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ABSTRACT 23 

In this paper, we introduce a network machine learning method to identify potential 24 

bioactive anti-COVID-19 molecules in foods based on their capacity to target the 25 

SARS-CoV-2-host gene-gene (protein-protein) interactome. Our experiments were 26 

run using a supercomputing DreamLab App platform, harnessing the idle 27 

computational power of thousands of smartphones. We first demonstrate that the 28 

proposed method can predict anti-COVID-19 candidates among experimental and 29 

clinically approved drugs (5658 in total) targeting COVID-19 interactomics with the 30 

balanced classification accuracy of 80-85% in 5-fold cross-validated settings. This 31 

identified the most promising drug candidates that can be potentially “repurposed” 32 

against COVID-19 including common drugs used to combat cardiovascular and 33 

metabolic disorders, such as simvastatin, atorvastatin and metformin. A database 34 

of 7694 bioactive food-based molecules was run through the calibrated machine-35 

learning algorithm, which identified 52 biologically active molecules, from varied 36 

chemical classes, including flavonoids, terpenoids, coumarins and indoles predicted 37 

to target SARS-CoV-2-host interactome networks. This in turn was used to 38 

construct a “food map” with the theoretical anti-COVID-19 potential of each 39 

ingredient estimated based on the diversity and relative levels of candidate 40 

compounds with antiviral properties. We expect this in-silico predicted food map to 41 

play an important role in future clinical studies of precision nutrition interventions 42 

against COVID-19 and other viral diseases. 43 

 Keywords: machine learning, anti-viral, COVID-19, SARS-CoV-2, drug 44 

repositioning, food, interactomics, gene-gene networks 45 
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BACKGROUND 46 

  47 

The rapid and continued spread of severe acute respiratory syndrome coronavirus 2 48 

(SARS-CoV-2) is resulting in persistent outbreaks of novel coronavirus disease 2019 49 

(COVID-19) across the world [1]. This in turn is having damaging effects on global 50 

economies and healthcare systems, wellbeing, mental health and on societal 51 

dynamics, as a whole. In the absence of effective curative treatments and validated 52 

vaccines, there is an urgent need for innovative solutions. Combining conventional 53 

medical treatments with nutritional interventions represents one such solution, 54 

which is gaining traction [2, 3]. Considerable recent efforts have been directed 55 

towards identifying new purposes, or alternative uses, for existing drugs (so-called 56 

“drug repurposing”) [4, 5]. This offers an attractive way to circumvent the slow and 57 

costly pathway to new drug development and regulatory approval. Several 58 

examples of repurposed drugs have been tested or are currently being tested in 59 

clinical trials for deployment against COVID-19 [6]. In particular, the randomised 60 

controlled trials of the corticosteroid dexamethasone have confirmed its capacity to 61 

reduce mortality by up to a third in COVID-19 patients admitted to hospital for 62 

respiratory support [7]. However, there are no clinically approved drugs or other 63 

antiviral therapeutics for COVID-19 prevention, or for the treatment of non-64 

hospitalized symptomatic patients. These patients are typically discharged home 65 

with basic advice, but remain at risk of personal clinical deterioration (especially 66 

those with underlying comorbidities) and also pose an ongoing risk to close 67 

contacts.   68 

  69 
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The human diet is rich with molecules that have been shown to play a role in both 70 

the prevention and treatment of viral diseases, by interacting with drugs to 71 

enhance their potency, or by acting as “medicines” themselves [8]. Of particular 72 

relevance are plant-based foods which possess a complex profile of molecules of 73 

varied chemical classes such as alkaloids, flavonoids, coumarins, terpenoids, and 74 

indoles [9]. Laboratory studies have revealed multiple mechanisms of action by 75 

which these dietary compounds exert their action against functionally and 76 

genetically diverse viruses [10]. These include disruption of biochemical pathways 77 

and gene networks involved in viral entry, replication, spread and shedding, as well 78 

as broader anti-inflammatory and antioxidant properties. These molecules are not 79 

generally monitored by national nutritional agencies such as the United States 80 

Department of Agriculture (USDA) and can be considered the “dark matter” of 81 

nutrition beyond currently traced micronutrients (i.e. vitamins, minerals) and 82 

macronutrients (i.e. carbohydrates, proteins, fibre and fats) [11]. Furthermore, 83 

there is a growing body of evidence that poor dietary habits and diet-related 84 

comorbidities such as obesity, diabetes, and cardiovascular disease are at least 85 

partially responsible for disparities in adverse outcomes from COVID-19 across the 86 

globe [12, 13]. One possible explanation for this could be poor gut microbiome 87 

health and pre-existing pro-inflammatory state leading to a dysregulated cytokine 88 

storm among vulnerable COVID-19 patients that is associated with the high 89 

mortality of such cases [14]. 90 

  91 

Identification of dietary constituents and consequent design of phytochemically rich 92 

“Hyperfoods” with disease-beating properties can be a safe and cost-effective 93 
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method for developing tailored nutrition-based therapeutic strategies against many 94 

diseases, including COVID-19 [15]. However, it is vitally important to appreciate 95 

that the modern era of molecular gastronomy has resulted in a growing expectation 96 

for food to fulfil taste, aesthetic, sensory and health-centered requirements. For 97 

these reasons, the design of such “Hyperfoods” requires multi-faceted optimisation, 98 

taking into account not only pro-health benefits but also considering visual 99 

aesthetics (e.g. colour, texture) and sensory (e.g. taste mouthfeel) characteristics 100 

