1. Miraz, M. H., Ali, M. & Excell, P. S. A Review on Internet of Things (IoT) Internet of
Everything (IoE) and Internet of Nano Things (IoNT). 2015 Internet Technologies and
Applications, ITA 2015, Proceedings of the 6th International Conference 219–224 (2015).
2. Liu, J. et.al. Future paper based printed circuit boards for Ggreen electronicsfabrication
and life cycle assessment. Energy Environ. Sci. 7, 3674–3682 (2014).
3. Baccarelli, E., Naranjo, P. G. V., Scarpiniti, M., Shojafar, M. & Abawajy, J. H. Fog of everything: energy-efficient networked computing architectures, research challenges, and a case Study. IEEE Access 5, 9882–9910 (2017).
4. Li, X. et al. 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor. ACS Nano 8, 10674–10681 (2014).
5. Sultana, A. et al. An effective electrical throughput from PANI supplement ZnS nanorods and PDMS-based flexible piezoelectric nanogenerator for power up portable electronic devices: an alternative of MWCNT filler. ACS Appl. Mater. Interfaces 7, 19091−19097 (2015).
6. Bowen, C. R., Kim, H. A., Weaver, P. M. & Dunn, S. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 7, 25–44 (2014).
7 Briscoe, J. & Dunn, S. Piezoelectric nanogenerators–a review of nanostructured piezoelectric energy harvesters. Nano Energy 14, 15–29 (2015).
8. Ali, W. R. & Prasad, M. Piezoelectric MEMS based acoustic sensors: a review. Sens. Actuators A 301, 111756 (2020).
9. Muralt, P. Stress Coupled Phenomena:Piezoelectric Effect. Encyclopedia of Materials: Science and Technology (Elsevier, Oxford, 2001, 8894–8897).
10. Roy, K. et al. A self-powered wearable pressure sensor and pyroelectric breathing sensor based on GO interfaced PVDF nanofibers. ACS Appl. Nano Mater. 2, 2013−2025 (2019).
11. Shepelin, N. A. et al. Interfacial piezoelectric polarization locking in printable Ti3C2Tx MXene-fluoropolymer composites. Nat. Commun. 12, 3171 (2021).
12. Zulfiqar, S., Zulfiqar, M., Rizvi, M. & Munirt, A. Study of the thermal degradation of polychlorotrifluoroethylene, poly(vinylidene fluoride) and copolymers of chiorotrifluoroethylene and vinylidene fluoride. Polym. Degrad. Stab. 43, 423–430 (1994).
13. Sencadas, V. et al. Electroactive properties of electrospun silk fibroin for energy harvesting applications. Nano Energy 66, 104106 (2019).
14. Bazhenov, V. A. Piezoelectric Properties of Woods (Consultants Bureau: New York, 1961).
15. Fukada, E. Piezoelectricity as a fundamental property of wood. Wood Sci. Technol. 2, 299–307 (1968).
16. Song, Y. et al. Recent advances in cellulose-based piezoelectric and triboelectric nanogenerators for energy harvesting: a review. J. Mater. Chem. A 9, 1910–1937 (2021).
17. Chae, I., Jeong, C. K., Ounaies, Z. & Kim, S. H. Review on electromechanical coupling properties of biomaterials. ACS Appl. Bio Mater. 1, 936−953 (2018).
18. Fukada, E. History and recent progress in piezoelectric polymers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1277−1290 (2000).
19. Rajala, S. Cellulose nanofibril film as a piezoelectric sensor material. ACS Appl. Mater. Interfaces 8, 15607−15614 (2016).
20. Zhai, L., Kim, H. C., Kim, J. W. & Kim, J. Alignment effect on the piezoelectric properties of ultrathin cellulose nanofiber films. ACS Appl. Bio Mater. 3, 4329−4334 (2020).
21. Wang, J. et al. Piezoelectric nanocellulose thin film with large-scale vertical crystal alignment. ACS Appl. Mater. Interfaces 12, 26399−26404 (2020).
22. Frka-Petesic, B., Jean, B. & Heux, L. First experimental evidence of a giant permanent electric-dipole moment in cellulose nanocrystals. EPL Europhysics Lett. 107, 28006 (2014).
23. Håkansson, K. M. O. et al. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat. Commun. 5, 4018 (2014).
24. Wise, H. G., Takana, H., Ohuchi, F. & Dichiara, A. B. Field-assisted alignment of cellulose nanofibrils in a continuous flow-focusing system. ACS Appl. Mater. Interfaces 12, 28568−28575 (2020).
25. Sultana, A., Alam, M. M., Fabiano, S., Crispin, X. & Zhao, D. Enhanced ionic transport in ferroelectric polymer fiber mats. J. Mater. Chem. A 9, 22418–22427 (2021).
26. McGinn, C. K. et al. Formulation, printing, and poling method for piezoelectric films based on PVDF–TrFE. J. Appl. Phys. 128, 225304 (2020).
27. Kholkin, A. L., Pertsev, N. A. & Goltsev, A. V. Piezoelectricity and Crystal Symmetry. In: Safari A., Akdoğan E.K. (eds) Piezoelectric and Acoustic Materials for Transducer Applications (Springer, Boston, MA, 2008).
28. Penttilä, P. A. et al. Moisture-related changes in the nanostructure of woods studied with X-ray and neutron scattering. Cellulose 27, 71–87 (2020).
