
Flow-Based Intrusion Detection on Software-De�ned
Networks: A Multivariate Time Series Anomaly
Detection Approach
Sultan ZAVRAK ( sultanzavrak@duzce.edu.tr)

Duzce University: Duzce Universitesi https://orcid.org/0000-0001-6950-8927
Murat İske�yeli

Sakarya University: Sakarya Universitesi

Research Article

Keywords: Intrusion detection, anomaly detection, deep learning, semi-supervised learning, software-
de�ned networks, time series anomaly detection

Posted Date: May 16th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1141416/v3

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-1141416/v3
mailto:sultanzavrak@duzce.edu.tr
https://orcid.org/0000-0001-6950-8927
https://doi.org/10.21203/rs.3.rs-1141416/v3
https://creativecommons.org/licenses/by/4.0/

FLOW-BASED INTRUSION DETECTION ON SOFTWARE-DEFINED NETWORKS:
A MULTIVARIATE TIME SERIES ANOMALY DETECTION APPROACH

Sultan ZAVRAK1 and Murat ISKEFIYELI2

Sultan ZAVRAK

1Department of Computer Engineering, Duzce University, Duzce/TURKEY

sultanzavrak@duzce.edu.tr

Murat ISKEFIYELI
2Department of Computer Engineering, Sakarya University, Sakarya/TURKEY

miskef@sakarya.edu.tr

*Corresponding Author:

Sultan ZAVRAK

Department of Computer Engineering,
Faculty of Engineering, Duzce University, 81620, Duzce / TURKEY

Phone: +90 (380) 542 1036

E-mail: sultanzavrak@duzce.edu.tr

mailto:sultanzavrak@duzce.edu.tr
mailto:miskef@sakarya.edu.tr
mailto:sultanzavrak@duzce.edu.tr

FLOW-BASED INTRUSION DETECTION ON SOFTWARE-DEFINED NETWORKS:
A MULTIVARIATE TIME SERIES ANOMALY DETECTION APPROACH

Sultan Zavrak1 and Murat Iskefiyeli2

1 Department of Computer Engineering, Duzce University, Duzce, Turkey

2 Department of Computer Engineering, Sakarya University, Sakarya, Turkey

Abstract

In this study, the SAnDet architecture, which can do anomaly-based intrusion detection by taking advantage of the
capabilities offered by the SDN architecture, is presented and implemented as a controller application. A detailed
description of this system which consists of three main modules which are statistics collector, anomaly detector,
and anomaly prevention is given. More specifically, Replicator Neural Networks (RNN) which is a special variant
of the autoencoder, and the EncDecAD method which is a special type of LSTM network that can produce
successful results, especially in given data series, are used to identify unknown attacks using flow features
collected from OpenFlow switches. In experiments, flow-based features extracted from network traffic data
including different types of attacks, are given as input into models as time series. The results of the methods are
calculated using the ROC and AUC metrics. Experimental results show that EncDecAD outperforms RNN.
Moreover, it is demonstrated that this study has several benefits over previously conducted research.

Keywords: Intrusion detection, anomaly detection, deep learning, semi-supervised learning, software-defined
networks, time series anomaly detection

1. Introduction

Cyber-attacks are a set of malicious activities that hinder, obstruct, or destroy information and services that exist

on computer networks. Intrusion Detection and Prevention Systems (IDPS) are the mechanisms that perform the

functions of detecting and mitigating or preventing these attacks at the network level. The fundamental principle

of attack detection is based on the hypothesis that unauthorized behaviors are prominently distinct from normal

ones and thus they are detectable. In addition to the many attack detection approaches in the literature,

researchers are now focusing more on anomaly-based network intrusion detection methods, since they can

identify unknown attacks as well as known attacks [1].

Software-Defined Networking (SDN) is an innovative network paradigm that promises to transform the

limitations of currently used traditional network infrastructure [2]. This paradigm takes the control logic of the

network from forwarding devices such as routers and switches and places it on the logically centralized

controller [3]. From a network security perspective, SDN defines a single control point for forwarding data flows

across the entire network infrastructure. By preparing a high-level reactive security monitoring, analysis, and

response system, SDN architecture can be utilized to increase network security. [4], [5]. With network security

applications implemented with the OpenFlow (OF) protocol, which is an implemented version of the SDN

paradigm, it is also possible to implement flows that can handle complex logic rather than simply allow or block

[6].

Network traffic analysis or anomaly detection methods frequently generate security-related data transmitted to

the central controller. On the controller, applications can be run to analyze and associate the feedback gathered

across the entire network. New or updated security policies can be deployed to network components in the form

of flow rules based on the results of the analysis. This unified approach can effectively accelerate and protect

against security threats to the network [4]. As OF security applications, intrusion detection and intrusion

prevention or mitigation methods can be implemented.

The main contributions of the study are summarized as follows:

• This study focuses on the detection of network attacks from flow-based features based on an anomaly-

based approach to SDN environments. More specifically, the SAnDet (a shorthand for SDN Anomaly

Detector) architecture, which is designed to detect intrusions by taking advantage of the facilities

offered by the SDN architecture, is presented and implemented as a controller application. A detailed

description of SAnDet consisting of three main modules which are statistics collector, anomaly

detector, and anomaly prevention is given.