[15]. At present, the landscape of potential drug-like molecules in food is 101 

unimaginably vast. Thanks to advances in high-throughput mass spectrometry 102 

technologies and machine learning, identification and molecular networking of 103 

thousands of these molecules from various food sources has become possible [16]. 104 

Investigating the influence of a single drug or food component on any particular 105 

viral infection takes months to years of experimental research. Examples of 106 

experimentally derived phytochemicals with antiviral properties include hesperedin 107 

and naringin in citrus foods, tannic acid in black tea, emodin in rhubarb, and 108 

myristicin in dill and parsley [17, 18]. Given the vast molecular space, the 109 

traditional practicalities of investigating the influence of a single molecule or food 110 

component would take far too long to have an impact on the current COVID-19 111 

crisis.  112 

  113 

Coronaviruses cannot survive or replicate without host assistance. In fact, all 114 

viruses have naturally evolved a sophisticated array of molecular strategies 115 

designed to exploit the host’s cellular machinery to promote viral survival and 116 

replication. These strategies rely on a complex network of physical interactions 117 
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between viral and host genes and proteins (so-called ‘virus-host interactome 118 

networks’, here and further due to the specifics of the existing interaction datasets, 119 

“gene” and “protein” terms can be used interchangeably) [19]. The conventional 120 

antiviral drug development paradigm assumes that one drug targets one viral 121 

protein [20]. In this regard, molecular docking computational simulations have 122 

been extensively performed to discover plant-based bioactive molecules for specific 123 

SARS-CoV-2 protein targets [21]. This approach has multiple drawbacks among 124 

which is the robustness of complex virus-host interaction networks to individual 125 

protein perturbations. The putative effects of vaccines and drugs against SARS-126 

CoV-2 specific gene or protein targets can also be complicated by escaped viral 127 

mutants [22]. 128 

  129 

Here, we hypothesise that an effective anti-COVID-19 preventative or therapeutic 130 

intervention should target multiple biochemical networks implicated in virus entry 131 

and pathogenesis such as Angiotensin-Converting Enzyme-2 (ACE2)/G protein Mas 132 

receptor (MasR) axis, Mitogen-Activated Protein Kinase (MAPK) cascade, and toll-133 

like receptor signalling pathways [23]. Building on our previous work on cancer-134 

beating molecules from food sources [15] and other recent network medicine 135 

studies for computational drug repurposing against COVID-19 [24], we have 136 

combined network-based machine learning methods, mobile supercomputing, and 137 

interactomics data to identify food-based bioactive molecules targeting SARS-CoV-138 

2-human interactome networks. The discovered molecules/sources were used to 139 

compile a list of antiviral “Hyperfoods” weighted by the highest diversity and levels 140 

of antiviral molecules against SARS-CoV-2-human interactome networks. We 141 
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envision that the list of phytochemically rich “Hyperfoods” revealed in this work will 142 

serve as a fundamental pillar in the design of a precision nutrition intervention 143 

strategy for improved clinical outcomes of COVID-19. Further clinical validations of 144 

our findings are needed in a randomised double-blind placebo-controlled trial on 145 

clinical outcomes among non-hospitalised individuals with COVID-19 and their 146 

households.  147 

  148 

RESULTS AND DISCUSSION 149 

  150 

Genome-wide network-based machine learning for predicting drug and 151 

food molecules targeting SARS-CoV-2-host interactome  152 

  153 

We have used the random walk propagation algorithm to learn the effects of SARS-154 

CoV-2 on human interactome networks governing regulatory and biochemical 155 

pathways. The SARS-CoV-2 virus exploits human biomolecular network machinery 156 

to promote viral entry, survival, replication, spread and shedding. The propagated 157 

SARS-CoV-2-host interactome profile was subjected to the Gene Set Enrichment 158 

Analysis (GSEA), which highlighted multiple potential mechanisms by which the 159 

coronavirus exerts its activity on the host (Additional file 1). These include 160 

membrane surface proteins (ACE2), regulation of programmed cell death pathways 161 

(caspase 8 and p38/MAPK signalling), genomic replication pathways (RNA 162 

polymerase pathways), immune-modulatory signalling circuits (toll-like receptors, 163 

the Nuclear Factor-kB (NF-kB), JAK/STAT signalling pathways) and inflammatory 164 

axes (e.g. interleukin pathways; see GSEA pathway analysis for additional details). 165 
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  166 

Drug and food molecules were ranked based on their potential interaction capability 167 

with COVID-19, which in turn has been derived from their respective effects on the 168 

human protein-protein (or gene-gene) interaction network, commonly referred to 169 

as the interactome. The main assumption here is that for a given molecule to have 170 

an effect against coronavirus, it should target the same pathways and cellular 171 

mechanisms targeted by the disease but with the opposite regulatory effect. This 172 

action does not necessarily imply that gene/protein targets have direct effect, and 173 

the effect can be indirectly exerted through other neighbouring proteins in the 174 

network, via gene-gene (protein-protein) interaction. This approach permits 175 

modeling the systemic genome-wide response to the disease and drug/food 176 

intervention and identifying drug/food-based compounds with the highest 177 

probability of being effective against COVID-19 (see Figure 1). Similar network 178 

propagation approaches have been applied in cancer research for drug repurposing 179 

