The intermittency of solar thermal energy warrants the integration/utilization of thermal energy storage system for efficient operation. Effective utilization of solar water heating (SWH) system can reduce nearly 70 - 90 % of the energy cost incurred for water heating applications. In this study, a compound parabolic concentrator (CPC) solar collector is paired with thermal energy storage (TES) system for the improvement of thermal performance of the collector through enhanced heat transfer rate and minimizing the heat losses. Effects of varying mass flow rate and different arrangement of phase change materials (PCMs) on the performance of the CPC solar collector are investigated. A study of the influence of PCMs configurations in TES systems viz three PCMs (Case 1) and five PCMs (Case 2) on the energy efficiency, exergy efficiency and overall loss coefficient of the solar collector and TES system is made and compared with sensible TES system. The results show the attainment of maximum thermal efficiency of 70 % for ‘Case 2’. Comparison with ‘Case 1’, ‘Case 2’ exhibited a reduction heat loss of 4 % from the TES system. Results of exergy study reveal a superior performance in Case 2 over other configurations.