[1] Imaduddin F, Mazlan S, Fatah, A, et al. Testing and parametric modeling of magnetorheological valve with meandering flow path [J]. NONLINEAR DYNAMICS, 2016, 85(1):287-302.
[2] Zhang G, Wang J. A novel phenomenological model for predicting the nonlinear hysteresis response of magnetorheological gel[J]. Materials & design, 2020:109074.
[3] Wang L, Yu M, Fu J, et al. Investigation on the effects of doped dendritic Co particles on rheological property of magnetorheological gel[J]. Smart Materials and Structures, 2018, 27(10).
[4] Zhang G, Li Y, Yu Y, et al. Modeling the nonlinear rheological behavior of magnetorheological gel using a computationally efficient model [J]. Smart Materials and Structures, 2020, 29(10).
[5] Zhang G, Wang H, Wang J, et al. Dynamic rheological properties of polyurethane-based magnetorheological gels studied using oscillation shear tests[J]. RSC Advances, 2019, 9(18): 10124-10134.
[6] Dehghani R; Khanlo H and Fakhraei J. Active chaos control of a heavy articulated vehicle equipped with magnetorheological dampers [J]. NONLINEAR DYNAMICS, 2017, 87(3):1923-1942.
[7] Ge W, Brooker G, Woo J, et al. Magnetorheological Gel Mimicking Cervical Ripening as a Potential Model for Evaluating Shear Wave Elastography[J]. Ultrasound in Medicine & Biology, 2020.
[8] Yu Y, Li Y, Li J, et al. A hysteresis model for dynamic behaviour of magnetorheological elastomer base isolator[J]. Smart Materials and Structures, 2016, 25(5): 055029.
[9] Zhang X , Li W, Gong X. An effective permeability model to predict field-dependent modulus of magnetorheological elastomers[J]. Communications in Nonlinear Science & Numerical Simulation, 2008, 13(9):p.1910-1916.
[10] Jolly M, Carlson J, Muoz B . A model of the behaviour of magnetorheological materials[J]. Smart Materials & Structures, 1996, 5(5):607-614(8).
[11] Peng J, Wang L, Lenci S, et al. Time-delay dynamics of the MR damper-cable system with one-to-one internal resonances [J]. NONLINEAR DYNAMICS, 2021, 105(2):1343-1356.
[12] Yu Y, Li Y, Li J. Nonparametric modeling of magnetorheological elastomer base isolator based on artificial neural network optimized by ant colony algorithm[J]. Journal of Intelligent Material Systems & Structures, 2015, 26(14):1789-1798.
[13] Ismail M, Ikhouane F, Rodellar J, et al. The Hysteresis Bouc-Wen Model, a Survey[J]. Archives of Computational Methods in Engineering, 2009, 16(2): 161-188.
[14] Wen Y K 1976 Method of random vibration of hysteretic systems J. Eng. Mech. 102 249-63.
[15] Spencer J, Dyke S, Sain M, et al. Phenomenological model for magnetorheological dampers[J]. Journal of engineering mechanics, 1997, 123(3): 230-238.
[16] Kamath G, Wereley N. A nonlinear viscoelastic - plastic model for electrorheological fluids[J]. Smart Materials & Structures, 1997, 6(3):351-359(9).
[17] Pan W. Mixed modified fruit fly optimization algorithm with general regression neural network to build oil and gold prices forecasting model[J]. Kybernetes: The International Journal of Systems & Cybernetics, 2014, 43(7): 1053-1063.
[18] Kwok N, Ha Q, Nguyen T, et al. A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization[J]. Sensors & Actuators A Physical, 2006, 132(2):441-451.
[19] Jie F, Junjie L, Guanyao L, et al. Genetic algorithm based nonlinear self-tuning fuzzy control for time-varying sinusoidal vibration of a magnetorheological elastomer vibration isolation system[J]. Smart Materials and Structures, 2018, 27(8):085010-.
[20] Pan W. A new fruit fly optimization algorithm: taking the financial distress model as an example[J], Knowledge-based System, 2012, 26(2): 69-74.
[21] Yu Y, Li Y, Li J, et al. Self-adaptive step fruit fly algorithm optimized support vector regression model for dynamic response prediction of magnetorheological elastomer base isolator[J]. Neurocomputing, 2016, 211(oct.26):41-52.
[22] Yu Y , Li J , Li Y , et al. Comparative investigation of phenomenological modeling for hysteresis responses of magnetorheological elastomer devices[J]. International Journal of Molecular ences, 2019, 20(13):3216.
[23] Kwok N, Ha Q, Nguyen M, et al. Bouc–Wen model parameter identification for a MR fluid damper using computationally efficient GA[J]. ISA transactions, 2007, 46(2): 167-179.
[24] Kamath G, Wereley N. A nonlinear viscoelastic - plastic model for electrorheological fluids[J]. Smart Materials & Structures, 1997, 6(3):351-359(9).
[25] Pan W. Using modified fruit fly optimisation algorithm to perform the function test and case studies[J]. Connection ence, 2013, 25(2-3):151-160.