[24], mutation-driven population stratification [25], and, in our earlier work, for 180 

drug repurposing and food-based anti-cancer molecular therapeutics [15]. Although 181 

there are other approaches being developed for drug repurposing using multi-omics 182 

and phenotypic data [26], these mandate additional datasets that are usually not 183 

available for food-based molecules. 184 

  185 

The machine learning algorithm hyperparameters were calibrated for predicting 186 

experimentally validated drugs against COVID-19 in a cross-validation setting (see 187 

the Method section on parameter optimization, accuracy estimation, and results 188 

aggregation). The optimal balanced classification accuracy in the range of 80-189 
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84.9% was achieved using an ensemble of parameter settings (3609 models for 190 

aggregated interactome (see Additional file 2) and 15 models for manually curated 191 

interactome derived from a biological pathway database of COVID-19 WikiPathways 192 

(see Additional file 3). Practically, this resulted in approximately 8 out of 10 drugs 193 

being correctly classified into their respective classes (i.e potentially anti-COVID-19 194 

vs others). For each parameter combination achieving balanced accuracy above 195 

80%, a ranked list of compounds (drugs and food molecules) was generated with 196 

compounds ranked by the decreasing correlation between compound and disease 197 

profiles. The consensus list of top ranked compounds with the highest antiviral 198 

ranking and probability is summarised in Additional file 4. For each candidate 199 

molecule, we also provided a putative mechanism of action and literature reference 200 

where available. 201 

  202 

Drug repositioning candidates against COVID-19 203 

  204 

Our analysis identified imiquimod as the top ranked drug with anti-COVID-19 205 

potential. Imiquimod acts as an agonist of toll-like receptor 7, which is crucial in 206 

recognising single-stranded RNA viruses, such as SARS-CoV-2. Toll-like receptors 207 

generate anti-viral immunity and act to induce favourable Type I interferon 208 

response, which in turn induces the expression of interferon stimulated genes 209 

leading to the inhibition of viral replication [27]. 210 

  211 

Several widely used chemotherapeutic agents were found to exert potential anti-212 

COVID-19 effect, including doxorubicin, fluorouracil, and gemcitabine. Doxorubicin 213 
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is commonly used in the treatment of advanced breast cancer, bladder cancer, and 214 

lymphoma, as well as a number of other malignancies. A previous study has 215 

indicated that SARS-CoV-2 contains residues that are vulnerable to the reactive 216 

glycating agent methylglyoxal, cellular levels of which are increased by doxorubicin 217 

[28]. Fluorouracil is a fluoropyrimidine used for the treatment of a number of solid 218 

organ tumours. It is a precursor of deoxythymidine triphosphate and uridine-5'-219 

triphosphate (UTP) during biogenesis and interferes with both DNA and RNA 220 

metabolism. This drug is preferentially incorporated into RNA instead of UTP, which 221 

interferes with RNA processing and protein synthesis and this in turn can lead to 222 

the disruption of viral RNA replication and elicit an antiviral effect [29]. Gemcitabine 223 

has also been shown to inhibit SARS-CoV-2 replication. It is hypothesised that this 224 

effect occurs through targeting of pyrimidine biosynthesis salvage pathways and 225 

stimulation of the innate immune system [30]. Although chemotherapy and other 226 

anti-cancer treatments may result in significant immune compromise in patients, 227 

rendering them more susceptible to viral and other infectious illnesses [31], the 228 

findings presented here also highlight a double-edged phenomenon, whereby they 229 

may actually exert potential beneficial effects against COVID-19 infection. 230 

  231 

Statins are considered a clinically important breakthrough in the prevention and 232 

treatment of cardiovascular disease. Simvastatin and atorvastatin were found to 233 

offer significant anti-COVID-19 potential. The hypothesis is that statins in general 234 

reduce COVID-19 infectivity through the removal of cholesterol used by SARS-CoV-235 

2 to infect cells [32], and reduce risk of cardiovascular complications that are 236 

symptomatic of severe COVID-19 infection. In addition, they may enhance innate 237 
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immune responses to viral infections through inhibition of the Myeloid 238 

differentiation primary response 88 signalling pathway. Correspondingly, a recent 239 

meta-analysis of data from multiple studies reported a 30% reduction in fatal or 240 

severe disease course in patients with confirmed COVID-19 infection who were 241 

taking statins [33]. 242 

  243 

  244 

Metformin is globally regarded as one of the key pharmacotherapies in the 245 

management of diabetes mellitus. Of note, it was originally introduced as an anti-246 

influenza drug, with glucose-lowering capability regarded as a side-effect of 247 

treatment, rather than desired primary endpoint. The many pleiotropic effects of 248 

metformin together with its widespread utility in modern medicine have earned it 249 

the name “the aspirin of the 21st century” [34]. It activates the AMP-activated 250 

protein kinase, resulting in the phosphorylation of angiotensin converting enzyme II 251 

(ACE2), which leads to conformational and functional changes to ACE2 that are 252 

thought to inhibit SARS-CoV-2 binding and/or entry [35]. In support of these 253 

suggestions, a recent meta-analysis demonstrated a reduced risk of mortality in 254 

COVID-19 patients receiving metformin [36].   255 
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 256 

