(1) Sanz-Pérez, E. S.; Murdock, C. R.; Didas, S. A.; Jones, C. W. Direct Capture of CO2 from Ambient Air. Chem. Rev. 2016, 116 (19), 11840–11876. https://doi.org/10.1021/acs.chemrev.6b00173.
(2) Stern, M. C.; Simeon, F.; Hammer, T.; Landes, H.; Herzog, H. J.; Alan Hatton, T. Electrochemically Mediated Separation for Carbon Capture. Energy Procedia 2011, 4, 860–867. https://doi.org/https://doi.org/10.1016/j.egypro.2011.01.130.
(3) Shaw, R. A.; Hatton, T. A. Electrochemical CO2 Capture Thermodynamics. Int. J. Greenh. Gas Control 2020, 95, 102878. https://doi.org/https://doi.org/10.1016/j.ijggc.2019.102878.
(4) Rheinhardt, J. H.; Singh, P.; Tarakeshwar, P.; Buttry, D. A. Electrochemical Capture and Release of Carbon Dioxide. ACS Energy Lett. 2017, 2 (2), 454–461. https://doi.org/10.1021/acsenergylett.6b00608.
(5) Renfrew, S. E.; Starr, D. E.; Strasser, P. Electrochemical Approaches toward CO2 Capture and Concentration. ACS Catal. 2020, 10 (21), 13058–13074. https://doi.org/10.1021/acscatal.0c03639.
(6) Sharifian, R.; Wagterveld, R. M.; Digdaya, I. A.; Xiang, C.; Vermaas, D. A. Electrochemical Carbon Dioxide Capture to Close the Carbon Cycle. Energy Environ. Sci. 2021, 14 (2), 781–814. https://doi.org/10.1039/D0EE03382K.
(7) Ranjan, R.; Olson, J.; Singh, P.; Lorance, E. D.; Buttry, D. A.; Gould, I. R. Reversible Electrochemical Trapping of Carbon Dioxide Using 4,4′-Bipyridine That Does Not Require Thermal Activation. J. Phys. Chem. Lett. 2015, 6 (24), 4943–4946. https://doi.org/10.1021/acs.jpclett.5b02220.
(8) Singh, P.; Tarakeshwar, P.; Buttry, D. A. Experimental, Simulation, and Computational Study of the Interaction of Reduced Forms of N-Methyl-4,4’-Bipyridinium with CO2. ChemElectroChem 2020, 7 (2), 469–475. https://doi.org/https://doi.org/10.1002/celc.201901884.
(9) Ishida, H.; Ohba, T.; Yamaguchi, T.; Ohkubo, K. Interaction between CO<SUB>2</SUB> and Electrochemically Reduced Species of N-Propyl-4,4′-Bipyridinium Cation. Chem. Lett. 1994, 23 (5), 905–908. https://doi.org/10.1246/cl.1994.905.
(10) Singh, P.; Rheinhardt, J. H.; Olson, J. Z.; Tarakeshwar, P.; Mujica, V.; Buttry, D. A. Electrochemical Capture and Release of Carbon Dioxide Using a Disulfide–Thiocarbonate Redox Cycle. J. Am. Chem. Soc. 2017, 139 (3), 1033–1036. https://doi.org/10.1021/jacs.6b10806.
(11) Bell, W. L.; Miedaner, A.; Smart, J. C.; DuBois, D. L.; Verostko, C. E. Synthesis and Evaluation of Electroactive CO₂ Carriers. SAE Trans. 1988, 97, 544–552.
(12) DuBois, D. L.; Miedaner, A.; Bell, W.; Smart, J. C. Chapter 4 - ELECTROCHEMICAL CONCENTRATION OF CARBON DIOXIDE. In Electrochemical and Electrocatalytic Reactions of Carbon Dioxide; Sullivan, B. P., Ed.; Elsevier: Amsterdam, 1993; pp 94–117. https://doi.org/https://doi.org/10.1016/B978-0-444-88316-2.50008-5.
(13) Nagaoka, T.; Nishii, N.; Fujii, K.; Ogura, K. Mechanisms of Reductive Addition of CO2 to Quinones in Acetonitrile. J. Electroanal. Chem. 1992, 322 (1), 383–389. https://doi.org/https://doi.org/10.1016/0022-0728(92)80090-Q.
