1 Acharya MM, Christie LA, Lan ML, Donovan PJ, Cotman CW, Fike JR, Limoli CL (2009) Rescue of radiation-induced cognitive impairment through cranial transplantation of human embryonic stem cells. Proc Natl Acad Sci U S A 106: 19150-19155 Doi 10.1073/pnas.0909293106
2 Acharya MM, Christie LA, Lan ML, Giedzinski E, Fike JR, Rosi S, Limoli CL (2011) Human neural stem cell transplantation ameliorates radiation-induced cognitive dysfunction. Cancer Res 71: 4834-4845 Doi 10.1158/0008-5472.CAN-11-0027
3 Acharya MM, Christie LA, Lan ML, Limoli CL (2013) Comparing the functional consequences of human stem cell transplantation in the irradiated rat brain. Cell Transplant 22: 55-64 Doi 10.3727/096368912X640565
4 Acharya MM, Martirosian V, Chmielewski NN, Hanna N, Tran KK, Liao AC, Christie LA, Parihar VK, Limoli CL (2015) Stem cell transplantation reverses chemotherapy-induced cognitive dysfunction. Cancer Res 75: 676-686 Doi 10.1158/0008-5472.CAN-14-2237
5 Acharya MM, Martirosian V, Christie LA, Riparip L, Strnadel J, Parihar VK, Limoli CL (2015) Defining the optimal window for cranial transplantation of human induced pluripotent stem cell-derived cells to ameliorate radiation-induced cognitive impairment. Stem cells translational medicine 4: 74-83 Doi 10.5966/sctm.2014-0063
6 Acharya MM, Rosi S, Jopson T, Limoli CL (2014) Human neural stem cell transplantation provides long-term restoration of neuronal plasticity in the irradiated hippocampus. Cell Transplant: Doi 10.3727/096368914X684600
7 Alam Q, Alam MZ, Mushtaq G, Damanhouri GA, Rasool M, Kamal MA, Haque A (2016) Inflammatory Process in Alzheimer's and Parkinson's Diseases: Central Role of Cytokines. Curr Pharm Des 22: 541-548 Doi 10.2174/1381612822666151125000300
8 Allen BD, Apodaca LA, Syage AR, Markarian M, Baddour AAD, Minasyan H, Alikhani L, Lu C, West BL, Giedzinski Eet al (2019) Attenuation of neuroinflammation reverses Adriamycin-induced cognitive impairments. Acta Neuropathol Commun 7: 186 Doi 10.1186/s40478-019-0838-8
9 Andaloussi S, Mager I, Breakefield XO, Wood MJ (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nature reviews Drug discovery 12: 347-357 Doi 10.1038/nrd3978
10 ArunSundar M, Shanmugarajan TS, Ravichandiran V (2018) 3,4-Dihydroxyphenylethanol Assuages Cognitive Impulsivity in Alzheimer's Disease by Attuning HPA-Axis via Differential Crosstalk of alpha7 nAChR with MicroRNA-124 and HDAC6. ACS chemical neuroscience 9: 2904-2916 Doi 10.1021/acschemneuro.7b00532
11 Barker GR, Bird F, Alexander V, Warburton EC (2007) Recognition memory for objects, place, and temporal order: a disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex. J Neurosci 27: 2948-2957 Doi 10.1523/JNEUROSCI.5289-06.2007
12 Barker GR, Warburton EC (2011) When is the hippocampus involved in recognition memory? J Neurosci 31: 10721-10731 Doi 10.1523/JNEUROSCI.6413-10.2011
13 Baulch JE, Acharya MM, Agrawal S, Apodaca LA, Monteiro C, Agrawal A (2020) Immune and Inflammatory Determinants Underlying Alzheimer's Disease Pathology. J Neuroimmune Pharmacol: Doi 10.1007/s11481-020-09908-9
14 Baulch JE, Acharya MM, Allen BD, Ru N, Chmielewski NN, Martirosian V, Giedzinski E, Syage A, Park AL, Benke SNet al (2016) Cranial grafting of stem cell-derived microvesicles improves cognition and reduces neuropathology in the irradiated brain. Proc Natl Acad Sci U S A 113: 4836-4841 Doi 10.1073/pnas.1521668113