Figure 1. Schematic diagram of overall workflow. The random walk with restarts algorithm operating 257 

within a mobile supercomputing DreamLab App is used to simulate how drug and food-based compounds 258 

interact with COVID-19 associated viral gene/protein networks. This has been extrapolated from human 259 

genome-wide gene-gene (protein-protein) interactome data and based on known COVID-19 human 260 

proteome viral targets (i.e. human genes/proteins interacting with different stages of the virus life cycle to 261 

facilitate replication and/or enhance viral potency). Both disease and molecular compound impacts are 262 

propagated through the interactome network to model the overall cellular response/interactome 263 
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perturbation. The resulting compound and disease profiles are then correlated to rank compounds 264 

according to their network “overlap” with “reference” viral profiles. This approach is based on the 265 

assumption that to have an effect, candidate compounds should target the same network component(s) 266 

as the one(s) disrupted by the virus. Therapeutic effect can be direct, or indirect, for example where 267 

compounds are found to interact with neighbouring network nodes, resulting in subsequent effect 268 

propagation to the desired target.  269 

 270 

Prediction of “dark matter” of food biochemistry with anti-COVID-19 271 

properties  272 

  273 

In addition to minerals, vitamins and micronutrients, all plant-based foods contain 274 

phytochemicals that are non-nutritive components in the diet but can exert 275 

protective or disease-beating effects. This phytochemistry has been exploited 276 

extensively for the development of antiviral drugs with more acceptable side effect 277 

profiles, compared to synthetically generated drugs [37]. The network-based 278 

analysis presented here identified 52 food-based molecules based on their 279 

capability to target SARS-CoV-2-host interactomes. These molecules belong to a 280 

variety of chemical classes including (iso)flavonoids, terpenoids, phenols, and 281 

indoles (see Figure 2). As highlighted, the presence and abundance of these 282 

molecules are not typically monitored by national nutritional agencies, which 283 

conventionally focus on minerals, vitamins and macronutrients. These compounds 284 

can be regarded as the “dark matter” of nutritional science. Because of their bitter 285 

taste, it is interesting to note that the food industry routinely removes some of 286 

these compounds through selective breeding and a variety of debittering processes 287 

to improve taste [38]. This has even led to the suggestion by some cancer research 288 
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groups that foods possessing more bitter taste may actually offer greater health 289 

benefits [38]. 290 

  291 

The (poly)phenolic classes of molecules such as flavonoids, coumarins, stilbenes, 292 

indoles, and phenolic acids make up the majority of anti-COVID-19 bioactive 293 

compounds identified by our network-based machine learning algorithm. These 294 

include flavonols (e.g. quercetin, kaempferol, and myricetin), flavones (e.g. luteolin 295 

and apigenin), flavanols (e.g. procyanidin B2), flavanones (naringin), isoflavonoids 296 

(daidzein, genistein, and legumelin) as well as stilbenes (trans-resveratrol), indoles 297 

(3-indole-carbinol) and phenolic acids (gallic acid). In edible plants such as fruits 298 

and vegetables, phenolic molecules are widespread and contribute to their aroma, 299 

taste, and colour. These compounds are synthesized in abundance by plants in 300 

response to environmental stimuli and play an indispensable role in defence against 301 

pathogens (including viruses) and insects [39]. Their ability to disrupt the life cycle 302 

of SARS-CoV-2 is partially achieved via interference with viral proteins. For 303 

example, among our top-ranked molecules epigallocatechin 3-gallate was 304 

demonstrated experimentally to inhibit 3-chymotrypsin-like protease (3CLpro) [38]; 305 

quercetin demonstrated binding affinity to inhibit 3CLpro and papain-like protease 306 

(PLpro) [40], while trans-resveratrol inhibits nucleocapsid (N) proteins [18].  307 

  308 

In addition, the identified compounds appear to mitigate against various patho-309 

physiological processes that develop in response to COVID-19. For example, 310 

regulation of the renin-angiotensin system (RAS) and expression of angiotensin-311 

converting enzyme 2 (ACE2), stimulation of immune system, downregulation of 312 
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pro-inflammatory cytokine release, and amplification of cytotoxic T lymphocyte 313 

(CTLs) and natural killer (NK) immune cell pools. The putative mechanism of action 314 

for each of the identified compounds is summarised in Additional file 4. 315 

 316 

 317 

Figure 2. Hierarchical classification of the top 52 predicted antiviral molecules targeting SARS-CoV-2 318 

human interactome networks. 319 



 16 

 320 

Construction of anti-COVID-19 Food Map 321 

 322 

The potential for particular foods to exert COVID-19 preventative and/or 323 

therapeutic effect depends upon the bioavailability and diversity of bioactive 324 

molecules with antiviral properties contained therein [41]. A key limitation of the 325 

existing literature on food-based compounds is the largely over-simplified view that 326 

is commonly taken, whereby studies have tended to focus on specific molecular 327 

components in isolation, for example specific flavonoids such as quercetin [42]. 328 

However, when candidate antiviral agents acting in isolation have been evaluated in 329 

clinical studies, they have failed to consistently confer the same level of benefit 330 

[43]. It seems more plausible that consumption of whole foods, with their 331 

associated phytochemicals en masse may provide greater health benefits, due to 332 

molecular additive or synergistic effects. It therefore follows that the antiviral 333 

properties of a given food will be governed by two key factors: (1) the additive, 334 

antagonistic, and synergistic actions of their individual components and (2) the way 335 

in which these simultaneously modulate different intracellular pathways involved in 336 

SARS-CoV-2 pathogenesis.  337 

  338 

Based on these assumptions, we have constructed a food map with the theoretical 339 

anti-COVID-19 capacity of each ingredient ranked according to an “enrichment 340 

score” derived from the diversity and relative levels of candidate compounds with 341 

antiviral properties (Figure 3). To identify putative mechanisms responsible for the 342 

anti-COVID-19 properties of predicted foods, we have simulated the effects of a 343 



 17 

phytochemical profile of a given food item on human interactome pathways and 344 

sub-networks, using the random walker algorithm and gene set enrichment 345 

analysis. The analysis showed that the most influential impacted pathways by 346 

predicted phytochemically enriched foods with anti-COVID-19 properties exhibited a 347 

statistically significant overlap with SARS-CoV-2 disrupted pathways (Additional file 348 