• The anomaly detectors RNN and EncDecAD are built using a semi-supervised learning approach. In

addition, unlike the other studies, this one is unique in that it uses deep learning techniques to detect

intrusions by feeding flow-based data as a multivariate time series.

• Based on AUC and accuracy findings, it is proved that EncDecAD-based anomaly detection

outperforms RNN. Furthermore, this study has been shown to have several advantages over previous

research.

The following is a breakdown of how the article is structured. The previous works on flow-based attack

detection in SDN environments are discussed in the next section. The third section contains theoretical

information regarding the research methodologies. The fourth section contains the experimental methods and

results. The final section explains the results.

2. Related work

The goal of the anomaly detection technique is to create a statistical model that can be used to characterize

typical traffic patterns. [7]. In such a situation, any deviation from this pattern is counted as an anomaly and

identified as an attack. There have been several studies that have investigated the effectiveness of anomaly-based

attack detection in SDN environments. In this section, a summary of the studies in the literature is given in five

categories, taking into account the taxonomy done by Jafarian et al. [7], flow-count-based schemes, information

theory-based schemes, entropy-based schemes, deep learning-based schemes, and hybrid schemas. A more in-

depth look at studies on anomaly-based intrusion detection on SDN networks can be found in [8] and [7].

Traffic flows in the network are initially obtained and aggregated according to a subnet prefix in flow counting-

based anomaly detection methods. Although this process brings extra load to the system, it accurately detects

abnormal conditions in the network [7]. Zhang et al. [9] suggested a prediction-based scheme that dynamically

alters the level of detail of the measurement across both spatial and temporal dimensions to better balance

surveillance overhead and anomaly detection accuracy to detect anomalies. Ha et al. [10] provide a traffic

sampling strategy for an intrusion detection system capable of operating on large-scale SDN networks that

maximize the usage of malicious traffic's control capacity while keeping the sampled traffic's overall aggregation

volume below the control computing capacity. Granby et al. [11] designed SDNPANDA, a plug-in software

package to identify anomalies in a software-defined data center. In DoS attacks, Hommes et al. [12] investigate

the flow table saturation problem of OF switches. Attack events are determined in the study by assessing the

variation in the network's logical topology for various attack kinds and measuring the distance requirements on a

table. Using traffic analysis of packet flows, Carvalho et al. [13] demonstrate a real-time anomaly detection and

prevention system in SDN. The digital signature of flows acquired using the OF protocol is created by profiling

normal traffic behavior. Existing traffic is compared to a previously developed traffic profile to identify any

suspicious traffic events that deviate from expected behavior. As a result, reporting is done to verify prevention

and results in the event of an attack. He et al. [14] present an anomaly detection scheme in SDN by selecting the

required features of the data set and using a density peak-based clustering algorithm. Carvalho et al. [15] present

an ecosystem based on SDN to proactively identify anomalies by scanning network traffic. Peng et al. [16]

propose a preprocessing module that normalizes flow property vectors to detect DDoS attacks in SDN based on

central control, as well as a scheme that processes these vectors and detects anomalies using the KNN method.

Information theory methods are based on the assumption that an existing anomaly in traffic causes a change in

the information of traffic data sets. Mehdi et al. [17] focus on traffic anomaly detection in SDN environments.

Multiple anomaly detection algorithms in SOHO environments have been experimentally tested to verify their

applicability. The study provides experimental results on the efficiency of TRW-CB [18], Rate-Limiting [19],

Maximum Entropy Detector [20], and NETAD [21] intrusion detection algorithms using only low network

traffic speeds. Dotcenko et al. [6] proposed a method that uses fuzzy logic as well as a mechanism for analyzing

network traffic to classify network traffic into attack traffic and normal traffic. Kokila et al. [22] conducted a

study examining different machine learning techniques for identifying DDoS attacks in SDN environments and

their performance in intrusion detection. In SDN networks, Sathya and Thangarajan [23] investigate gathering

data and applying the Decision Tree approach for anomaly detection using the NSL-KDD data set rather than the

intended properties of the network traffic.

In determining the randomness of a data set, entropy-based anomaly detection algorithms have proven to be

particularly beneficial in spotting network anomalies [7], [24]. Wang et al. [25] proposed a method that could be

applied to low-layer switches of SDNs such as OpenvSwitch to detect low-throughput DDoS flooding attacks

based on the entropy level. On the other hand, Giotis et al. [26] offer a scalable and effective mechanism for

anomaly detection and mitigation in SDN architectures. Unlike the study in [17], this study offers a mechanism

that uses sFlow [27] monitoring data instead of OF statistics, which reduces the controller process load and

therefore works at higher line speeds, and gives their experimental results. Besides, when an anomaly is

detected, it is shown that the network anomaly is successfully reduced (mitigation) by making modifications in

the flow tables using the OF protocol. Also, when the sampled statistical data are given as an input to the

anomaly detection algorithm, it is seen that the anomaly detection rate is lower than [17]. Francois and Festor

[28] capture the flow inputs of each device by the SDN controller, such as switches for anomaly detection in

SDN. After the attack has been identified and the characteristics of the attack packets have been discovered,

surveillance will be undertaken on the switch where the attack has been detected, depending on the advantages

offered by the controller.

