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Abstract

Combining brain imaging with dual-task paradigms provides a quantitative, direct metric of cognitive
load that is agnostic to the motor task. To better understand the impact of cognitive load during activities
of daily living, we measured brain activity from a dry electroencephalography headset as participants
attended to a stimulus paradigm eliciting event-related potentials during sitting, standing, and walking.
The stimulus paradigm consisted of an auditory oddball task in which they had to report the number of
oddball tones that were heard during each motor task. The P3 event-related potential, which is inversely
proportional to cognitive load, was extracted from electroencephalographic signals in each condition.
Results showed that P3 was significantly lower during walking compared to sitting (p = .039), indicating
that cognitive load was higher during walking compared to the other activities. No significant differences
in P3 were found between sitting and standing. Head motion did not have a significant impact on the
measurement of cognitive load. These results encourage the use of a dry electroencephalography system
to further investigate cognitive load during dynamic activities in individuals with and without motor
impairments.

Introduction

Changes in performance during dual-tasking can help provide a better understanding of the cognitive
requirements of motor tasks. Dual-task methods pair a cognitive task (e.g., serial subtraction) with a
motor-based secondary task (e.g., walking). Dual-tasking causes cognitive-motor interference, which
influences performance on either the motor task (motor control cost) or the cognitive task (cognitive
cost), depending on the severity and intensity of the task'. Cognitive motor-interference stems from the
limited processing resources of the brain. Specifically, cognitive responses to external stimuli are reduced
during dual-task scenarios when there is competition between cognitive and motor resources?. This
‘bottlenecking’ of cognitive and motor processes can be compensated for through changes in gait
biomechanics that preserve the physical stability of walking and decrease the likelihood of falling, or
through decreasing attention towards cognitive tasks.

Cognitive-motor interference is demonstrated when a person’s general walking ability is compromised,
such as in elderly individuals® and individuals with lower-limb loss*. Compensatory strategies, such as
wider stance and more time spent in the double stance phase of gait, are employed to increase stability
when cognitive limits have been reached. For example, Pruziner et al. found individuals with lower limb
amputation exhibited a wider base of support and more stable gait patterns when assigned a cognitive
task compared to walking without any additional task®. Similarly, Al-Yahya et al. found that dual-tasking,
increased age, and changes in mental state were found to reduce gait speed during walking within a
range of impaired and unimpaired populations’.

In persons without motor-impairments or during motor activities other than walking, gait preserving
compensatory strategies may be difficult to measure or not present in typical gait performance measures
such as gait speed. However, in this case, cognitive costs may still be present and measurable from the
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brain's underlying cortical dynamics. Non-invasive brain imaging techniques such as
electroencephalography (EEG) offer insight into the cognitive processing during taxing cognitive events,
even in the absence of motor control costs. EEG can also be used in mobile and stationary settings and
provide a task-agnostic modality for directly assessing cognitive load. In De Sanctis et al., no motor
control costs were seen in terms of the participants’ ability to complete a cognitive task (a Go/No Go
response inhibition task), whereas robust differences in cognitive cost, namely in event-related potential

components, were seen between the motor tasks (sitting and walking)®.

Event-related potentials (ERPs) provide a method for obtaining cognitive load from brain signals via the
application of stimuli such as auditory, visual, or tactile cues. Stimulus paradigms used to elicit ERPs
commonly include the oddball paradigm, in which a participant attends to a train of target and non-target
stimuli. The participant is asked to ignore the frequently-occurring non-target stimuli and keep a mental
count of the target (oddball) stimuli’. The amplitude of the brain response, or the EEG signal at the time
of stimulus onset, reflects the amount of cognitive processing that takes place when the stimulus is
perceived. Due to the limited processing resources of the brain, the cognitive response to external stimuli
is reduced during dual-task scenarios when more cognitive resources are required?. The P3 potential is
the third positive peak in the ERP, found at approximately 300 ms after stimulus presentation?. The P3
potential is thought to represent context-dependent processing of external stimuli?, and its amplitude has
an inverse relationship to cognitive load’.

Advances in wireless electrode technology have recently allowed EEG measurement during movement in
unconstrained environments such as table tennis®, jogging®, and cycling’®. Some studies do not measure
or explicitly account for the possible degradation of EEG signal quality due to movement-related
artifacts®. Other works have explored the removal of movement-related artifact with mixed results. Some
groups suggest that walking-related motion artifacts are negligible for gait speeds below 4.5 km/h'.
However, others claim that motion artifacts do impact signal from gel-based EEG during walking and that
motion related artifacts are not removable using traditional signal processing methods'2. These results
point toward the continued need for evaluating the impact of movement-related artifacts on EEG signal
quality.