15 Blum B, Benvenisty N (2008) The tumorigenicity of human embryonic stem cells. Adv Cancer Res 100: 133-158 Doi 10.1016/S0065-230X(08)00005-5
16 Bonardi C, de Pulford F, Jennings D, Pardon MC (2011) A detailed analysis of the early context extinction deficits seen in APPswe/PS1dE9 female mice and their relevance to preclinical Alzheimer's disease. Behav Brain Res 222: 89-97 Doi 10.1016/j.bbr.2011.03.041
17 Bradley JA, Bolton EM, Pedersen RA (2002) Stem cell medicine encounters the immune system. Nat Rev Immunol 2: 859-871 Doi 10.1038/nri934
18 Cain CK, Blouin AM, Barad M (2003) Temporally massed CS presentations generate more fear extinction than spaced presentations. J Exp Psychol Anim Behav Process 29: 323-333 Doi 10.1037/0097-7403.29.4.323
19 Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual review of cell and developmental biology 30: 255-289 Doi 10.1146/annurev-cellbio-101512-122326
20 Drommelschmidt K, Serdar M, Bendix I, Herz J, Bertling F, Prager S, Keller M, Ludwig AK, Duhan V, Radtke Set al (2017) Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury. Brain Behav Immun 60: 220-232 Doi 10.1016/j.bbi.2016.11.011
21 Edbauer D, Neilson JR, Foster KA, Wang CF, Seeburg DP, Batterton MN, Tada T, Dolan BM, Sharp PA, Sheng M (2010) Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65: 373-384 Doi 10.1016/j.neuron.2010.01.005
22 Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, Munoz-Lopez M, Real PJ, Macia A, Sanchez L, Ligero G, Garcia-Parez JL, Menendez P (2010) Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells 28: 1568-1570 Doi 10.1002/stem.471
23 Huang S, Ge X, Yu J, Han Z, Yin Z, Li Y, Chen F, Wang H, Zhang J, Lei P (2018) Increased miR-124-3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons. FASEB J 32: 512-528 Doi 10.1096/fj.201700673R
24 Kalani A, Chaturvedi P, Kamat PK, Maldonado C, Bauer P, Joshua IG, Tyagi SC, Tyagi N (2016) Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury. Int J Biochem Cell Biol 79: 360-369 Doi 10.1016/j.biocel.2016.09.002
25 Khalsa DS (2015) Stress, Meditation, and Alzheimer's Disease Prevention: Where The Evidence Stands. J Alzheimers Dis 48: 1-12 Doi 10.3233/JAD-142766
26 LaFerla FM, Green KN (2012) Animal models of Alzheimer disease. Cold Spring Harb Perspect Med 2: Doi 10.1101/cshperspect.a006320
27 Leavitt RJ, Acharya MM, Baulch JE, Limoli CL (2020) Extracellular vesicle-derived miR-124 resolves radiation-induced brain injury. Cancer Res: Doi 10.1158/0008-5472.CAN-20-1599
28 Li B, Liu J, Gu G, Han X, Zhang Q, Zhang W (2020) Impact of neural stem cell-derived extracellular vesicles on mitochondrial dysfunction, sirtuin 1 level, and synaptic deficits in Alzheimer's disease. J Neurochem 154: 502-518 Doi 10.1111/jnc.15001
29 Li D, Huang S, Yin Z, Zhu J, Ge X, Han Z, Tan J, Zhang S, Zhao J, Chen Fet al (2019) Increases in miR-124-3p in Microglial Exosomes Confer Neuroprotective Effects by Targeting FIP200-Mediated Neuronal Autophagy Following Traumatic Brain Injury. Neurochemical research 44: 1903-1923 Doi 10.1007/s11064-019-02825-1
30 Long Q, Upadhya D, Hattiangady B, Kim DK, An SY, Shuai B, Prockop DJ, Shetty AK (2017) Intranasal MSC-derived A1-exosomes ease inflammation, and prevent abnormal neurogenesis and memory dysfunction after status epilepticus. Proc Natl Acad Sci U S A 114: E3536-E3545 Doi 10.1073/pnas.1703920114