Deep learning methods include a knowledge-based learning-based development algorithm, and the keywords for

deep learning are unsupervised machine learning, multi-layer learning, and artificial intelligence [29][7]. Instead,

the deep learning structure has a solid capability for adaptability in SDNs in terms of its features and the ability

to learn process data on its own [30]. Dey and Rahman [30] propose a network breach detection system based on

deep learning for SDN environments. They used the ANOVA F-Test and the REF feature selection scheme to

show that the Gated Recurrent Unit LSTM is the best classifier based on several performance assessment

metrics. Three components are proposed by Niyaz et al. [31] for a DDoS detection system for SDN

environments. A deep learning method is used in the proposed system for feature selection and traffic regulation.

A deep learning-based solution for flow-based anomaly identification in SDN is proposed by Tang et al. [32]. To

detect suspicious flows in SDN, Garg et al. [33] suggest an anomaly detection method based on a hybrid and

real-time constrained Boltzmann machine and gradient decay-based SVM. For SDN-based 5G networks, Li et al.

[34] propose an intelligent hybrid IDS. In the suggested system, the k-means algorithm was used for flow

classification in addition to the random forest method for feature selection.

In addition to all the aforementioned methods, hybrid schemes have been proposed in the literature for anomaly-

based violation detection in SDN networks. For SDN, Santos Da Silvo et al. [35] propose an anomaly detection

and traffic classification based on machine learning techniques. Anomaly detection and classification is the

lightweight phase based on entropy analysis with low computational cost to instantly detect possibly malicious

flows, and heavyweight using SVM (Support Vector Machine) to categorize such flows according to their

abnormal behavior.) is carried out in two complementary stages, one stage. Pang et al. [36] propose a new high

throughput and highly accurate anomaly detection scheme FADE in SDN. FADE generates a few custom flow

rules on these flows to precisely measure its statistics and commands the loading and timeout of these reserved

flow rules. Cui et al. [37] propose a scheme that includes four modules in SDN to overcome DDoS: attack

detection trigger, attack detection, traceback, and attack prevention. In the study conducted by Braga et al. [38],

the forwarding plane of the network device is managed using OF, and the flow statistics are collected, focusing

only on Distributed Denial of Service (DDoS) attacks on the data plane, and the performance analysis presented

is restricted to the suggested attack detection method and does not include information with entire performance

of the system. The method used in the detection of attacks is Self Organizing Maps (SOM), a type of

unsupervised artificial neural network. The parameters input to this method are traffic flow statistics.

3. Theoretical Background

This section focuses on the fundamental components of the software-defined networking (SDN) architecture and

how it addresses the issues that are present in traditional networks. In addition to that, theoretical details concerning

the RNN and EncDecAD anomaly detection methods are also presented.

3.1. Software-Defined Networking

As stated by the Open Networking Foundation (ONF) [39], SDN is a new architecture that separates network

forwarding and control tasks. This allows network control to be directly programmable and the architecture for

network services and applications to be conceptualized. Infrastructure devices operate as simple forwarding

engines in this architecture, dealing with incoming packets according to several rules that are instantaneously

produced by a controller in the control layer along with the pre-described program logic. The controller typically

executes on a distant machine and communicates with the forwarding elements over a secure link utilizing a few

standardized commands. For SDN, ONF offers a high-level architecture [40] that is divided vertically into three

main essential layers: i) Infrastructure Layer consists of forwarding elements, which include physical and virtual

switches that can be accessed with an open interface. ii) The Control Layer is composed of a collection of

software-based SDN controllers that provide unified control capabilities via open APIs for handling forwarding

behavior. Controllers can communicate with one another via three communication interfaces: Southbound,

Northbound, and East/Westbound. iii) The Application Layer mainly comprises end-user apps that make use of

SDN communication and network services. The main parts of this architecture such as the control layer,

application layer, infrastructure layer, and communication interfaces between these three layers are shown in

detail in Figure 1.

Figure 1. SDN architecture [41]

Through three open interfaces, the SDN controller communicates with these three layers: a) The southbound

interface enables the communication between the controller and the forwarding components of the infrastructure

layer. The OF protocol, which is managed by ONF, is an essential element for generating SDN solutions

according to ONF and can be seen as an encouraging implementation of such an interaction. b) The northbound

interface enables the controllers to be programmable by exposing the controllers' universal network abstraction

and other features for usage by programs at the application layer. Rather than a protocol, it is viewed as a

software API that enables the programming and management of the network. While there is no standardization

effort for this, many brands offer REST-based APIs for applications to use to provide a programming interface to

their controllers. c) East / Westbound interface, considered a communication interface, is not backed by a

recognized standard yet. This is primarily intended to allow inter-controller communication to synchronize the

situation for high availability.