Factors that impact the post processing signal quality are the artifact removal methods and parameters,
the EEG hardware (wet, dry, or gel), and the type of analysis performed on the EEG signal. Despite these
variety of factors, most studies that looked at the impact of movement-related artifacts used continuous
and spectral gel-based EEG"" rather than ERP from dry EEG. Advantages of dry EEG include reduced
cross-talk between electrodes, increased, participant comfort (no need for gel application, skin

)13 4

preparation (with inherent risk of bacterial infection), and post-record cleaning)’3 and fast setup time'4,
which may be of increased importance when working with impaired populations. Faster setup of the EEG
may allow additional time for experimentation, including potentially evaluating and adjusting the
assistive device which could improve the quality of the study. Although previous work has measured

differences between EEG systems’?, this work uses a dry EEG headset with internal signal processing
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(ultra-high input impedance common mode follower'®) and physical equipment setup (spring-loaded
electrodes with head strap) that may consequently lead to a more robust signal to noise ratio'” and
potentially negligible effect of head movement artifact on the EEG signal’®. To our knowledge, no other
authors have used this particular dry EEG system (DSI-7) to evaluate ERP during walking, but ERP during
outdoor walking has been evaluated using at least one other dry EEG system'®.

Evaluating the ability of populations with motor impairments to safely navigate inside and outside the
home includes the assessment of tasks associated with many activities??22. Three critical tasks that test
the range of activities in ecologically valid settings include sitting, standing, and walking?°. To our
knowledge, there was only one other study which compared sitting, standing, and walking using wet
EEG?3: Protzak et al.’s study, which used a visual cognitive task to induce P3 in both young and old
populations?3. In contrast, our present work uses an auditory oddball task to examine P3 as auditory
stimuli are easier to administer in unconstrained activities than visual stimuli. This study also further
seeks to identify the impact of head movement artifact on P3 amplitude.

To our knowledge, this study is the first to compare P3 across the tasks of sitting, standing, and walking
using dry EEG with an auditory oddball paradigm. Here, we demonstrate that cognitive load can be
measured from the P3 event-related potential during all three tasks. This work also examines the possible
impact of motion on the P3 ERP component during walking, the most motion-inducing condition of the
three. We hypothesized that the cognitive requirements of walking will result in a reduction of the P3
amplitude compared to sitting and standing, as shown in studies using wet EEG and a visual cognitive
task?3. We also hypothesized that standing will be more cognitively demanding than sitting, as suggested
by prior studies using dual-tasks?* and P3 amplitude?3.

Methods

Ten participants (5 female, 5 male, mean age 22 + 3 years, age range 20-29 years) were recruited for this
study in accordance with Northwestern IRB guidelines. Results from one subject were excluded from the
analysis due to cardioballistic artifacts in the EEG signal, thereby leaving data from nine participants in
our final analysis.

Participants completed three sessions each for three conditions: sitting, standing, and walking. The
conditions were completed in a randomized, counter-balanced order so that each session consisted of
one of each condition. Our pilot studies indicated that participants became too fatigued with long
sessions of 15 minutes each. Thus, our current study separated each condition into three separate 5-
minute tasks, with each set of three tasks followed by a 5-minute break. The total session time was
approximately one hour. Stimuli were delivered in a randomized order and included 90% target (standard)
tones and 10% non-target (oddball) tones (270 non-target trials and 30 target trials per task), according to
a two-tone auditory oddball paradigm?°. Auditory stimuli were applied at random intervals between 675
and 1365 ms, which was chosen based on 1000 ms intervals + 365 ms jitter, in order to include 30 target
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tones within each task of approximately 5 minutes duration. Oddball stimuli were infrequently occurring
high-pitched tones at 1200 Hz and standard stimuli were frequently occurring non-target low-pitched
tones at 900 Hz. Stimuli were played by a microcontroller (Arduino) with an audio wave shield to wired
earbuds. Before beginning each experiment, participants were allowed to adjust the volume on the
stimulus delivery and verified that they could clearly distinguish between the two types of tones.

Participants were asked to count the number of target tones they heard in each session. Differences in
reaction time between motor tasks were not measured as there was no physical button press. This
decision was made to reduce confounding the P3 response with the motor activity associated with
pushing a button?®. Instead, participants kept a mental count of the target tones heard throughout the
task, and the total number of target tones heard by each participant was recorded and compared against
the actual number, which was documented as the task error. Task error was measured as the difference
between the number of tones actually played and the number that was reported to be heard by the
participant. A two-way ANOVA was calculated for task error across all sessions and conditions.