31 Losurdo M, Pedrazzoli M, D'Agostino C, Elia CA, Massenzio F, Lonati E, Mauri M, Rizzi L, Molteni L, Bresciani Eet al (2020) Intranasal delivery of mesenchymal stem cell-derived extracellular vesicles exerts immunomodulatory and neuroprotective effects in a 3xTg model of Alzheimer's disease. Stem cells translational medicine: Doi 10.1002/sctm.19-0327
32 Lukiw WJ, Andreeva TV, Grigorenko AP, Rogaev EI (2012) Studying micro RNA Function and Dysfunction in Alzheimer's Disease. Frontiers in genetics 3: 327 Doi 10.3389/fgene.2012.00327
33 Marsh SE, Blurton-Jones M (2017) Neural stem cell therapy for neurodegenerative disorders: The role of neurotrophic support. Neurochem Int 106: 94-100 Doi 10.1016/j.neuint.2017.02.006
34 Milad MR, Quirk GJ (2002) Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420: 70-74 Doi 10.1038/nature01138
35 Mollison KW, Fey TA, Krause RA, Andrews JM, Bretheim PT, Cusick PK, Hsieh GC, Luly JR (1998) Nephrotoxicity studies of the immunosuppressants tacrolimus (FK506) and ascomycin in rat models. Toxicology 125: 169-181 Doi 10.1016/s0300-483x(97)00167-4
36 Muddashetty RS, Nalavadi VC, Gross C, Yao X, Xing L, Laur O, Warren ST, Bassell GJ (2011) Reversible inhibition of PSD-95 mRNA translation by miR-125a, FMRP phosphorylation, and mGluR signaling. Molecular cell 42: 673-688 Doi 10.1016/j.molcel.2011.05.006
37 Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, Castellani RJ, Crain BJ, Davies P, Del Tredici Ket al (2012) Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. Journal of neuropathology and experimental neurology 71: 362-381 Doi 10.1097/NEN.0b013e31825018f7
38 Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van Eldik Let al (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. J Neurosci 26: 10129-10140 Doi 10.1523/JNEUROSCI.1202-06.2006
39 Parihar VK, Pasha J, Tran KK, Craver BM, Acharya MM, Limoli CL (2014) Persistent changes in neuronal structure and synaptic plasticity caused by proton irradiation. Brain structure & function: Doi 10.1007/s00429-014-0709-9
40 Parihar VK, Pasha J, Tran KK, Craver BM, Acharya MM, Limoli CL (2014) Persistent changes in neuronal structure and synaptic plasticity caused by proton irradiation. Brain Struct Func In Press:
41 Prada I, Gabrielli M, Turola E, Iorio A, D'Arrigo G, Parolisi R, De Luca M, Pacifici M, Bastoni M, Lombardi Met al (2018) Glia-to-neuron transfer of miRNAs via extracellular vesicles: a new mechanism underlying inflammation-induced synaptic alterations. Acta Neuropathol 135: 529-550 Doi 10.1007/s00401-017-1803-x
42 Rajendran L, Paolicelli RC (2018) Microglia-Mediated Synapse Loss in Alzheimer's Disease. J Neurosci 38: 2911-2919 Doi 10.1523/JNEUROSCI.1136-17.2017
43 Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1: a006189 Doi 10.1101/cshperspect.a006189
44 Shi Q, Chowdhury S, Ma R, Le KX, Hong S, Caldarone BJ, Stevens B, Lemere CA (2017) Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Sci Transl Med 9: Doi 10.1126/scitranslmed.aaf6295
45 Smith SM, Giedzinski E, Angulo MC, Lui T, Lu C, Park AL, Tang S, Martirosian V, Ru N, Chmielewski NNet al (2020) Functional equivalence of stem cell and stem cell-derived extracellular vesicle transplantation to repair the irradiated brain. Stem cells translational medicine 9: 93-105 Doi 10.1002/sctm.18-0227
46 Soares Martins T, Trindade D, Vaz M, Campelo I, Almeida M, Trigo G, da Cruz ESOAB, Henriques AG (2020) Diagnostic and therapeutic potential of exosomes in Alzheimer's disease. J Neurochem: Doi 10.1111/jnc.15112