(14) De Sousa Bulhõesw, L. O.; Zara, A. J. The Effect of Carbon Dioxide on the Electroreduction of 1,4-Benzoquinone. J. Electroanal. Chem. Interfacial Electrochem. 1988, 248 (1), 159–165. https://doi.org/https://doi.org/10.1016/0022-0728(88)85158-1.
(15) Qiao, X.; Li, D.; Cheng, L.; Jin, B. Mechanism of Electrochemical Capture of CO2 via Redox Cycle of Chlorinated 1,4-Naphthoquinone in BMIMBF4: An in-Situ FT-IR Spectroelectrochemical Approach. J. Electroanal. Chem. 2019, 845, 126–136. https://doi.org/https://doi.org/10.1016/j.jelechem.2019.05.057.
(16) Namazian, M.; Zare, H. R.; Yousofian-Varzaneh, H. Electrochemical Behavior of Tetrafluoro-p-Benzoquinone at the Presence of Carbon Dioxide: Experimental and Theoretical Studies. Electrochim. Acta 2016, 196, 692–698. https://doi.org/https://doi.org/10.1016/j.electacta.2016.02.159.
(17) Comeau Simpson, T.; Durand, R. R. Reactivity of Carbon Dioxide with Quinones. Electrochim. Acta 1990, 35 (9), 1399–1403. https://doi.org/https://doi.org/10.1016/0013-4686(90)85012-C.
(18) Mizen, M. B.; Wrighton, M. S. Reductive Addition of CO 2 to 9,10‐Phenanthrenequinone. J. Electrochem. Soc. 1989, 136 (4), 941–946. https://doi.org/10.1149/1.2096891.
(19) Boujlel, K.; Simonet, J. On the Electrochemical Reduction of α-Diketones in the Presence of Oxygen. Tetrahedron Lett. 1979, 20 (12), 1063–1066. https://doi.org/https://doi.org/10.1016/S0040-4039(01)87192-6.
(20) Jeziorek, D.; Ossowski, T.; Liwo, A.; Dyl, D.; Nowacka, M.; Woźnicki, W. Theoretical and Electrochemical Study of the Mechanism of Anthraquinone-Mediated One-Electron Reduction of Oxygen: The Involvement of Adducts of Dioxygen Species to Anthraquinones. J. Chem. Soc. Perkin Trans. 2 1997, No. 2, 229–236. https://doi.org/10.1039/A605549D.
(21) Scovazzo, P.; Poshusta, J.; DuBois, D.; Koval, C.; Noble, R. Electrochemical Separation and Concentration of <1% Carbon Dioxide from Nitrogen. J. Electrochem. Soc. 2003, 150 (5), D91. https://doi.org/10.1149/1.1566962.
(22) The Exact Number Depends on the Solvent-Dependent Henry’s Constant for CO2. For Flue Gas (10% CO2), Log(KCO2) Must Be Greater than: 3.0 (DMF), 3.2 (DMSO), or 2.9 (CH3CN). For Atmospheric Concentration, Log(KCO2) Must Be Greater than: 5.5 (DMF, DMSO) or 5 .
(23) Voskian, S.; Hatton, T. A. Faradaic Electro-Swing Reactive Adsorption for CO2 Capture. Energy Environ. Sci. 2019, 12 (12), 3530–3547. https://doi.org/10.1039/C9EE02412C.
(24) Rochelle, G.; Chen, E.; Freeman, S.; Van Wagener, D.; Xu, Q.; Voice, A. Aqueous Piperazine as the New Standard for CO2 Capture Technology. Chem. Eng. J. 2011, 171 (3), 725–733. https://doi.org/https://doi.org/10.1016/j.cej.2011.02.011.
(25) Boot-Handford, M. E.; Abanades, J. C.; Anthony, E. J.; Blunt, M. J.; Brandani, S.; Mac Dowell, N.; Fernández, J. R.; Ferrari, M.-C.; Gross, R.; Hallett, J. P.; Haszeldine, R. S.; Heptonstall, P.; Lyngfelt, A.; Makuch, Z.; Mangano, E.; Porter, R. T. J.; Pourkashanian, M.; Rochelle, G. T.; Shah, N.; Yao, J. G.; Fennell, P. S. Carbon Capture and Storage Update. Energy Environ. Sci. 2014, 7 (1), 130–189. https://doi.org/10.1039/C3EE42350F.