The audio signal was simultaneously delivered to the stimulus Trigger Hub (Wearable Sensing) which
identified the timing onset for each stimuli so that it could be synchronized to the EEG signal. EEG signal
was recorded using a DSI-7 (Wearable Sensing), a wireless headset with seven dry electrodes located on
the scalp at F3, F4, C3, C4, P3, Pz, and P4. The ground electrode was located at Fz. Linked ears (LE)
reference electrodes were placed on both earlobes. Signals were recorded at 300 Hz through an ultra-high
impedance amplifier. The impedance at each electrode was monitored to ensure it was below 1 MQ
before starting the experiment. Participants wore a stabilization strap with Velcro straps to secure the
EEG cap. A 3-axis accelerometer located inside the EEG cap measured head movement in each condition.

Continuous EEG data were band-pass filtered between 0.1 Hz to 30 Hz through a zero-phase 4th order
Butterworth filter, similar to previous ERP studies?’. Infomax Independent Component Analysis (ICA) was
applied to the continuous filtered data to separate neural from non-neural components using

EEGLAB?8 with built-in functions from ERPLAB?°. All trials (from continuous data) were used for the ICA
signal decomposition. The ICA components were used for the artifact identification process as described
in Swerdloff et al’*. The small number of electrodes used here is not sufficient for robust source
decomposition via ICA; thus, in lieu of source decomposition, the ICA process was used to identify epochs
from ICA components containing eye-movement related artifacts, which were subsequently removed from
the analysis. No independent components from the ICA decomposition were removed from the dataset.

EEG data was sectioned and aligned to the start of the stimuli to produce epochs surrounding the onset
of each stimuli, from -200 ms prior to stimulus onset to 800 ms post stimulus onset. Epochs
contaminated by artifacts (eye-blink, muscular and cardiovascular artifacts, etc.) were identified from the
ICA components according to standard and previously-used parameters'446. Rejection criteria included
abnormal values (i.e., those outside the range of -25 to 25 pV in the pre-stimulus period and -75 to 75 uV
post stimulus period), strong linear trends (maximum slope of 50 and r-squared up to 0.3), abnormal joint
probabilities (single-component and all component probabilities of up to 5), strong kurtosis (distributions
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with kurtosis up to 5), and abnormal spectral properties (i.e., those outside the range of -50 to 50 dB
between 0 to 2 Hz and from -100 to 25 dB between 20 to 40 Hz).

Grand average ERP were generated by aligning the onset of the stimuli and averaging across trials. The
P3 timeframe was chosen as 250-350 ms based the peak P3 amplitude from the grand average
waveform from Target trials across all conditions (P3 peak amplitude latency was 320 ms averaging all
sitting, standing, and walking trials). After removing artifact trials, there were at least 37 artifact-free trials
per condition per subject. Although a classic subject-exclusionary approach would require approximately
20 trials or more per subject®, a linear mixed effects model can include all subjects with least one trial
because the model does not assume equal numbers of trials across subjects®’. Thus, instead of
excluding subjects having below a certain number of non-artifact trials, we used a linear mixed effects
model as a conservative method to determine statistical significance following the methods used by
Heise et al.3" Accelerometer signals were segmented with the same timeframe as the EEG data and
aligned to stimuli onset. The magnitude of the accelerometer RMS was taken to represent the head
motion for each trial and averaged into eight bins to maintain consistency with previous literature which
measured the impact of motion artifacts on ERP during cycling™®.

Results
Oddball auditory task applied during sitting, standing, and walking

Able-bodied participants performed a series of three activities: sitting, standing still, and walking on a
treadmill, while wearing a dry EEG headset and associated stimulus synchronization equipment
contained within a lightweight backpack (Figure 1). Oddball counting errors are shown for all conditions
(Figure 2). Participants were able to complete the auditory oddball counting task with less than 8% task
error. A two-way ANOVA was calculated for task error across all sessions and conditions. No significant
differences in task error were found across conditions or sessions (p = .86), indicating that participants
were able to complete the auditory cognitive task equally as well, on average, for any of the conditions or
sessions.