Forwarding elements (usually switches) are required to verify a southbound API to be useful in SDN

architecture. OF switches come in two types: Software-based (eg Open vSwitch) and hardware-based

implementations. Software switches are generally well designed and contain all the features. However, even the

latest implementations suffer from being slow. Hardware-based OF switches are usually implemented as ASICs.

Although they offer line speed forwarding for a large number of ports, unlike software implementations, they

lack flexibility and feature completeness.

The OF-enabled switch can be divided into three main elements [42]. These elements are data path, control path,

and OF protocol: a) The data path contains one or more group tables flow tables that search and forward packets.

A flow table consists of flow entries associated with actions that tell the switch how to handle the flow. Flow

tables are often created by the controller and enable the controller to explain alternative methods of transferring

flows. b) A control path is a channel that connects the switch to the controller in programming terms. The OF

protocol is used to substitute commands and packets across this channel. c) The OF protocol is responsible for

interconnecting switches and controllers. It may include information about messages exchanged, packets sent

and received, statistics collecting, and actions to be executed in certain flows.

A flow table entry consisting of several fields in an OF-enabled switch can be organized as follows:

a. Matching Fields are used to identify network packets based on their 15-tuple packet header, ingress

port, and optional packet metadata. In Figure 2, packet header fields arranged in accordance with OSI

L1-4 layers are shown.

b. The priority of flow entry gives precedence to the matching order of the flow entry.

c. The action set shows the specific actions to be executed on the packets when the title matches.

d. Counters are used to keep track of traffic statistics. (The total quantity of bytes and packets in each

flow, as well as the time at which the final packet matches the flow).

e. Timeouts define the maximum amount of time or idle time before the switch overrides the flow.

Ingress

Port

Metadata Ethernet

Src.

Ethernet

Dest.

Ethernet

Type

VLAN

ID

VLAN

Priority

MPLS

Label

MPLS

Traffic

Class

L1

 L2

L2.5

IP

Src.

IP

Dest.

IP

Proto.

IP

TOS Field

Transport

Src. Port

Transport

Dest. Port

L3

L4

Figure 2. Flow Identification in OF [41]

OF messages can be grouped into three main categories [41]. There are three types of connections: controller-to-

switch, asynchronous, and symmetric. Controller-to-switch messages are those initiated by the controller and

used to monitor the state of the switches. A switch can initiate asynchronous messages to notify the controller of

network events and to modify the switch’s state. Finally, symmetric messages are generated automatically by the

switch or controller. As soon as an ingress packet arrives at the OF switch, pipeline processing does a scan of the

flow tables. The entry into the flow table is determined by matching fields and priority. If the values in the

packet correspond to the values in the entry’s fields, the packet corresponds to the incoming flow table entry.

Any (wildcard field or no field) value in a flow table input field matches all possible values in the header. Only

the most critical flow entry should be chosen. If several flow inputs match with the same priority, the chosen

flow input is indefinite. To address such a situation, the OF specification offers an optional mechanism that

allows for validating whether the new flow input matches the present input. In this way, a packet can be

precisely matched to a flow with wildcard fields (macro flow), matched to a flow (micro flow), or not matched to

any flow. If the match is located, some actions defined in the match flow table entry are performed. If there is no

match, the switch passes the packet (or only the header) to the controller for decision. After checking the related

policy in the management plane, the controller responds to the switch to add new entries to the switch’s flow

table. The switch uses the last input to control both the queued packet and subsequent packets in the same flow.

The controller stands at the heart of SDN networks, connecting applications, and network devices. The SDN

controller is responsible for managing all network flows by loading flow entries into switch devices. There are

two distinct forms of flow configuration: proactive and reactive. Proactive settings preload flow rules into flow

tables. Thus, the flow configuration procedure is completed before the first packet of a flow reaches the OF

switch. The primary advantage of a proactive setup is that it reduces the frequency with which the controller is

contacted, resulting in a minor installation delay. However, it has the potential to overload switch flow tables. In

the reactive setup mode, the controller adds a flow rule to the flow table only when there is no input, which

occurs when the first packet of a flow arrives at the OF switch. As a result, communication between the

controller and the switch is initiated by a single packet. After a specified period of inactivity, these flow entries

are overridden and erased from the table. To respond to the flow setup request, the controller first evaluates the

flow to the application’s policies and then determines the necessary steps to execute. Following that, it

determines a route for this flow and loads new flow entries, including launching requests to each switch along

that path.

Transferring information between switches and controllers provides an overview of switch traffic. There are two

ways for the switch to provide statistics to the controller. There are two types of flow monitoring: pull-based and

push-based. The controller accumulates counters for numerous flows that fit a specified flow specification in the

pull-based approach. This technique can optionally generate a report that includes all flows that match a wildcard

specification. While this minimizes switch-to-controller traffic, it makes the controller ineffective at learning

about the actions of other flows. The pull-based strategy necessitates an improvement in the latency between

controller requests, as this can impair the scalability and reliability functions based on statistics collecting. In the

push-based approach, statistics are delivered to the controller of each switch to alert it of certain occurrences,

such as the creation of a new flow, a timeout, or the deletion of a table entry due to inactivity. Before the input

timeout, this procedure does not notify the controller about the flow’s behavior (which indicates that it is

unsuitable for scheduling).