29. Garg, M. et al. Moisture uptake in nanocellulose: the effects of relative humidity, temperature and degree of crystallinity. Cellulose 28, 9007–9021 (2021).
30. Darestani, M. T., Chilcott, T. C. & Coster, H. G. L. Electrical impedance spectroscopy study of piezoelectric PVDF membranes. J. Solid State Electrochem. 18, 595–605 (2014).
31. Nguyen, M. D., Dekkers, M., Vu, H. N. & Rijnders, G. Film-thickness and composition dependence of epitaxial thin-film PZT-based mass-sensors. Sens. Actuators A 199, 98–105 (2013).
32. Nguyen, M. D., Houwman, E. P. & Rijnders, G. Large piezoelectric strain with ultra-low strain hysteresis in highly c-axis oriented Pb(Zr0.52Ti0.48)O3 films with columnar growth on
amorphous glass substrates. Sci. Rep. 7, 12915 (2017).
33. Kim, D. M. et al. Thickness dependence of structural and piezoelectric properties of epitaxial Pb(Zr0.52Ti0.48)O3 films on Si and SrTiO3 substrates. Appl. Phys. Lett. 88, 142904 (2006).
34. Li, J. F., Zhu, Z. X. & Lai, F. P. Thickness-dependent phase transition and piezoelectric response in textured Nb-doped Pb(Zr0.52Ti0.48)O3 thin films. J. Phys. Chem. C 114, 17796–17801 (2010).
35. Forrest, J. A., Dalnoki-Veress, K. & Dutcher, J. R. Interface and chain confinement effects on the glass transition temperature of thin polymer films. Phys. Rev. E 56, 5705–5716 (1997).
36. Omote, K., Ohigashi, H. & Koga, K. Temperature dependence of elastic, dielectric, and piezoelectric properties of ‘‘single crystalline’’ films of vinylidene fluoride trifluoroethylene
copolymer. J. Appl. Phys. 81, 2760–2769 (1997).
37. Choi, Y. Y. et al. Vertically aligned P(VDF-TrFE) core-shell structures on flexible pillar arrays. Sci. Rep. 5, 10728 (2015).
38. Jia, N., He, Q., Sun, J., Xia, G. & Song, R. Crystallization behavior and electroactive properties of PVDF, P(VDFTrFE) and their blend films. Polym. Test. 57, 302–306 (2017).
39. Tao, J., Jiao, L. & Deng, Y. Cellulose and Nanocellulose Based Dielectric Materials Ch. 4, (Micro and Nano Technologies, Nanocellulose Based Composites for Electronics, 2021, 73–100).
40. Kadimi, A., Benhamou, K., Habibi, Y., Ounaies, Z. & Kaddami, H. Nanocellulose Alignment and Electrical Properties Improvement, Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements Ch. 11, (William Andrew Publishing, 2016, 343–376).
41. Tao, J. & Cao, S. Flexible high dielectric thin films based on cellulose nanofibrils and acid oxidized multi-walled carbon nanotubes. RSC Adv. 10, 10799–10805 (2020).
42. Guo, X., Wu, Y. & Xie, X. Water vapor sorption properties of cellulose nanocrystals and
nanofibers using dynamic vapor sorption apparatus. Sci. Rep. 7, 14207 (2017).
43. Lundahl, M. J. Strength and water interactions of cellulose I filaments wet-spun from cellulose nanofibril hydrogels. Sci. Rep. 6, 30695 (2016).
44. Kalkavoura, V. A. et al. Humidity-dependent thermal boundary conductance controls heat transport of super-insulating nanofibrillar foams. Matter 4, 276–289 (2021).
45. Martin, B., Vizdrik, G. & Kliem, H. Influence of the relative humidity on the properties of ferroelectric poly(vinylidene fluoride-trifluoroethylene). J. Appl. Phys. 105, 084114 (2009).
46. Brooks, R. E. & Moore, S. B. Alkaline hydrogen peroxide bleaching of cellulose. Cellulose 7, 263–286 (2000).
47. Xiao, H., Wu, M. & Zhao, G. Electrocatalytic oxidation of cellulose to gluconate on carbon aerogel supported gold nanoparticles anode in alkaline medium. Catalysts 6, 5 (2016).
48. Matsumoto, F., Harada, M., Koura, N., Idemoto, Y. & Ui, K. Enhancement of electrochemical oxidation of glucose at Hg Adatom-modified Au electrode in alkaline aqueous solutions. Electrochemistry 72, 103–110 (2004).
49. Sugano, Y., Latonen, R.-M., Pirkanniemi, M. A., Bobacka, J. & Ivaska, A. Electrocatalytic oxidation of cellulose at a gold electrode. ChemSusChem. 7, 2240–2247 (2014).
50. Biermann, C. J. Hydrolysis and other cleavages of glycosidic linkages in polysaccharides. Adv. Carbohydr. Chem. Biochem. 46, 251–271 (1988).
51. Knill, C. J. & Kennedy, J. F. Degradation of cellulose under alkaline conditions. Carbohydr. Polym. 51, 281–300 (2003).
52. Aulin, C., Gällstedt, M. & Lindström, T. Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17, 559–574 (2010).
53. Mason, T.O., Campo, M.A., Hixson, A. D. & Woo, L.Y. Impedance spectroscopy of fiber-reinforced cement composites. Cem. Concr. Compos. 24, 457–465 (2002).