ERP differentiates walking from that of sitting and standing

The grand average ERP taken from the central parietal electrode (Pz, Figure 3) across all three conditions
for both target and non-target stimuli is shown in Figure 4. Non-target ERP does not show any deflections,
suggesting that motor-related cognitive activity did not impact cognitive responses to stimuli. In contrast
to non-target ERP, the ERP for target stimuli showed a positive deflection at around 320 ms (P3) in all
conditions. Average brain activity is also shown for electrodes across the scalp at the P3 timeframe (250
to 350 ms) for target stimuli in each condition (Figure 4, insets).

The ERP responses during the P3 timeframe were compared across all trials and conditions. A linear
mixed effects model accounting for individual subject differences indicated that the average voltage
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during the P3 timeframe was significantly lower for walking compared to sitting (p = .039). This result
indicates that cognitive load is greater during walking than during sitting and standing.

Head motion does not impact ERP during walking

Baseline EEG (RMS voltage) during the time prior to stimuli presentation showed the highest overall
magnitude of the signal and had the most variation in EEG signal during walking as compared to sitting
and standing (Figure 5). As such, the impact of motion on the EEG signal during walking was also
analyzed. Figure 6A shows the distribution of motion across all trials in the sit, stand, and walk
conditions. The mean and standard deviation of the RMS magnitude of the acceleration vector was
greater during the walking condition as compared to that of the sitting and standing conditions. This was
expected due to the increased motion of the head during walking. Figure 6B shows the average voltage
during the P3 timeframe at the Pz electrode as a function of the motion during the corresponding P3
timeframe for each condition. The variation in motion (Figure 6B) was not correlated to voltage during the
P3 timeframe for any condition (r< .5). Gaussian probability distributions (Figure 6 and Table 1) show
that the mean P3 was lower for walking (= 2.809 V) compared to sitting (v = 6.651 V) and standing
(v = 6.733 V) and the variability in the walk condition (o= 8.39 V) was greater than for sit (0= 4.58 uV)
and stand (o= 5.54 V). To account for individual differences, the correlation was calculated for
individual subjects. No individual trends were found (r< .5), suggesting that head motion did not impact
the P3 responses.

To further investigate the impact of motion on the P3 response, all walking trials were sorted
according to their corresponding RMS magnitude from the accelerometer and binned according to eight
motion levels, to get ERP for each motion level as done by Zink et al'?. Average ERP for each motion level
is shown in Figure 6C. The average voltage in the P3 timeframe was plotted against the motion level
during walking, as shown in Figure 6D. The average P3 voltage as a function of motion level during
walking did not yield a significant trend (r= .24, p = .125).

Condition | RMS Head Motion | Average P3 (uV)
mean (SD) mean (SD)

Sit .0085 (.002) 6.651 (4.58)

Stand .0111 (.004) 6.733 (5.54)

Walk .1209 (.022) 2.809 (8.39)

Table 1. Estimated Gaussian parameters for RMS head motion and average P3 for each condition. (Summary of

data shown in Figure 6B.)
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Discussion

Cognitive requirements that are known to impact activities of daily living in both healthy individuals and
those with motor impairments have been difficult to measure due to methodological limitations. EEG
provides a possible method to directly measure the ease of completing a task with high temporal
resolution. This study is the first to use dry EEG to measure the cognitive load of three tasks: sitting,
standing, and walking. The P3 response found in this study was lowest during walking, indicating that
walking was the most cognitively burdensome task. These results support those of prior studies,
including those that have compared the P3 responses during walking and sitting®1923:3233,

In agreement with the results of Protzak et al.?3, our results indicate that walking had the lowest P3
amplitude (Figure 2). However, we found similar P3 amplitudes for both the sitting and standing tasks.
This finding contrasted with at least one other study which compared the cognitive load of sitting and
standing: a dual-task study that found slower reaction times during standing compared to sitting®*. While
not significantly different, Protzak et al.?3 also showed higher cognitive load for standing compared to
sitting. However, the visual task used in Protzak et al.?® was different from that of our current study. Our
work used an auditory oddball task that is easier to administer in unconstrained environments compared
to visual stimuli, which may be the reason for this difference.

A limitation of this study is that the auditory task did not distinguish between the cognitive load of sitting
and standing. Tasks that are nearly equally easy, as in the case of sitting and standing for able-bodied
individuals, are not expected to yield differences in P3 unless the cognitive task is difficult enough. In
contrast to the auditory task used in the current study, the visual task used by Protzak et al.2® was able to
distinguish the cognitive load between sitting and standing in healthy participants of similar age to those
in the current study. This may have been because visual tasks are more difficult to complete during
activities that require trunk support, as the balance required to maintain posture relies more on the visual
system than the auditory system?3®. Thus, the auditory oddball task used here may have been not difficult
enough for us to distinguish between the cognitive load of sitting and standing for the able-bodied
individuals who participated in this study. The advantage of using auditory tasks is that they only require
headphones, in comparison to visual tasks which require an environment outfitted with LEDs?3. Future
work may consider the use of a more difficult auditory task or a visual task in augmented reality to
maintain the possibility of administering these tasks in unconstrained, outdoor environments.