3.2. Anomaly Detection

3.2.1. Replicator Neural Network-based anomaly detection

RNNs are neural networks and are specific examples of autoencoders [43] originally proposed as a compression

technique [44]. The first study to suggest its use as an anomaly detection technique is recommended by Hawkins

et al. [45]. Typically, input vectors in multilayer neural networks are mapped to the target output vectors.

However, RNN also uses input vectors for output vectors. In other words, the input values in the output are

reproduced by RNN. The RNN’s weights are chosen in such a way that the mean squared error is as small as

possible. As a result, while standard models are more probable to be successfully replicated by the trained RNN,

models characterizing outliers are less accurately represented and have a greater error. Data exclusion is

quantified using reconstruction error.

Figure 3. An example diagram of RNN [46]

Cordero et al. propose an approach that uses RNN to identify anomalies in network flows [46]. In this method,

an RNN [45] is used primarily to create a model that represents the normal network flow. While it has been

demonstrated that the original RNN may be lowered to three layers [47], using the original five layers with the

dropout regularization technique [48] produces superior results and avoids overfitting.

Each layer in an RNN is completely connected to every other layer. The activation function of layers 2 and 4 is a

nonlinear hyperbolic tangent. The output layer’s activation function is linear or identical. The sole distinction

between the original RNN and the one used in [46] is in the middle layer’s activation function (Layer 3). The

original RNN makes use of a stepwise activation function that, in theory, aims to reduce the dimensionality of

input data by clustering data samples [45]. While the stepwise activation function possesses intriguing theoretical

properties, backpropagation approaches based on gradient reduction do not work adequately with it [46].

Because the gradient components of progressive functions are nearly zero, the learning process stalls. Instead of

this activation function, it employs the sigmoid activation function, which has been shown to be effective as an

intermediate activation function for RNNs [49].

The features extracted from different network flows are used to build RNN models. Depending on the tools used,

many different features can be extracted from the network for training. The number of selected features is

proportional to the number of input neurons. At each training stage, the RNN is fed the extracted flow features as

an input. A validation set is used to ascertain the degree to which the learning process is capable of

generalization. After training, the RNN can be used as a normal model for the purpose of calculating anomaly

scores (ASs). ASs that exceed a predetermined threshold are considered abnormal.

Let 𝒳 = {𝐱1, 𝐱2 , … , 𝐱𝑁} represent the set of all N training samples where 𝐱 = {𝑥1, 𝑥2 , … , 𝑥𝐷} is a flow with 𝐷

features and the function 𝑓(𝐱) = 𝐱̂ + 𝜖 correspond to the output of an RNN. The reconstruction of 𝐱 is

represented with the vector 𝐱̂, and the vector 𝜖 = {𝜖1, 𝜖2, … , 𝜖𝐷} is the error elements of the reconstruction. The

weights of the neural network are updated by employing backpropagation with particular gradient descent

techniques such as Stochastic Gradient Descent (SGD). In the learning process, the loss function being

minimized is formulated in Eq 1.

 𝐋 = 1𝑁 ∑  𝑁𝑖=1 (𝐱𝑖 − (𝐱̂𝑖 + 𝜖𝑖))2
 (1)

The network aims to achieve a combination of weights such that 𝐱̂ ≈ 𝐱 and 𝜖 ≈ 0 since the purpose of

backpropagation with gradient descent is to minimize 𝑳. The noise is added throughout the network by randomly

detaching units in each learning iteration with the dropout method [48] to evade learning the trivial identity

solution 𝑓(𝐱) = 𝐱. The residual value 𝜖 = 𝐱 − 𝐱̂ is employed to calculate the AS, which determines how

anomalous a set of features is. The AS of the set of flow features 𝐱 is defined in Eq. 2.

 𝐴𝑆(𝐱) = 1𝐷 ∑  𝐷𝑖=1 (𝑥𝑖 − 𝑥̂𝑖)2 = 1𝐷 ∑  𝐷𝑖=1 (𝜖𝑖)2 (2)

To determine whether the network flow 𝐱 is an anomaly or not, a threshold is selected to decide if the AS is too

high for a flow to be counted as normal. The threshold is assigned to the highest reconstruction error 𝐸 found

during training after the elimination of the outliers.

3.2.2. LSTM based encoder-decoder for anomaly detection

LSTM networks [50] are recurrent models used for a variety of learning tasks such as handwriting recognition,

speech recognition, and emotion analysis. To map an input sequence to a vector representation of constant

dimensionality, an LSTM-based encoder is used. The decoder is another LSTM network that generates the

desired sequence using this vector representation.