(26) Liu, Y.; Ye, H.-Z.; Diederichsen, K. M.; Van Voorhis, T.; Hatton, T. A. Electrochemically Mediated Carbon Dioxide Separation with Quinone Chemistry in Salt-Concentrated Aqueous Media. Nat. Commun. 2020, 11 (1), 2278. https://doi.org/10.1038/s41467-020-16150-7.
(27) Gupta, N.; Linschitz, H. Hydrogen-Bonding and Protonation Effects in Electrochemistry of Quinones in Aprotic Solvents. J. Am. Chem. Soc. 1997, 119 (27), 6384–6391. https://doi.org/10.1021/ja970028j.
(28) Zhu, X.-Q.; Wang, C.-H.; Liang, H. Scales of Oxidation Potentials, PKa, and BDE of Various Hydroquinones and Catechols in DMSO. J. Org. Chem. 2010, 75 (21), 7240–7257. https://doi.org/10.1021/jo101455m.
(29) Zanello, P. Inorganic Electrochemistry: Theory, Practice and Application; The Royal Society of Chemistry: Cambridge, UK, 2003.
(30) Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Application, 2nd ed.; Swain, E., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2001.
(31) Schmidt, M. H.; Miskelly, G. M.; Lewis, N. S. Effects of Redox Potential, Steric Configuration, Solvent, and Alkali Metal Cations on the Binding of Carbon Dioxide to Cobalt(I) and Nickel(I) Macrocycles. J. Am. Chem. Soc. 1990, 112 (9), 3420–3426. https://doi.org/10.1021/ja00165a027.
(32) Benesi, H. A.; Hildebrand, J. H. A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons. J. Am. Chem. Soc. 1949, 71 (8), 2703–2707. https://doi.org/10.1021/ja01176a030.
(33) Kuntz, I. D.; Gasparro, F. P.; Johnston, M. D.; Taylor, R. P. Molecular Interactions and the Benesi-Hildebrand Equation. J. Am. Chem. Soc. 1968, 90 (18), 4778–4781. https://doi.org/10.1021/ja01020a004.
(34) Chemistry., I. U. of P. and A.; Data., C. on E.; Serjeant, E. P.; Dempsey, B.; Chemistry., I. U. of P. and A.; Data., C. on E. Ionisation Constants of Organic Acids in Aqueous Solution; Pergamon Press: Oxford; New York, 1979.
(35) Reeve, W.; Erikson, C. M.; Aluotto, P. F. A New Method for the Determination of the Relative Acidities of Alcohols in Alcoholic Solutions. The Nucleophilicities and Competitive Reactivities of Alkoxides and Phenoxides. Can. J. Chem. 1979, 57 (20), 2747–2754. https://doi.org/10.1139/v79-444.
(36) Takahashi, S.; Cohen, L. A.; Miller, H. K.; Peake, E. G. Calculation of the PKa Values of Alcohols from .Sigma. Constants and from the Carbonyl Frequencies of Their Esters. J. Org. Chem. 1971, 36 (9), 1205–1209. https://doi.org/10.1021/jo00808a010.
(37) Ballinger, P.; Long, F. A. Acid Ionization Constants of Alcohols. I. Trifluoroethanol in the Solvents H2O and D2O1. J. Am. Chem. Soc. 1959, 81 (5), 1050–1053. https://doi.org/10.1021/ja01514a010.
(38) Gutmann, V. Solvent Effects on the Reactivities of Organometallic Compounds. Coord. Chem. Rev. 1976, 18 (2), 225–255. https://doi.org/https://doi.org/10.1016/S0010-8545(00)82045-7.
(39) Clarke, L. E.; Leonard, M. E.; Hatton, T. A.; Brushett, F. R. Thermodynamic Modeling of CO2 Separation Systems with Soluble, Redox-Active Capture Species. ChemRxiv 2021. https://doi.org/10.33774/chemrxiv-2021-2dqk6.
(40) Rochelle, G. T. Amine Scrubbing for CO2 Capture. Science (80-. ). 2009, 325 (5948), 1652–1654. https://doi.org/10.1126/science.1176731.