While the auditory oddball task used in this study is appropriate for distinguishing the cognitive
requirements of sitting compared to walking, it might be too simple to cause a change in the cognitive
response shown in the ERP in populations without motor impairments when comparing sitting to
standing. However, the lack of a difference in P3 between sitting and standing is an interesting finding in
that it could inform future work with different tasks and populations with motor impairments. For
example, we expect that individuals with poorer trunk support and balance would not find sitting and
standing to be equally easy tasks and thus would have lower P3 amplitude for standing compared to

sitting. Another area of interest is for lower-limb prosthesis users, as it is possible to use this paradigm to
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evaluate changes in cognitive load for users of different devices. For example, a microprocessor knee
that provides stance support may be easier for a person to use while standing compared to a purely
mechanical device that does not provide stance control.

Independent component analysis (ICA) is a widely used method that separates statistically independent
sources in a continuous EEG signal, which can then be localized to specific brain regions using inverse
head modeling. ICA is useful for obtaining source localization in high-density EEG, but it is not a robust
method for low-density (e.g., below 32 channel) EEG and it cannot reliably separate non-brain
components from brain-components. However, ICA can be used to identify eye-blinks such that those
segments can be removed from continuous EEG. We applied ICA to find components with ocular artifact,
and instead of removing any possible non-brain components, we simply use the component(s)
representative of ocular artifact as part of the artifact rejection process. Although some studies have
examined the parameters used for optimal ICA during mobile experiments, such as filter cutoff36, these
parameters may not be applicable for ICA as an artifact removal method instead of a means of source
localization. Furthermore, to prevent attenuation of ERP waveforms, the analysis parameters that were
chosen are those that are commonly used for ERP analysis (e.g., Tanner et a/.?’) instead of those
commonly used for source-localization of mobile EEG (e.g., Klug et a/.2%), as source localization is not
required for ERP analysis.

While previous works have demonstrated excellent signal to noise characteristics in wet EEG, no previous
studies have used a dry EEG with ERP as we used in the current work. Fortunately, there may be a lesser
impact of movement-related artifacts on ERP compared to continuous EEG. Due to the averaging process
involved in the methodology to obtain event-related potentials, there is a stronger likelihood that
movement-related artifacts will be averaged out in ERP compared to continuous EEG, where there is no
averaging processes®’. For instance, Zink et al. examined the impact of motion on ERP recorded during
biking in seated (non-moving), stationary (pedaling on a stationary bike), and moving (biking through a
college campus) conditions and found no effect of movement artifacts on P3 amplitude'®. Zink et al.
also introduced using the RMS (root mean square) of accelerometer data as a measure of the amount of
head motion per trial. This was compared to P3 amplitude and they demonstrated that head motion was
not correlated to P3 amplitude. This study follows suit, but using a dry (i.e., gel-free) electrode EEG
headset instead of a wet EEG.

Wireless, dry EEG provides additional benefits over wet or gel-based EEG methods. Dry EEG has a fast
setup time (5-10 minutes, as in the current and previous study’#), can be used in environments where gels
are not allowed®8, and avoids the need for re-application of gel in prolonged experiments3°. With the
advent of EEG systems that are dry and mobile also comes the need to determine the effect of motion on
EEG signal*®47. Although not all dry electrode headsets provide the same level of signal quality*?, studies
have found similar signal quality with dry electrodes compared to wet for certain systems*243, including
the DSI-7, the system used in this study, during seated** and dynamic testing environments*°.
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Consequently, we analyze an additional modality that is greatly impacted by motion and can be
measured during both conditions (i.e., acceleration).

Dry EEG headsets have not been widely used in dynamic environments due to a poor signal quality that
varies greatly across different dry EEG systems*243. Whereas Oliveira et al. reported that no data was
usable (i.e., 100% of epochs were discarded) using their dry EEG system and removing epochs exceeding
a threshold difference of 75 pV from baseline, our results successfully yielded a suitable amount of clean
epochs from dry EEG recorded during walking using the same standard threshold as in Oliveira et al.’®
This difference in signal quality may be explained by differences in the dry EEG system technologies.