Malhotra et al. [51] suggest an LSTM-based Encoder-Decoder (EncDecAD) scheme for time series anomaly

detection. In this architecture, the encoder generates a vector representation of the input time series, which the

decoder uses to reproduce it. The EncDecAD is trained to recreate samples of “normal” time series using the

input time series as the output. Following that, the reconstruction error is used to determine the probability of an

anomaly occurring at that location. It is demonstrated that using an encoder-decoder model trained on solely

normal sequences, anomalies in multivariate time series may be detected. According to this theory, the encoder-

decoder has only seen and understood normal examples of the training data during the training phase. Given an

abnormal sequence, the trained model fails to reproduce it well by resulting in higher reconstruction errors in

contrast with normal sequence reconstruction errors.

Figure 4. LSTM Encoder-Decoder inference steps

The definition of the EncDecAD approach is mathematically expressed as follows. Given a time series 𝑋 ={x(1), x(2), … , x(𝐿)} of length 𝐿, where each point 𝐱(𝑖) ∈ 𝑅𝑚 is an 𝑚-dimensional vector of readings for 𝑚

variables at a time 𝑡𝑖 . The case is explored where such time series are available or can be acquired by selecting a

window of length 𝐿 over a longer time series. To recreate the normal time series, the EncDecAD model is

trained. Following that, the reconstruction errors are used to determine the likelihood of a point in a test time

series being anomalous to produce an anomaly score 𝑎(𝑖) for each point 𝐱(𝑖). A greater score for anomaly

indicates that the point is more likely to be abnormal.

To reconstruct examples of normal time series, an LSTM encoder-decoder is trained. The LSTM encoder

approximates the input time series with a fixed-length vector representation. Using the current hidden state and

the value calculated by the LSTM decoder at the previous time step, this representation is used to reconstruct the

time series.

The input 𝐱(𝑖) is used to achieve the state 𝐡𝐷(𝑖−1)
 and thenceforth 𝐱′(𝑖−1) corresponding to target 𝐱(𝑖−1) is

predicted by the decoder in the training phase. The decoder uses the predicted value 𝐱′(𝑖) as input, and then

predicts 𝐱′(𝑖−1) in the inference phase. Given a set of normal training sequences as 𝑠𝑁, the objective of the model

training is to minimize the function ∑  𝑋∈𝑠𝑁 ∑  𝐿𝑖=1 ∥∥x(𝑖) − x′(𝑖)∥∥2
. To achieve the encoder’s hidden state 𝐡𝐸(𝑖)

 at the

time 𝑡𝑖 , the value 𝐱(𝑖) at the time 𝑡𝑖 and the encoder’s hidden state 𝐡𝐸(𝑖−1)
 at the time 𝑡𝑖 − 1 are used. The

prediction 𝐱′(𝑖) and 𝐡𝐷(𝑖)
 is used to achieve the next hidden state 𝐡𝐷(𝑖−1)

 by the decoder.

The normal time series is subdivided into four groups as 𝑠𝑁 , 𝑣𝑁1, 𝑣𝑁2 and 𝑡𝑁. Additionally, the anomalous time

series are divided into two groups as 𝑣𝐴 and𝑡𝐴. The LSTM encoder-decoder reconstruction model is developed

using the set of sequences 𝑠𝑁. When the encoder-decoder model is being trained, the set 𝑣𝑁1 is used for early

stopping. The formula of 𝐞(𝑖) =∣ 𝐱(𝑖) − 𝐱′(𝑖) ∣ is used to calculate the reconstruction error vector for 𝑡𝑖 . The

parameters 𝝁 and Σ of a normal distribution 𝒩(𝜇, Σ) are estimated by using the error vectors for the points in the

sequences in the set 𝑣𝑁1 with maximum likelihood estimation. After that, the anomaly score is calculated by 𝑎(𝑖) = (𝐞(𝑖) − 𝝁)𝑇𝚺−1(𝐞(𝑖) − 𝝁) for any point 𝐱(𝑖). In a supervised approach, if 𝑎(𝑖) is greater than threshold 𝜏, a

point in a sequence can be expected to be “anomalous”, otherwise “normal”. If sufficient anomalous sequences

are present, a threshold 𝜏 over the probability values is learned to optimize 𝐹𝛽 = (1 + 𝛽2) × 𝑃 × 𝑅/(𝛽2𝑃 + 𝑅),

where 𝑅 is recall and 𝑃 is precision. Here, “normal” refers to the negative class, while “anomalous” refers to the

positive class. If a window contains an anomalous pattern, the entire window is marked as “anomalous.” This

method is particularly advantageous in a variety of practical applications where the precise location of the

anomaly is unknown. On the validation sequences in 𝑣𝑁2, and 𝑣𝐴, the parameters 𝜏 and 𝑐 are determined with

maximum 𝐹𝛽.

