1. Li L, Guo J, Zhang Y, Wu H, Li L, Liu T, et al. Pattern Reorganization of Corticomuscular Connection with the Tactile Stimulation. Annals of Biomedical Engineering 2020; 48(2):834-847.
2. J-H, Song, P-Y, Zhou, Z-H, Cao, et al. Rhythmic auditory stimulation with visual stimuli on motor and balance function of patients with Parkinson's disease. European Review for Medical & Pharmacological Sciences 2015.
3. Massimiliano P, Federica C, Roberta P, Carlo C, Fabrizio S, Tiziano A, et al. Effects of Physical Rehabilitation Integrated with Rhythmic Auditory Stimulation on Spatio-Temporal and Kinematic Parameters of Gait in Parkinson's Disease. Frontiers in Neurology 2016; 7(3).
4. Thaut MH, Leins AK, Rice RR, Argstatter H, Kenyon GP, Mcintosh GC, et al. Rhythmic Auditor y Stimulation Improves Gait More Than NDT/Bobath Training in Near-Ambulatory Patients Early Poststroke: A Single-Blind, Randomized Trial. Neurorehabil Neural Repair 2007; 21(5):455-459.
5. Näätänen R, Jacobsen T, Winkler IN. Memory-based or afferent processes in mismatch negativity (MMN): A review of the evidence. Psychophysiology 2010; 42(1):25-32.
6. Näätänen R, Paavilainen P, Rinne T, Alho K. The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology 2007; 118(12):2544-2590.
7. Tsolaki AC, Kosmidou V, Kompatsiaris I, Papadaniil C, Hadjileontiadis L, Adam A, et al. Brain source localization of MMN and P300 ERPs in mild cognitive impairment and Alzheimer\"s disease: a high-density EEG approach. Neurobiology of Aging 2017:S019745801730101X.
8. Asano S, Shiga T, Itagaki S, Yabe H. Temporal integration of segmented-speech sounds probed with mismatch negativity. Neuroreport 2015; 26(17):1061-1064.
9. Weigl M, Mecklinger A, Rosburg T. Transcranial direct current stimulation over the left dorsolateral prefrontal cortex modulates auditory mismatch negativity. Clinical Neurophysiology 2016; 127(5):2263-2272.
10. Hauk O, Shtyrov Y, Pulvermüller F. The sound of actions as reflected by mismatch negativity: rapid activation of cortical sensory–motor networks by sounds associated with finger and tongue movements. European Journal of Neuroscience 2006; 23(3).
11. Engel AK, Fries P, Singer W. Dynamic predictions: Oscillations and synchrony in top–down processing. Nature Reviews Neuroscience 2001; 2(10):704-716.
12. Jansen BH, Agarwal G, Hegde A, Boutros NN. Phase synchronization of the ongoing EEG and auditory EP generation. Development & Change 2003; 114(1):79-85.
13. Blankertz B, Tomioka R, Lemm S, Kawanabe M, Muller KR. Optimizing Spatial filters for Robust EEG Single-Trial Analysis. 2008.
14. Debener S, Ullsperger M, Siegel M, Engel AK. Single-trial EEG-fMRI reveals the dynamics of cognitive function. 2006.
15. Busch NA, Dubois J, Vanrullen R. The phase of ongoing EEG oscillations predicts visual perception. 2009.
16. Papenberg G, Ferencz B, Mangialasche F, Mecocci P, Cecchetti R, Kalpouzos G, et al. Physical activity and inflammation: effects on gray-matter volume and cognitive decline in aging. Human Brain Mapping 2016.
17. Huang D, Yu L, Wang X, Fan Y, Zhang Y. Distinct patterns of discrimination and orienting for temporal processing of speech and nonspeech in Chinese children with autism: An event-related potential study. European Journal of Neuroscience 2018; 47(662):668.
18. Dijk EO, Nijholt A, Erp JBFV, Wolferen GV, Kuyper E. Audio-tactile stimulation: a tool to improve health and well-being?International Journal of Autonomous & Adaptive Communications Systems 2013; 6(4):305-323.
19. Paavilainen P, Simola J, Jaramillo M, R N, Winkler I. Preattentive extraction of abstract feature conjunctions from auditory stimulation as reflected by the mismatch negativity (MMN). Psychophysiology 2010; 38(2):359-365.
20. Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Computational Intelligence & Neuroscience 2011; 2011(3):156869.
21. Luodi, Wang, Suiping, Huang, Dan, Xueyuan, et al. Role of inter-trial phase coherence in atypical auditory evoked potentials to speech and nonspeech stimuli in children with autism. Clinical neurophysiology 2018.
22. Burianova H, Sowman PF, Marstaller L, Rich AN, Williams MA, Savage G, et al. Adaptive Motor Imagery: A Multimodal Study of Immobilization-Induced Brain Plasticity. Cerebral Cortex 2014:bhu287.
23. Tabrizi YM, Mazhari S, Nazari MA, Zangiabadi N, Sheibani V, Azarang S. Compromised motor imagery ability in individuals with multiple sclerosis and mild physical disability: An ERP study. Clin Neurol Neurosurg 2013; 115(9):1738-1744.
24. Boe S, Gionfriddo A, Kraeutner S, Tremblay A, Little G, Bardouille T. Laterality of brain activity during motor imagery is modulated by the provision of source level neurofeedback. Neuroimage 2014; 101:159-167.
25. Glover S, Dixon P. Context and vision effects on real and imagined actions: Support for the common representation hypothesis of motor imagery. Journal of Experimental Psychology Human Perception & Performance 2013; 39(5):1352-1364.
26. Lepage J-F, Tremblay S, Dang KN, Champoux F, Théoret H. Action related sounds induce early and late modulations of motor cortex activity. Neuroreport 2010; 21(4):250-253.
27. Rosburg T, Kreitschmann-Andermahr I. The effects of ketamine on the mismatch negativity (MMN) in humans - A meta-analysis. Clinical Neurophysiology Official Journal of the International Federation of Clinical Neurophysiology 2015; 127(2):1387-1394.
28. Näätänen R, Kujala T, Light G. The Mismatch Negativity: A Window to the BrainA Window to the Brain. 2019.
29. Papenberg G, H?Mmerer D, Müller V, Lindenberger U, Li SC. Lower theta inter-trial phase coherence during performance monitoring is related to higher reaction time variability : A lifespan study. Neuroimage 2013; 83(4):912.
30. Yu L, Wang S, Huang D, Wu X, Zhang Y. Role of inter-trial phase coherence in atypical auditory evoked potentials to speech and nonspeech stimuli in children with autism. Clinical Neurophysiology 2018; 129(7):1374-1382.