While there is proprietary information that may help explain the differences in dry EEG technology, the
system used in the current study may provide superior signal quality in part due to its stabilization strap,
spring-loaded electrodes, and common mode follower. Participants wore a Velcro strap wrapped around
the forehead. This strap connected to the top of the cap, pulling it downwards to allow the spring-loaded
electrodes to perform at their optimum pressure and maintain contact with the scalp. The common mode
follower measures the external electrical activity from the environment so that it can be removed from the
EEG signal. The use of a common mode follower is important to signal analysis, because it records
electrical noise coming from outside of the EEG cap and subtracts that signal from the rest of the EEG
signals. To our knowledge, the DSI-7 is the only research grade dry-electrode EEG available that includes a
common mode follower, which may further contribute to the difference in signal quality’” between the dry
system used in our paper and the one in Oliveira et al. ' This makes our EEG system superior to Oliveira
et als previously used EEG system, which does not provide pressure to the scalp and does not have a
common mode follower.

This study provides a method for measuring cognitive load using a dry EEG interface that is robust
enough to handle tasks of various dynamic movement artifact. Current methods in EEG allowed the
measurement of EEG during mobile activities in ecologically relevant settings. Future work could use this
methodology to understand the impact of cognitive load during dynamic activities. Variation in P3 across
days, stress level, cognitive function, and levels of motor impairment for a range of dynamic tasks is
important to identify and understand factors that influence cognitive load.

Declarations

Acknowledgements
The authors would like to thank all participants of this experiment.
Author contributions statement

M.S. and L.H. conceived the experiment, M.S. conducted the experiment, M.S. and L.H. analyzed the
results. All authors reviewed the manuscript.

Page 10/18



Competing interests

The authors declare no competing interests.

References

1.

10.

11.

12.

13.

Al-Yahya E, Dawes H, Smith L, Dennis A, Howells K, Cockburn J. Cognitive motor interference while
walking: a systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews. 2011 Jan
1;35(3):715-28.

. Polich, J. Updating p300: an integrative theory of p3a and p3b. Clin. neurophysiology 118, 2128-

2148 (2007).

. Reinhardt J, Rus-Oswald OG, Buirki CN, Bridenbaugh SA, Krumm S, Michels L, Stippich C, Kressig RW,

Blatow M. Neural correlates of stepping in healthy elderly: parietal and prefrontal cortex activation
reflects cognitive-motor interference effects. Frontiers in human neuroscience. 2020 Sep
29;14:566735.

. Hunter SW, Frengopoulos C, Holmes J, Viana R, Payne MW. Dual-task related gait changes in

individuals with trans-tibial lower extremity amputation. Gait & Posture. 2018 Mar 1;61:403-7.

. Pruziner, A. L. et al. Biomechanical and neurocognitive performance outcomes of walking with

transtibial limb loss while challenged by a concurrent task. Exp. brain research 237, 477-491 (2019).

. De Sanctis P, Butler JS, Malcolm BR, Foxe JJ. Recalibration of inhibitory control systems during

walking-related dual-task interference: A Mobile Brain-Body Imaging (MOBI) Study. Neuroimage
2014;94:55-64.

. Debener, S., Makeig, S., Delorme, A. & Engel, A. K. What is novel in the novelty oddball paradigm?

functional significance of the novelty p3 event-related potential as revealed by independent
component analysis. Cogn. Brain Res. 22,309-321 (2005).

. Hung, T.-M,, Spalding, T. W., Santa Maria, D. L. & Hatfield, B. D. Assessment of reactive motor

performance with event-related brain potentials: attention processes in elite table tennis players. J.
Sport Exerc. Psychol. 26, 317-337 (2004).

. Gwin, J. T, Gramann, K., Makeig, S. & Ferris, D. P. Removal of movement artifact from high-density

eeg recorded during walking and running. J. neurophysiology 103, 3526-3534 (2010).

Zink, R., Hunyadi, B., Van Huffel, S. & De Vos, M. Mobile eeg on the bike: disentangling attentional
and physical contributions to auditory attention tasks. J. neural engineering 13, 046017 (2016).

Nathan, K. & Contreras-Vidal, J. L. Negligible motion artifacts in scalp electroencephalography (eeg)
during treadmill walking. Front. human neuroscience 9,708 (2016).

Kline, J. E., Huang, H. J., Snyder, K. L. & Ferris, D. P. Isolating gait-related movement artifacts in
electroencephalography during human walking. J. neural engineering 12, 046022 (2015).