5).  This implies that a phytochemical profile of food ingredients, rather than 349 

individual molecules, exert a combined effect across multiple host pathways 350 

affected by SARS-CoV-2. (See the GSEA pathway analysis in Methods for more 351 

detail).  352 

 353 

The top ranked phytochemically rich food sources (called “Antiviral Hyperfoods”) 354 

include different berries (blackcurrant, cranberry, and blueberry), cruciferous 355 

vegetables (cabbage, broccoli), apples, citrus fruits (sweet orange and lemon), 356 

onions, garlic and beans. A recent study highlighted the potential of cabbage and 357 

fermented vegetable consumption in minimising adverse outcomes in COVID-19, 358 

supporting our results [44]. The present analysis has demonstrated that this is 359 

potentially due to a profile of anti-COVID-19 compounds from various molecular 360 

classes rather than individual molecules as previously suggested (see Additional file 361 

5). Similarly, the complex antiviral molecular profile of berries such as blackcurrant 362 

and blueberries may explain their experimentally observed potency against 363 

genetically and phenotypically diverse viruses [45], though their ability to protect 364 

specifically against COVID-19 is yet to be evaluated in clinical trials.    365 

  366 

 367 
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 368 

Figure 3. The contained profiles of compounds within specific foods, with predicted effectiveness in 369 

targeting SARS-CoV-2-host interactome networks. Each node in the figure denotes a particular food item 370 

and node size in each case is scaled by the derived enrichment score based on the diversity and relative 371 

levels of molecules with predicted anti-COVID-19 properties. The links between nodes reflect the pairwise 372 

correlation (“similarity”) antiviral profiles in foods, thus the clusters of foods illustrate molecular 373 

commonality between them. 374 

 375 

 376 

 377 
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CONCLUSIONS 378 

 379 

Current methods for prevention, treatment and containment of COVID-19 have not 380 

been effective in curbing the rate of transmission. Figures across the world show a 381 

sustained rise in cases. Non-hospitalised patients are discharged home where they 382 

continue to pose a risk to close contacts, and where they are at ongoing risk of 383 

clinical deterioration (especially those with comorbidities such as diabetes, obesity, 384 

and cardiovascular diseases). For this group of patients, there is a critical need for 385 

innovative and cost-effective out-of-hospital treatment. The use of precision 386 

nutrition strategies is safe and highly promising in this context. Using a network-387 

based machine learning method, we have shown that certain plant-based foods 388 

such as berries, cruciferous vegetables, apples, citrus fruits, onions, garlic and 389 

beans are most enriched in terms of the diversity and relative abundance of 390 

bioactive molecules targeting the SARS-CoV-2-human interactome.  391 

 392 

We acknowledge that the present work is subject to a number of limitations. Firstly, 393 

the cultivation, storage and cooking methods may influence bioactive molecular 394 

composition in foods. Secondly, it remains unclear whether these compounds would 395 

be present in sufficient levels to exert beneficial biological activity. Thirdly, the 396 

identified phenolic compounds can be filtered out by food producers because of 397 

their bitter taste to enhance palatability and taste experience. This raises 398 

interesting practical issues for “Hyperfoods” because increasing the content of bitter 399 

phytonutrients for health benefits may not be entirely compatible with consumer 400 

acceptance. Fourthly, the proposed methodology only accounts for interactions 401 
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between bioactive food compounds and SARS-CoV-2-human related molecular 402 

networks, without necessarily defining the directionality of these relationships. 403 

Fifthly, the methods described here do not take into account specific COVID-19 404 

individual molecular phenotypic characteristics. Finally, drug-food interactions have 405 

not been evaluated in this study; as such it is not clear whether these will lead to 406 

synergistic or antagonistic effects where they act on common molecular networks, 407 

or whether this combination will disrupt drug metabolism itself. Nevertheless, these 408 

considerations notwithstanding, we expect this in-silico predicted food map to play 409 

an important role in future clinical studies of precision nutrition interventions 410 

against COVID-19. In the near future the goal will be to develop a personalised 411 

‘food passport’ for each patient, designed to provide “smarter” food choices with 412 

the ability to reduce susceptibility to COVID-19 infection and mitigate against 413 

severe forms of the disease. 414 

 415 

METHODS 416 

Corona-AI/DreamLab mobile cloud supercomputing 417 

The results presented in this manuscript were derived from the Corona-AI: Phase I 418 

project for interactome driven drug and food compound search for the potential 419 

anti-COVID-19 treatment. Working with Vodafone Foundation, the ‘Corona-AI’ 420 

project used the freely available DreamLab app, which runs calculations using a 421 

smartphone’s computing power while its user sleeps. Tens to hundreds of 422 

thousands smartphones combined together can be used to crunch scientific data at 423 
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scale rivalling available supercomputers and by far exceeding the capabilities of the 424 

normal desktop PCs. The DreamLab App can be freely downloaded by anyone 425 

willing to donate the unused computational power of their smartphone to cancer 426 

and coronavirus research.  The DreamLab App runs when a smartphone is being 427 

charged: it loads a small portion of scientific data from the cloud, performs the 428 

computations and sends the results back to the cloud for scientists to analyse them. 429 

This way anyone can become a citizen scientist and contribute to global research. 430 