3.3. Evaluation Metrics

The proposed approach should be validated using a relevant metric. The binary classification results can be

classified into four categories [52]: 1) True Positive (TP): Positive instances have been classified accurately; 2)

False Negative (FN): Positive instances have been classified incorrectly; 3) False Positive (FP): Negative

instances have been classified incorrectly; 4) True Negative (TN): Negative instances have been classified

incorrectly. Furthermore, additional metrics can be determined by starting with the prior ones [53]:

Accuracy: This metric is expressed as the proportion of correct predictions to total instances:

Accuracy = (TP+TN)/(TP + TN + FP + FN) (3)

True Positive Rate (TPR): This metric is equivalent to the proportion of all “correctly identified instances” to all

“examples that should be identified”.

 𝑇𝑃𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (4)

False Positive Rate (FPR): This metric denotes the proportion of the “number of misclassified negative

instances” to the “total number of negative instances”.

 𝐹𝑃𝑅 = 𝐹𝑃/ (𝐹𝑃 + 𝑇𝑁) (5)

Receiver Operating Characteristics (ROC): In the case of a class imbalance problem in the dataset, the ROC

curve [54][55] is being used as a normal criterion for testing classifiers [56]. When faced with an issue of class

imbalance, the area under the receiver operating characteristic curve (AUC) metric is frequently utilized as a de

facto criterion for evaluating the effectiveness of classifiers. After sorting by classification probabilities, the

AUC can be used to determine how frequently a random instance of a positive class ranks higher than an

instance of a negative class.

4. Anomaly-based intrusion detection system for SDN

Some principles should be taken into consideration in SAnDet (SDN Anomaly Detector), which is designed to

work in SDN environments and can actively use the opportunities offered by this architecture. In the design of

SAnDet, the key principles given in the following were considered taking into account the potentials offered by

OF in addition to a few principles determined by Giotis et al. [26]:

a. Separating data collection, anomaly detection, and prevention (mitigation) with a modular design.

b. Compatibility with OF-enabled Layer 2 and Layer 3 devices.

c. Fast anomaly detection and prevention (mitigation) in real-time environments using separate data and

control planes.

d. Utilizing OF’s capabilities for gathering statistics and mitigating attacks.

The proposed approach is based on a set of 12-tuple flow definitions associated with four specific variables,

usually included as a flow entry in the OF switch. These variables are; i) action rule specifying how to forward

when any packet matches its associated flow entry, ii) a soft timeout variable in place of the flow being

invalidated after the final packet match, iii) the quantity of packets matching that flow since the flow input

processing, iv) in the event of a packet match conflict, a specific priority is delegated to each flow input,

indicating which flow rule will be determined in the event of an occurrence.

SAnDet’s architecture consists of three main modules as illustrated in Figure 5 [26]:

- Statistics Collector Module: The collector module is in charge of collecting the data necessary for

flow-based anomaly detection. This module collects flow data on a periodic basis and passes it to

the Anomaly Detection module. Two distinct data collection strategies have been described in the

literature. The first of these is the OF approach, which works by periodically querying the switch

and accumulating the incoming responses. The second is a flow monitoring mechanism that makes

use of packet sampling. Giotis et al. use sFlow, which is vendor-independent [26]:

- Anomaly Detection Module: At specified periodic time intervals, the collection module sends data

to the Anomaly Detection module. It has been designated as a ten-second time slot. Giotis et al.

[26] utilized an algorithm based on entropy. They also mentioned that this module can be utilized

with any statistical anomaly detection, machine learning-based anomaly detection, or data mining-

based anomaly detection technique.

- Mitigation Module: The anomaly prevention module attempts to mitigate identified attacks or

breaches by adding (or modifying) flow entries to the OF switch’s flow table in order to prohibit

the targeted malicious traffic [26]. These flow entries have a higher priority than other flows in the

flow table. Adding certain host-related rules to a whitelist table allows for the avoidance of

blocking legal network flows that exhibit anomalous behavior that resembles malicious behavior.

Additionally, malicious rules are added to a blacklist (malicious address) table.

Figure 5. SAnDet architecture

4.1. Data collection and feature extraction

The OF approach uses the OF protocol to collect flow statistics from switches. As required by the OF protocol,

the controller handles periodic flow statistics requests by aggregating them with the relevant counters for all flow

entries in the OF switch [26]. The switches’ flow counters are updated only when a forwarding query procedure

matches an entry in the flow table. As a result, the gathering of flow statistics in a native OF environment is

inextricably linked to the controller’s packet forwarding mechanism [26]. In our scenario, when the forwarding

logic is dictated by the anomaly detection strategy, layer 3 and 4 protocol fields are utilized. As a result, the flow

table’s necessary entries are reduced to a single flow, and a single flow entry is formed by evaluating forward

and backward directions based on the source IP, source port, destination IP, destination port, and protocol fields.

The remainder of the fields in the flows contain wildcards, which allow them to match any value in the fields.