Wang CH, Moreau D, Kao SC. From the lab to the field: potential applications of dry EEG systems to
understand the brain-behavior relationship in sports. Frontiers in neuroscience. 2019 Aug 27;13:893.

Page 11/18



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Swerdloff, M. M. & Hargrove, L. J. Quantifying cognitive load using eeg during ambulation and
postural tasks. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine &
Biology Society (EMBC), 2849-2852 (IEEE, 2020).

Oliveira, A. S., Schlink, B. R., Hairston, W. D., Konig, P. & Ferris, D. P. Proposing metrics for
benchmarking novel eeg technologies towards real-world measurements. Front. human
neuroscience 10, 188 (2016).

Matthews R, McDonald NJ, Hervieux P, Turner PJ, Steindorf MA. A wearable physiological sensor
suite for unobtrusive monitoring of physiological and cognitive state. In2007 29th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society 2007 Aug 22 (pp.
5276-5281). IEEE.

Xu J, Mitra S, Van Hoof C, Yazicioglu RF, Makinwa KA. Active electrodes for wearable EEG
acquisition: Review and electronics design methodology. IEEE reviews in biomedical engineering.
2017 Jan 20;10:187-98.

Matthews R, Turner PJ, McDonald NJ, Ermolaev K, Mc Manus T, Shelby RA, Steindorf M. Real time
workload classification from an ambulatory wireless EEG system using hybrid EEG electrodes. In
2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
2008 Aug 20 (pp. 5871-5875). IEEE.

De Vos, M., Gandras, K. & Debener, S. Towards a truly mobile auditory brain—computer interface:
exploring the p300 to take away. Int. journal psychophysiology 91, 46—53 (2014).

Nordin, E., Rosendahl, E. & Lundin-Olsson, L. Timed “up & go” test: reliability in older people
dependent in activities of daily living—focus on cognitive state. Phys. therapy 86, 646—655 (2006).

Fleury A, Vacher M, Noury N. SVM-based multimodal classification of activities of daily living in
health smart homes: sensors, algorithms, and first experimental results. IEEE transactions on
information technology in biomedicine. 2009 Dec 11;14(2):274-83.

Sen-Gupta E, Wright DE, Caccese JW, Wright Jr JA, Jortberg E, Bhatkar V, Ceruolo M, Ghaffari R,
Clason DL, Maynard JB, Combs AH. A pivotal study to validate the performance of a novel wearable
sensor and system for biometric monitoring in clinical and remote environments. Digital biomarkers.
2019;3(1):1-3.

Protzak, J., Wiczorek, R. & Gramann, K. Peripheral visual perception during natural overground dual-
task walking in older and younger adults. Neurobiol. aging 98, 146—159 (2021).

Ozdemir, R. A,, Contreras-Vidal, J. L., Lee, B.-C. & Paloski, W. H. Cortical activity modulations
underlying age-related performance differences during posture—cognition dual tasking. Exp. brain
research 234, 3321-3334 (2016).

Polich J, Margala C. P300 and probability: comparison of oddball and single-stimulus paradigms.
International Journal of Psychophysiology. 1997 Feb 1;25(2):169-76.

Cooper NR, Fitzgerald PB, Croft RJ, Upton DJ, Segrave RA, Daskalakis ZJ, Kulkarni J. Effects of rTMS
on an auditory oddball task: a pilot study of cortical plasticity and the EEG. Clinical EEG and
neuroscience. 2008 Jul;39(3):139-43.

Page 12/18



27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.

40.

41.

42.
43.

44.

Tanner D, Morgan-Short K, Luck SJ. How inappropriate high-pass filters can produce artifactual
effects and incorrect conclusions in ERP studies of language and cognition. Psychophysiology. 2015
Aug;52(8):997-1009.

Delorme, A. & Makeig, S. Eeglab: an open source toolbox for analysis of single-trial eeg dynamics

including independent component analysis. J. neuroscience methods 134, 9-21 (2004).

Lopez-Calderon, J. & Luck, S. J. Erplab: an open-source toolbox for the analysis of event-related
potentials. Front. human neuroscience 8, 213 (2014).

Gonsalvez CJ, Polich J. P300 amplitude is determined by target-to-target interval. Psychophysiology.
2002 May;39(3):388-96.

Heise MJ, Mon SK, Bowman LC. Utility of linear mixed effects models for event-related potential
research with infants and children. Developmental cognitive neuroscience. 2022 Apr 1;54:101070.