Learning propagation profiles of drugs, foods and diseases 431 

The main assumption of the methodology used in this paper was that the 432 

drugs/food molecules which were effective at treatment of the particular disease 433 

would have a similar pattern of affected genes/proteins to the pattern of the 434 

genes/proteins affected by the disease. Due to gene-gene (or protein-protein) 435 

interactions within the cell, disease and drug do not necessarily have to affect 436 

exactly the same genes/proteins - their effects can be exerted on different, but 437 

interlinked proteins and propagated through protein-protein networks. For that the 438 

aggregated 20256 genes/proteins were represented as an array of floats where 439 

each value represents how strongly the protein was affected/perturbed by the 440 

disease or the drug (further referred to as drug or disease profiles). Zero value 441 

would mean no effect or a normal unperturbed state.  442 

 443 

Gene-gene (protein-protein) connections and drug-gene/protein connections were 444 

filtered according to their confidence level (from STRING and STITCH databases) 445 

before disease and drug profile generation and propagation (these thresholds were 446 
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among the adjustable parameters). Optionally, the number of drug-gene/protein 447 

connections was also capped at specific value equalizing compounds with vastly 448 

different numbers of known connections. If this option was used, the top N 449 

connections are taken for each compound and the minimal connection score is 450 

established from them. Then the connections are thresholded according to this 451 

minimal connection score. This allowed one to include connections with the same 452 

score as the last one in top N.  453 

 454 

Genes/proteins directly affected by the drug or disease receive the initial value of 455 

1.0 (or the score weight in case of “score_5_weighted” target protein selection). 456 

Then the array of gene/protein perturbations was normalized to the sum of 1.0.  457 

 458 

Random walk algorithm with restarts was used to propagate the perturbation of the 459 

genes/proteins through the network. In brief, it models the probability of transition 460 

from the starting node in the graph to another linked node based on the network 461 

connectivity and the edge weights. By default, the graph was treated as undirected 462 

and all edges had a weight of 1.0. Then outgoing connection weights were 463 

normalized to the sum of weights to give the total probability of transition from the 464 

node of 1.0 resulting in the transition probability matrix W. Parameter c (0.0-1.0) 465 

controls the probability of “jumping” back to the original node. I.e., c = 0.0 means 466 

unlimited wandering through the network resulting in a far-reaching propagation of 467 

the initial perturbation and a very smooth profile, while c = 1.0 means a hard 468 

restart to the initial position thus resulting in no signal being propagated beyond 469 

the starting nodes (i.e. the nodes directly affected by the drug or the disease). 470 
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Random walk is an iterative algorithm and for each step the new perturbation 471 

profile pi is given by the following equation: 472 

 473 

pi =pi-1 * W * (1.0 - c) + c * p0, 474 

 475 

where p0 is the starting profile, pi-1 - previous iteration profile and W is the 476 

transition probability matrix. Propagation algorithm was iterated until convergence 477 

when |pi-pi-1| is less than a set tolerance value for each element.  478 

 479 

The random walk with restarts was applied to simulate the perturbations of direct 480 

virus-host protein targets on the whole human interactome. It transforms a short 481 

list of genes/proteins directly targeted by the virus into a genome-wide profile of 482 

gene scores based on their network proximity to target candidates (referred as the 483 

“SARS-CoV-2 genome-wide response profile”). The same random walker algorithm 484 

was then used to get the activity profiles of candidate molecules, i.e. drugs or food-485 

based compounds. The Pearson correlation coefficient between propagation profiles 486 

of food/drug compounds and COVID-19 disease was used to rank compounds that 487 

target SARS-CoV-2-host interactome networks. The Pearson correlation coefficient 488 

is defined as: 489 

𝝆𝑗,𝑐𝑜𝑣𝑖𝑑  =  𝑐𝑜𝑣(𝒑𝑗, 𝒑𝑐𝑜𝑣𝑖𝑑)𝜎𝑗𝜎𝑐𝑜𝑣𝑖𝑑  

 490 

Where cov() is covariance between molecule 𝒑𝑗 and SARS-CoV-2 𝒑𝑐𝑜𝑣𝑖𝑑 perturbation 491 

profiles, 𝜎𝑗 and 𝜎𝑐𝑜𝑣𝑖𝑑 are the standard deviations of perturbation profiles 𝒑𝑗 of 492 

molecule j฀  and 𝒑𝑐𝑜𝑣𝑖𝑑 perturbation profile of SARS-CoV-2. 493 
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 494 

The parameter settings for interactomes and diffusion processes for compound 495 

ranking were optimized as described in the section of “parameter optimization, 496 

accuracy estimation and results aggregation”.  497 

Compound-protein and protein-protein interactome construction 498 

The interactome used in this study was constructed as was described previously in 499 

[15]. In brief, a human genome was constructed from gene or protein sequences 500 

from COSMIC [46], NCBI Gene [47], STRING [48] and UniProt [49] databases. 501 

15,911 protein sequences matched exactly between databases, 1,532 protein 502 

sequences were matched as subsections of larger sequences and 1,686 proteins 503 

were matched allowing up to 5% amino acid mismatch. 1,127 mismatched 504 

sequences were also included in the final unified set of 20256 gene encoded 505 

proteins. The list of genes/proteins (these two terms are used interchangeably with 506 

regard to the interactome analysis) was further populated with different gene IDs 507 

and synonyms including Ensembl and HGNC. Protein-protein interactions were 508 

obtained from STRING (~11M connections) and BioPlex (~100K connections) 509 

databases [50] and supplemented with confidence scores (0-999) from STRING. 510 

  511 

Drug-protein interactions were obtained from STITCH database [51], scored by the 512 

confidence level of 0-999 for drugs from DrugBank [52] and DrugCentral [53] 513 

databases as well as food molecules from FooDB [www.foodb.ca]. Indications for 514 

drugs and FDA approval status were extracted from DrugCentral.  515 

 516 

http://www.foodb.ca/
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Coronavirus target proteins aggregation: 517 

