1 Ho, L. & Crabtree, G. R. Chromatin remodelling during development. Nature 463, 474-484, doi:10.1038/nature08911 (2010).
2 Kadoch, C. et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet 45, 592-601, doi:10.1038/ng.2628 (2013).
3 Kadoch, C. & Crabtree, G. R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics. Sci Adv 1, e1500447, doi:10.1126/sciadv.1500447 (2015).
4 Ho, L. et al. An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network. Proc Natl Acad Sci U S A 106, 5187-5191, doi:10.1073/pnas.0812888106 (2009).
5 Ho, L. et al. An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc Natl Acad Sci U S A 106, 5181-5186, doi:10.1073/pnas.0812889106 (2009).
6 Yan, Z. et al. BAF250B-associated SWI/SNF chromatin-remodeling complex is required to maintain undifferentiated mouse embryonic stem cells. Stem Cells 26, 1155-1165, doi:10.1634/stemcells.2007-0846 (2008).
7 Singhal, N., Esch, D., Stehling, M. & Scholer, H. R. BRG1 Is Required to Maintain Pluripotency of Murine Embryonic Stem Cells. Biores Open Access 3, 1-8, doi:10.1089/biores.2013.0047 (2014).
8 Singhal, N. et al. Chromatin-Remodeling Components of the BAF Complex Facilitate Reprogramming. Cell 141, 943-955, doi:10.1016/j.cell.2010.04.037 (2010).
9 Han, D. et al. SRG3, a core component of mouse SWI/SNF complex, is essential for extra-embryonic vascular development. Dev Biol 315, 136-146, doi:10.1016/j.ydbio.2007.12.024 (2008).
10 Bultman, S. et al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol Cell 6, 1287-1295, doi:10.1016/s1097-2765(00)00127-1 (2000).
11 Tuoc, T. C. et al. Chromatin regulation by BAF170 controls cerebral cortical size and thickness. Dev Cell 25, 256-269, doi:10.1016/j.devcel.2013.04.005 (2013).
12 Wang, X. et al. Oncogenesis caused by loss of the SNF5 tumor suppressor is dependent on activity of BRG1, the ATPase of the SWI/SNF chromatin remodeling complex. Cancer Res 69, 8094-8101, doi:10.1158/0008-5472.CAN-09-0733 (2009).
13 Helming, K. C. et al. ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nat Med 20, 251-254, doi:10.1038/nm.3480 (2014).
14 Schick, S. et al. Systematic characterization of BAF mutations provides insights into intracomplex synthetic lethalities in human cancers. Nat Genet 51, 1399-1410, doi:10.1038/s41588-019-0477-9 (2019).
15 Narayanan, R. et al. Loss of BAF (mSWI/SNF) Complexes Causes Global Transcriptional and Chromatin State Changes in Forebrain Development. Cell Rep 13, 1842-1854, doi:10.1016/j.celrep.2015.10.046 (2015).
16 Wilson, B. G. et al. Residual complexes containing SMARCA2 (BRM) underlie the oncogenic drive of SMARCA4 (BRG1) mutation. Mol Cell Biol 34, 1136-1144, doi:10.1128/MCB.01372-13 (2014).
17 Helming, K. C., Wang, X. & Roberts, C. W. M. Vulnerabilities of mutant SWI/SNF complexes in cancer. Cancer Cell 26, 309-317, doi:10.1016/j.ccr.2014.07.018 (2014).
18 Greer, E. L. & Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13, 343-357, doi:10.1038/nrg3173 (2012).
19 Margueron, R. & Reinberg, D. Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 11, 285-296, doi:10.1038/nrg2752 (2010).
20 Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941-953, doi:10.1016/j.cell.2004.12.012 (2004).
21 Wang, J. et al. Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature 446, 882-887, doi:10.1038/nature05671 (2007).
22 Wang, J. et al. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 41, 125-129, doi:10.1038/ng.268 (2009).
23 Adamo, A. et al. LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells. Nat Cell Biol 13, 652-659, doi:10.1038/ncb2246 (2011).
24 Saleque, S., Kim, J., Rooke, H. M. & Orkin, S. H. Epigenetic regulation of hematopoietic differentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1. Mol Cell 27, 562-572, doi:10.1016/j.molcel.2007.06.039 (2007).
25 Zhang, C. et al. LSD1 demethylase and the methyl-binding protein PHF20L1 prevent SET7 methyltransferase-dependent proteolysis of the stem-cell protein SOX2. J Biol Chem 293, 3663-3674, doi:10.1074/jbc.RA117.000342 (2018).
26 Zhang, C. et al. Proteolysis of methylated SOX2 protein is regulated by L3MBTL3 and CRL4(DCAF5) ubiquitin ligase. J Biol Chem 294, 476-489, doi:10.1074/jbc.RA118.005336 (2019).
27 Christopher, M. A. et al. LSD1 protects against hippocampal and cortical neurodegeneration. Nat Commun 8, 805, doi:10.1038/s41467-017-00922-9 (2017).
28 Zhang, X., Wen, H. & Shi, X. Lysine methylation: beyond histones. Acta Biochim Biophys Sin (Shanghai) 44, 14-27, doi:10.1093/abbs/gmr100 (2012).