Shaw, E. P. et al. A comparison of mental workload in individuals with transtibial and transfemoral
lower limb loss during dual-task walking under varying demand. J. Int. Neuropsychol. Soc. 25, 985-
997 (2019).

Bradford, J. C., Lukos, J. R., Passaro, A., Ries, A. & Ferris, D. P Effect of locomotor demands on
cognitive processing. Sci. reports 9, 1-12 (2019).

Lajoie, Y., Teasdale, N., Bard, C. & Fleury, M. Attentional demands for static and dynamic equilibrium.
Exp. brain research 97, 139-144 (1993).

Peterka RJ. Sensory integration for human balance control. Handbook of clinical neurology. 2018
Jan 1;159:27-42.

Klug M, Gramann K. Identifying key factors for improving ICA-based decomposition of EEG data in
mobile and stationary experiments. European Journal of Neuroscience. 2021 Dec;54(12):8406-20.

Luck SJ. An introduction to the event-related potential technique. MIT press; 2014 Jun 20.

Snider, D. H,, Linnville, S. E., Phillips, J. B. & Rice, G. M. Predicting hypoxic hypoxia using machine
learning and wearable sensors. Biomed. Signal Process. Control. 71, 103110 (2022).

Vasconcelos, B., Fiedler, P, Machts, R., Haueisen, J. & Fonseca, C. The arch electrode: A novel dry
electrode concept for improved wearing comfort. Front. Neurosci. 1378 (2021).

Reis, P, Hebenstreit, F., Gabsteiger, F., von Tscharner, V. & Lochmann, M. Methodological aspects of
eeg and body dynamics measurements during motion. Front. human neuroscience 8, 156 (2014).

Minguillon, J., Lopez-Gordo, M. A. & Pelayo, F. Trends in eeg-bci for daily-life: Requirements for
artifact removal. Biomed. Signal Process. Control. 31, 407-418 (2017).

Radiintz, T. Signal quality evaluation of emerging eeg devices. Front. physiology 9, 98 (2018).

Kam, J. W. et al. Systematic comparison between a wireless eeg system with dry electrodes and a
wired eeg system with wet electrodes. Neurolmage 184, 119-129 (2019).

Halford, J. J. et al. Comparison of a novel dry electrode headset to standard routine eeg in veterans.
J. Clin. Neurophysiol. 33, 530-537 (2016).

Page 13/18



45. Estepp, J. R., Monnin, J. W,, Christensen, J. C. & Wilson, G. F. Evaluation of a dry electrode system for
electroencephalography: applications for psychophysiological cognitive workload assessment. Proc.
Hum. Factors Ergonomics Soc. Annu. Meet. 54,210-214 (2010).

46. Reiser JE, Wascher E, Arnau S. Recording mobile EEG in an outdoor environment reveals cognitive-
motor interference dependent on movement complexity. Scientific reports. 2019 Sep 11;9(1):1-4.

Figures

4 EEG headset
= with stabilization
B straps

Backpack

Treadmill

Figure 1

A participant during treadmill walking wearing an EEG headset with stabilization straps, headphones for
listening to auditory oddball stimuli, and backpack containing stimulus-synchronization equipment.
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Figure 2

Counting task error during oddball stimulus task. All raw data points are shown on top of kernel density

plots and boxplots (1st thru 3rd quartiles). Medians are denoted by horizontal lines between 95
percentile notches and mean values are denoted by asterisks. No significance differences were found for
task error (p = .86).

Page 15/18



Figure 3

Scalp electrode placement. Pz (circled in red) is the location of the common mode follower.
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Iy

Pz (uV)

Figure 4

Grand average ERP from all conditions (sit, stand, and walk) for oddball (Target) and frequently-occurring
(Non-Target) tones, combined for all sessions. Yellow shading indicates significant difference in average
voltage in the P3 interval (250 ms to 350 ms) during the walk condition compared to the sitting condition

(p = .039).
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Figure 5

Scalp plots showing median RMS voltage during baseline periods of no stimulus presentation (i.e., from
-200 to 0 ms).
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Figure 6

(A) Histogram of accelerometer RMS magnitude for each condition (sit, stand, and walk). (B) Mean P3
voltage at Pz plotted against the associated motion RMS vector for each subject in each condition. Axes
show the Gaussian probability distributions for each condition. Colors correspond to those presented in
A. (C) Averaged ERP for eight levels of head motion during walking. (D) Mean P3 voltage from ERP in C
plotted against motion level, with each head motion level represented by a different color. Colors
correspond to those presented in C.
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