Two recent sources for the coronavirus-affected sets of human genes/proteins were 518 

used in this work: 519 

1) The COVID-19 Drug and Gene Set Library which provides a collection of drug 520 

and gene sets related to COVID-19 research aggregated from multiple sources 521 

using natural language processing techniques (downloaded on 24/09/2020) [54]. 522 

This set of genes/proteins is further referred to as the “Aggregated” set. In this set 523 

human genes/proteins are scored by the number of times they have been reported 524 

as related to COVID-19 with the top score of 88 assigned to STAT1 gene. We 525 

generated several sub-selections of genes with different cut-offs for the scores: 40, 526 

30, 25 and 20 (counting 72, 143, 248 and 457 genes) referred to as “score_40”, 527 

“score_30”, “score_25” and “score_20” respectively. In these subselections the 528 

genes are all initially equally weighted when propagated through interactome and 529 

the chosen score threshold serves as an adjustable model parameter. We also 530 

included a set of 5,000 top genes (with a minimal score of 5, referred to as 531 

“score_5_weighted”) with each gene weighted by its score for the propagation and 532 

a minimal entry set (consisting of CTSB, CTSL, TMPRSS2 and ACE2 genes [55], first 533 

reported in the literature as involved in the initial entry of the virus) referred to as 534 

“entry_only”.  535 

2) COVID-19 Pathways Portal on WikiPathways [23] was used to create a subset of 536 

423 coronavirus-affected human genes/proteins referred to as “score_wiki”. 537 

 538 

 539 

 540 
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Compound selection:  541 

SARS-CoV-2 is a relatively new pathogen and there is a very limited number of 542 

experimentally validated drugs which were shown to be effective against it. We 543 

manually curated a list of such compounds from literature search (see Additional 544 

file 6). Special care was taken to include only compounds with experimental rather 545 

than predicted evidence and explainable mechanism of action. Preference was given 546 

to the compounds already included in clinical trials. This resulted in a list of 49 547 

“positive” class compounds. Drugs were putatively classified into two subgroups - 548 

acting through cellular mechanisms directly against the virus (“Direct-Cell”) or 549 

having symptomatic effects, e.g. anti-inflammatory (“Symptomatic”). This 550 

classification is not strict as drugs may have overlapping functions. Finally, drugs 551 

were checked for direct target overlaps with the “Aggregated” set of COVID-19-552 

related genes. Drugs with very few to no overlaps in the top 100 genes were 553 

marked as less “reliable”. This resulted in four sub selections for the “positive” class 554 

compounds which were tried in the model parameter optimization stage: 1)   555 

“Target_Cell”:  all drugs acting directly on the host-viral interactome, 27 in total; 2) 556 

“Target_Cell_Strict”: same as above, but only the most “reliable” drugs included, 557 

19 in total; 3) “Target_Cell_Sympt”:  both symptomatic and host-viral interactome 558 

targeting drugs included, 49 in total; 4)   “Target_Cell_Sympt_Strict“ - same as 559 

above, but only the most “reliable” drugs included, 28 in total.  560 

  561 

For the “negative” class both approved and experimental drugs from DrugBank 562 

were selected. The antiviral drugs designed to target specific viral protein targets 563 

(such as remdesivir, tenofovir and taribavirin) were designated as neutral (“0”) 564 
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class and were excluded from the model calibration. This is because the primary 565 

objective here is to target SARS-CoV-2 host interactome networks rather than 566 

individual viral proteins.   567 

  568 

All available compounds from DrugBank and FooDB which were not included in the 569 

“positive” and “negative” classes were not used at the model calibration and 570 

parameter optimization stage. 6593 compounds formed the input “negative” class, 571 

however, depending upon the specific parametrization settings the final number of 572 

negative class compounds varied between 1181 and 4260 due to the drugs with no 573 

connections being automatically removed. 574 

 575 

Parameter optimization, accuracy estimation and results aggregation: 576 

Pearson correlation coefficients between each drug and disease propagated profiles 577 

were calculated for the drugs/food molecules and for coronavirus affected gene 578 

sets. Ranges of parameters such as restart probability c, drug-protein connection 579 

thresholds and protein-protein interaction thresholds were explored to find the 580 

optimal parameters for drug/food molecule ranking.  581 

 582 

The following parameter ranges have been used: 1)   Propagation parameter c for 583 

compounds: 0.0001, 0.0002, 0.0004, 0.0007, 0.0009, 0.001, 0.005, 0.01, 0.02, 584 

0.04, 0.07, 0.1, 0.2, 0.4, 0.7; 2) Propagation parameter c for coronavirus-host 585 

profiles - 0.0001, 0.0002, 0.0004, 0.0007, 0.0009, 0.001, 0.005, 0.01, 0.02, 0.04, 586 

0.07, 0.1, 0.2, 0.4, 0.7, 1.0; 3) STITCH confidence threshold/ 587 

minimum_connections/maximum_top_connections: 200/10/9999, 400/10/9999, 588 
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500/10/9999, 600/5/9999, 700/5/9999, 0/10/15, 0/10/25, 0/10/35, 0/10/50, 589 

0/10/100, 0/10/200, 0/10/300; 4) STRING protein-protein confidence threshold: 0, 590 

