (extrinsic) and mitochondria-dependent (intrinsic)
pathways, contributing to hepatoprotective activities of BERM would be of interest.

The TUNEL assay was carried out for the detection of apoptotic cells that undergo massive DNA
fragmentation during the final stages of apoptosis. The DNA damage may be incurred due to ethanol-
induced oxidative stress exposed to the hepatocytes causing production of ROS and of TNF-a-induced
cell death, which in turn lead to hepatic injury (Wang et al., 2016). The current study showed that ethanol
intoxication towards mouse hepatocytes increased the number of apoptotic cells that was determined
using TUNEL assay and observed with light microscopy, which agrees with previous studies using human
alcoholic hepatitis specimens (Zhao et al., 1997; Natori et al., 2001). However, in this present study when
pre-treated with either silymarin or BERM, a considerable decrease in the number of ethanol-induced
apoptotic cells was noticed, confirming the in vivo hepatoprotective effect of BERM from alcohol
intoxication.

5. Conclusion

There is growing interest in the discovery of new antioxidant plant-based bioactive compounds that can
reverse the deleterious effects of toxicants, including ethanol overdose. In this present study, BERM at the
concentration of 400 mg/kg showed the highest protective effect from ethanol intoxication-induced liver
damage in mice and were revealed to be comparable with the hepatoprotective standard herbal drug,
silymarin. The hepatic MDA levels were subsequently found to be low, indicating the decrease in the
oxidative stress levels, and the increase in hepatic GSH levels clearly reflected the hepatoprotective effect
of BERM due to the presence of antioxidants. Thus, the recently reported purification and isolation of
unidentified bioactives compounds from BERM along with those characterized BERM-derived
hepatoprotective agents, including daidzein, epicatechin, hesperidin, diosmin, and quercetin (Saha et al.,
2019; Chitra et al., 2020), will pave the way for the development of an alternative and cost-effective
hepatoprotective agents against toxic liver disorders.
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BERM pre-administration prevented ethanol-induced liver injury in mice. Representative gross sections of
liver and kidney tissues of each mouse from 6 groups of mice after (5 mL of 25% ethanol/kg b.w.)
ethanol treatment via i.p. injection following to either oral pre-administration with sylimarin tested at 50
mg (Group 4) or oral pre-administration with BERM tested as 100 mg (Group 3), 200 mg (Group 4) and
400 mg (group 5), as compared to healthy untreated control mice (Group 1) and mice administered with
ethanol alone (Group 2). Spotty necrosis as indicator of tissue damage was only observed in the liver
tissue of ethanol-treated mice.

Liver

Group 1 — Control

Group 2 — Ethanol

Group 3 — Silymarin + Ethanol

Group 4 — 100 mg BERM + Ethanol

Group 5-200 mg BERM + Ethanol

Group 6 —400 mg BERM + Ethanol

Figure 2

BERM pre-administration prevented mild ethanol-induced kidney injury and severe ethanol-induced liver
injury in mice. Histopathological analysis of representative microsections from kidney and liver tissues
extracted from untreated (Group 1- Control) and treated mice (Group 2-6). From the Group 2, a mild
ethanol-induced injury was observed in the kidney tissues as indicated by the arrows, pointing glomeruli
damage (GL-D) and tubule damage (T-D) while a severe ethanol-induced injury was observed in the liver
tissues as indicated by the arrows, pointing central vein damage (CV-D) and bile duct damage (BL-D).
From the Group 3, the oral pre-administration with silymarin prevented both ethanol-induced kidney and
liver injuries as indicated by normal tissue architectures (glomeruli-normal, GL-NL; tubule-normal; T-NL;
central vein-normal, CV-NL; bile duct-normal, BD-NL; hepatosis-normal, H-NL). From the Group 4-6, the oral
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pre-administration with BERM (100-400 mg) prevented mild ethanol-induced kidney injury and severe
ethanol-induced injury as indicated by the absence of histopathologic alterations (No histopathologic
alterations, N-H) and areas showing hepatosis regeneration (H-R), as compared with the Group 1
presenting no damage (ND) of the kidney and liver tissues.
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Figure 3

Effect of BERM pre-administration on hepatic tissue GSH and MDA levels following to ethanol-induced
liver injury. The bar graphs show hepatic tissue levels of GSH and MDA measured using colorimetric
methods involving specific substrates such as DNTB and TBA solutions, respectively. Refer to methods
section for more information. Alphabets a, b and ab, clearly indicate that they are statistically significant
with the control (untreated) mouse group.
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Figure 4

BERM pre-administration decreased ethanol-induced TNF-I mRNA expression levels. (A) Representative
gel electrophoresis showing mRNA expression levels of TNF-{ and GAPDH, the internal control,
determined by polymerase chain reaction analysis in the control mouse group, ethanol treated group,
BERM or silymarin administration prior to ethanol injection. (B) The bar graph shows the expression
levels of TNF-{ mRNA related to GAPDH. The results are presented as the mean + SEM of three
independent experiments.
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BERM pre-administration decreased ethanol-induced apoptosis. (A) Representative photomicrographs
showing apoptotic DNA fragments containing digoxigenin-labeled nucleotides, revealed using TUNEL
assay. (B) The bar shows the percentage TUNEL-positive apoptotic cells. The results are presented as the
mean + SEM based on three independent experiments.
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