29 Abbas, E. et al. Conditional Loss of BAF (mSWI/SNF) Scaffolding Subunits Affects Specification and Proliferation of Oligodendrocyte Precursors in Developing Mouse Forebrain. Front Cell Dev Biol 9, 619538, doi:10.3389/fcell.2021.619538 (2021).
30 Kim, S. K. et al. SET7/9 methylation of the pluripotency factor LIN28A is a nucleolar localization mechanism that blocks let-7 biogenesis in human ESCs. Cell Stem Cell 15, 735-749, doi:10.1016/j.stem.2014.10.016 (2014).
31 Fu, L. et al. Set7 mediated Gli3 methylation plays a positive role in the activation of Sonic Hedgehog pathway in mammals. Elife 5, doi:10.7554/eLife.15690 (2016).
32 Lee, J. Y. et al. LSD1 demethylates HIF1alpha to inhibit hydroxylation and ubiquitin-mediated degradation in tumor angiogenesis. Oncogene 36, 5512-5521, doi:10.1038/onc.2017.158 (2017).
33 Nishioka, K. et al. Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev 16, 479-489, doi:10.1101/gad.967202 (2002).
34 Wang, H. et al. Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol Cell 8, 1207-1217, doi:10.1016/s1097-2765(01)00405-1 (2001).
35 Fang, L. et al. A methylation-phosphorylation switch determines Sox2 stability and function in ESC maintenance or differentiation. Mol Cell 55, 537-551, doi:10.1016/j.molcel.2014.06.018 (2014).
36 Calnan, D. R. et al. Methylation by Set9 modulates FoxO3 stability and transcriptional activity. Aging (Albany NY) 4, 462-479, doi:10.18632/aging.100471 (2012).
37 Kontaki, H. & Talianidis, I. Lysine methylation regulates E2F1-induced cell death. Mol Cell 39, 152-160, doi:10.1016/j.molcel.2010.06.006 (2010).
38 Yang, J. et al. Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes. Proc Natl Acad Sci U S A 107, 21499-21504, doi:10.1073/pnas.1016147107 (2010).
39 Yang, X. D. et al. Negative regulation of NF-kappaB action by Set9-mediated lysine methylation of the RelA subunit. EMBO J 28, 1055-1066, doi:10.1038/emboj.2009.55 (2009).
40 Esteve, P. O. et al. Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proc Natl Acad Sci U S A 106, 5076-5081, doi:10.1073/pnas.0810362106 (2009).
41 Leng, F. et al. Methylated DNMT1 and E2F1 are targeted for proteolysis by L3MBTL3 and CRL4(DCAF5) ubiquitin ligase. Nat Commun 9, 1641, doi:10.1038/s41467-018-04019-9 (2018).
42 Tronche, F. et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet 23, 99-103, doi:10.1038/12703 (1999).
43 Mashtalir, N. et al. Modular Organization and Assembly of SWI/SNF Family Chromatin Remodeling Complexes. Cell 175, 1272-1288 e1220, doi:10.1016/j.cell.2018.09.032 (2018).
44 Chen, J. & Archer, T. K. Regulating SWI/SNF subunit levels via protein-protein interactions and proteasomal degradation: BAF155 and BAF170 limit expression of BAF57. Mol Cell Biol 25, 9016-9027, doi:10.1128/MCB.25.20.9016-9027.2005 (2005).
45 Sohn, D. H. et al. SRG3 interacts directly with the major components of the SWI/SNF chromatin remodeling complex and protects them from proteasomal degradation. J Biol Chem 282, 10614-10624, doi:10.1074/jbc.M610563200 (2007).
46 Hayashi, S. & McMahon, A. P. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol 244, 305-318, doi:10.1006/dbio.2002.0597 (2002).
47 Bonasio, R., Lecona, E. & Reinberg, D. MBT domain proteins in development and disease. Semin Cell Dev Biol 21, 221-230, doi:10.1016/j.semcdb.2009.09.010 (2010).
48 Wei, D. et al. SNF5/INI1 deficiency redefines chromatin remodeling complex composition during tumor development. Mol Cancer Res 12, 1574-1585, doi:10.1158/1541-7786.MCR-14-0005 (2014).
49 Petroski, M. D. Mechanism-based neddylation inhibitor. Chem Biol 17, 6-8, doi:10.1016/j.chembiol.2010.01.002 (2010).
50 Northcott, P. A. et al. Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nat Genet 41, 465-472, doi:10.1038/ng.336 (2009).
51 Kar, S. P. et al. Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types. Cancer discovery 6, 1052-1067, doi:10.1158/2159-8290.CD-15-1227 (2016).
52 Andlauer, T. F. et al. Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation. Science advances 2, e1501678, doi:10.1126/sciadv.1501678 (2016).
53 Lotta, L. A. et al. Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nat Genet 49, 17-26, doi:10.1038/ng.3714 (2017).
54 Arai, S. & Miyazaki, T. Impaired maturation of myeloid progenitors in mice lacking novel Polycomb group protein MBT-1. EMBO J 24, 1863-1873, doi:10.1038/sj.emboj.7600654 (2005).
55 Fay, D. S. & Gerow, K. A biologist's guide to statistical thinking and analysis. WormBook : the online review of C. elegans biology, 1-54, doi:10.1895/wormbook.1.159.1 (2013).