100, 150, 200, 250, 300, 400, 450, 500, 550, 600, 650, 700, 750; 5) Compound 591 

“positive” class target groups: “Target_Cell”, “Target_Cell_Strict”, 592 

“Target_Cell_Sympt”, “Target_Cell_Sympt_Strict“ 6) Target host gene sets for 593 

SARS-CoV-2: “score_wiki”, “score20”, “score25”, “score30”, “score40”, 594 

“score_5_weighted”, “entry_only”. 595 

  596 

The best parameters were established through cross-validation in 5 repeats of 5-597 

fold stratified k-fold splitting for each parameter combination. Drugs were ranked 598 

by their profile correlations with the disease profile. Class separation threshold was 599 

set as the one resulting in the minimal difference between sensitivity and 600 

specificity. Balanced accuracy was used for establishing the best parameter 601 

combinations due to high class imbalance.  602 

  603 

Median ranked (r-values) and their MADs were calculated for compounds 604 

independently for “Aggregated” and “WikiPathway” SARS-CoV-2 host interactomes. 605 

The ensemble of parameter settings in the range of balanced classification 606 

accuracies of 80-84.9% was used to provide consensus ranking of drug and food 607 

molecule candidates. The final ranking list for the two parameter sets was 608 

calculated using geometric mean of the r-values and MADs to guarantee that only 609 

the candidates scored highly using both sources of SARS-CoV-2 target genes would 610 

be at the top of the list. r-values were calculated for each compound as the sum of 611 

compounds in the “negative” class with the correlation coefficient higher than that 612 
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of a given compound divided by the total number of the “negative” class 613 

compounds.  614 

  615 

The toxic compounds were removed from the presented lists using literature and 616 

T3DB. For food molecules, we have also excluded compounds which are present in 617 

trace amounts (e.g. minerals) and/or are of non-natural origin.  618 

 619 

GSEA section:  620 

Pathway analytics was performed using gene set enrichment analysis (GSEA) via 621 

the Python GSEAPY package [56]. We used the random walk propagation algorithm 622 

on the initial SARS-CoV-2 host interactome to simulate the effects of SARS-CoV-2 623 

on human interactome networks. This simulated genomic profile was used as input 624 

for the PreRank module of GSEA to find statistically significant enriched 625 

pathways/gene sets. KEGG v7.2 and Reactome v74 were used as default gene sets.  626 

  627 

As a means of validating food predictions, we built genomic perturbation profiles of 628 

the predicted foods with anti-COVID-19 properties and subjected them to gene set 629 

enrichment analysis. Food genomic perturbation profiles were built by aggregating 630 

genomic perturbation profiles of their constituent molecules which represent the 631 

interactions between food molecules and the human interactome. Profiles of food 632 

molecules were weighted by their concentration in each of the food items (which 633 

can be found in the Additional file 7) and added together. The final food 634 

perturbation profiles were multiplied by the SARS-CoV-2 simulated genomic 635 

perturbation profile before being used as inputs to the PreRank module of GSEA. 636 
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The statistical significance of the pathway overlap between each of the anti-COVID-637 

19 predicted foods and SARS-CoV-2 was measured using Fisher exact test 638 

(Additional file 5). A threshold of FDR=0.05 was used to define the statistically 639 

significant enriched pathways in both groups. 640 

  641 

Food map construction: 642 

The final food selection was based on the highest number and, where available, 643 

quantity of the anti-SARS-CoV-2 food compounds and is provided in the Additional 644 

file 7. Concentration of compounds within foods were extracted from the USDA 645 

Special Interest Database on Flavonoids [57]. 646 

 647 

An enrichment score for each food item was calculated as a weighted sum of the 648 

number of different molecules with anti-COVID-19 properties (phytochemical 649 

“diversity”) and their relative abundance where the experimental concentration 650 

data of molecules was available across all foods studied here. The enrichment score 651 

is defined as:   652 

 653 

𝐸𝑆 = ∑ log (max (𝒄𝑖)𝑠𝑡(𝒄𝑖) +  1) + 𝑏𝑖 𝑖   
 654 

Where 𝒄𝑖 is a vector with the concentrations of food molecule 𝑖 across several 655 

samples of the food of interest, 𝑠𝑡(∙) denotes standard deviation, and 𝑏𝑖 is a binary 656 

indicator of the molecule-food association.  657 
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Figures

Figure 1

Schematic diagram of overall work�ow. The random walk with restarts algorithm operating within a
mobile supercomputing DreamLab App is used to simulate how drug and food-based compounds
interact with COVID-19 associated viral gene/protein networks. This has been extrapolated from human
genome-wide gene-gene (protein-protein) interactome data and based on known COVID-19 human
proteome viral targets (i.e. human genes/proteins interacting with different stages of the virus life cycle to
facilitate replication and/or enhance viral potency). Both disease and molecular compound impacts are
propagated through the interactome network to model the overall cellular response/interactome
perturbation. The resulting compound and disease pro�les are then correlated to rank compounds
according to their network “overlap” with “reference” viral pro�les. This approach is based on the



assumption that to have an effect, candidate compounds should target the same network component(s)
as the one(s) disrupted by the virus. Therapeutic effect can be direct, or indirect, for example where
compounds are found to interact with neighbouring network nodes, resulting in subsequent effect
propagation to the desired target.

Figure 2

Hierarchical classi�cation of the top 52 predicted antiviral molecules targeting SARS-CoV-2 human
interactome networks.



Figure 3

The contained pro�les of compounds within speci�c foods, with predicted effectiveness in targeting
SARS-CoV-2-host interactome networks. Each node in the �gure denotes a particular food item and node
size in each case is scaled by the derived enrichment score based on the diversity and relative levels of
molecules with predicted anti-COVID-19 properties. The links between nodes re�ect the pairwise
correlation (“similarity”) antiviral pro�les in foods, thus the clusters of foods illustrate molecular
commonality between them.
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