47 Sommer A, Marxreiter F, Krach F, Fadler T, Grosch J, Maroni M, Graef D, Eberhardt E, Riemenschneider MJ, Yeo GWet al (2018) Th17 Lymphocytes Induce Neuronal Cell Death in a Human iPSC-Based Model of Parkinson's Disease. Cell Stem Cell 23: 123-131 e126 Doi 10.1016/j.stem.2018.06.015
48 Spangenberg EE, Green KN (2017) Inflammation in Alzheimer's disease: Lessons learned from microglia-depletion models. Brain Behav Immun 61: 1-11 Doi 10.1016/j.bbi.2016.07.003
49 Spangenberg EE, Lee RJ, Najafi AR, Rice RA, Elmore MR, Blurton-Jones M, West BL, Green KN (2016) Eliminating microglia in Alzheimer's mice prevents neuronal loss without modulating amyloid-beta pathology. Brain 139: 1265-1281 Doi 10.1093/brain/aww016
50 Sun Y, Luo ZM, Guo XM, Su DF, Liu X (2015) An updated role of microRNA-124 in central nervous system disorders: a review. Frontiers in cellular neuroscience 9: 193 Doi 10.3389/fncel.2015.00193
51 Swarbrick S, Wragg N, Ghosh S, Stolzing A (2019) Systematic Review of miRNA as Biomarkers in Alzheimer's Disease. Molecular neurobiology 56: 6156-6167 Doi 10.1007/s12035-019-1500-y
52 Tan L, Yu JT, Liu QY, Tan MS, Zhang W, Hu N, Wang YL, Sun L, Jiang T, Tan L (2014) Circulating miR-125b as a biomarker of Alzheimer's disease. J Neurol Sci 336: 52-56 Doi 10.1016/j.jns.2013.10.002
53 Xin H, Li Y, Liu Z, Wang X, Shang X, Cui Y, Zhang ZG, Chopp M (2013) MiR-133b Promotes Neural Plasticity and Functional Recovery After Treatment of Stroke with Multipotent Mesenchymal Stromal Cells in Rats Via Transfer of Exosome-Enriched Extracellular Particles. Stem Cells 31: 2737-2746 Doi 10.1002/stem.1409
54 Yang J, Zhang X, Chen X, Wang L, Yang G (2017) Exosome Mediated Delivery of miR-124 Promotes Neurogenesis after Ischemia. Mol Ther Nucleic Acids 7: 278-287 Doi 10.1016/j.omtn.2017.04.010
55 Yang Y, Ye Y, Kong C, Su X, Zhang X, Bai W, He X (2019) MiR-124 Enriched Exosomes Promoted the M2 Polarization of Microglia and Enhanced Hippocampus Neurogenesis After Traumatic Brain Injury by Inhibiting TLR4 Pathway. Neurochemical research 44: 811-828 Doi 10.1007/s11064-018-02714-z
56 Yu A, Zhang T, Duan H, Pan Y, Zhang X, Yang G, Wang J, Deng Y, Yang Z (2017) MiR-124 contributes to M2 polarization of microglia and confers brain inflammatory protection via the C/EBP-alpha pathway in intracerebral hemorrhage. Immunol Lett 182: 1-11 Doi 10.1016/j.imlet.2016.12.003
57 Zhang G, Zhu Z, Wang H, Yu Y, Chen W, Waqas A, Wang Y, Chen L (2020) Exosomes derived from human neural stem cells stimulated by interferon gamma improve therapeutic ability in ischemic stroke model. J Adv Res 24: 435-445 Doi 10.1016/j.jare.2020.05.017
58 Zhang W, Egashira N, Masuda S (2019) Recent Topics on The Mechanisms of Immunosuppressive Therapy-Related Neurotoxicities. International journal of molecular sciences 20: Doi 10.3390/ijms20133210
59 Zhang Y, Chopp M, Liu XS, Katakowski M, Wang X, Tian X, Wu D, Zhang ZG (2016) Exosomes Derived from Mesenchymal Stromal Cells Promote Axonal Growth of Cortical Neurons. Molecular neurobiology: Doi 10.1007/s12035-016-9851-0
60 Zhang Y, Chopp M, Zhang ZG, Katakowski M, Xin H, Qu C, Ali M, Mahmood A, Xiong Y (2017) Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem Int 111: 69-81 Doi 10.1016/j.neuint.2016.08.003
61 Zhang Y, Zhang Y, Chopp M, Zhang ZG, Mahmood A, Xiong Y (2020) Mesenchymal Stem Cell-Derived Exosomes Improve Functional Recovery in Rats After Traumatic Brain Injury: A Dose-Response and Therapeutic Window Study. Neurorehabil Neural Repair 34: 616-626 Doi 10.1177/1545968320926164