Figure 6. The flow statistics collection algorithm

active_flows # the active flows in specific time interval

t # time interval to query flow statistics

F # flow statistics table

if e is initialization event then

 active_flows <- 0, U <- 0

end if

if e is PacketIn event then

 f.stats_values <- 0

 f <- new_flow (src_ip,dst_ip,src_port,dst_port,ip_proto,stats_values)

 add f to F

else if e is FlowRemoved event then

 f.stats_values <- e.stats_values

 f.isFlowRemoved <- true

else if e is timeout t event then

 for all flows f1 in F

 # if any flow entry in the statistics table is active on the switch

 if f1.isFlowRemoved is false then

 send a FlowStatsRequest to edge_switch

 end if

 end for

else if e is a FlowStatsReply event for flow f then

 F.f.stats_values = e.stats_values

end if

The OF approach sends a message (FlowRemoved) to the controller when a flow entry is deleted from the

switch, along with this information, as well as other data such as counter values of the flow entry. Gathering

statistics with the OF approach can be performed when a switch responds (FlowStatsReply) to a flow statistics

request (FlowStatsRequest message querying the switch for flow statistics) from the associated OF controller. By

using these two messages together, data collection of flow entries can be accomplished [57]. Every new packet

that arrives initially is added to a flow table on the controller. Later, messages are expected from these flow

entries that are programmed to send a message when the flow entry is deleted at a certain time. If these messages

are received from all entries in the table during this period, it is assumed that all flow statistics have been

obtained and these data are transferred to the detection algorithm. If there is no deleted message from at least one

flow entry, the statistics collection message is sent to the OF switch and a response message is expected. The

algorithm of this approach can be given in Figure 6. As a result, the switch reacts to huge portions of the flow

table's content. Each stack includes a subset of the flow entries, as well as packet counters for each flow. The

anomaly detection algorithm, on the other hand, only includes counter contents from the counters as a

consequence of the query, such as the number of packets matching each flow entry within a certain timeframe,

whereas flow table records' packet counters contain the total number of packets after each rule was instantiated.

Therefore, to find the number of packets corresponding to the specified time window, a record of the status of

the flow chart for previous time windows must be kept and compared with valid data for each flow entry. Due to

the absence of sampling in the OF data collecting process, it is able to collect and analyze in great detail all

network traffic streaming through the switch [26]. As a result, this approach has proven to be effective in

monitoring networks of low to medium traffic volumes [38][17]. The derived features in Table 1 are also

calculated for the flow, which is the corresponding pair of a flow, and added separately to the data set. In Table

1, P, B, n, and D corresponds to the number of packets, the number of bytes, the number of flows, and active

duration, respectively.

Table 1. Flow features

Feature Name Description

Flow direction

Forward Backward

F
lo

w
 I

d

Source IP

Destination IP

Protocol type TCP, UDP, and ICMP

Type of Service

Source Port

Destination port

B
as

ic
 f

ea
tu

re
s

Byte count  

Packet count  

Active duration in

seconds

 

Packet rate in seconds  

Byte rate in seconds  

D
er

iv
ed

 F
ea

tu
re

s1
 [

3
8
],

 [
5
8
]

The average number

of packets per flow

(APf)

𝐴𝑃𝑓 = 1𝑛 ∑ 𝑃𝑖𝑛𝑖=1
 

The average number

of bytes per flow

(ABf)

𝐴𝐵𝑓 = 1𝑛 ∑ 𝐵𝑖𝑛𝑖=1
 

Average active

duration per flow

(ADf)

𝐴𝐷𝑓 = 1𝑛 ∑ 𝐷𝑖𝑛𝑖=1
 

The growth of single

flows (GSf)

𝐺𝑆𝑓= 𝑁𝑢𝑚_𝐹𝑙𝑜𝑤𝑠 − (2 ∗ 𝑁𝑢𝑚_𝑃𝑎𝑖𝑟_𝐹𝑙𝑜𝑤𝑠)𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

The growth of

different ports (GDP)
𝐺𝐷𝑃 = 𝑁𝑢𝑚_𝑃𝑜𝑟𝑡𝑠𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

The number of flows

from the same source

IP

4.2. Attack detection and prevention

A method should be developed that takes the features extracted from the flows as input and detects whether there

is an attack on the network. The deep learning-based methods, which are popular recently and have contributed

significantly to the solution of many problems, have been preferred as the detection method, and their

performance has been examined.

Figure 7. Anomaly mitigation algorithm

black_list # blacklist flows
detected_flows # identified flows

for all flows f in detected_flows do

 if black_list.contains(f) then

 do nothing # already in blacklist
 else

 # write drop rule to the switch for f

 create match m object

 m.srcIp = f.srcIp

 m.destIp = f.destIp

 m.srcPort = f.srcPort
 m.destPort = f.destPort

 m.proto = f.procto

 m.action = drop

 m.idleTimeout = default_timeout * delay_ratio

 m.hard_timeout = default_hard_timeout

 write m to the switch

 # add malicious flow to blacklist

 black_list.insert(f)

 end if

end for

In SAnDet architecture, the focus is to employ anomaly-based techniques which are capable of detecting both

known and zero-day attacks. In deep learning methods, RNN and EncDecAD were able to successfully detect

anomalies in data sets according to studies in the literature. In addition to the flow statistics collected from the

network, the features derived from them are given as input to these two methods and the detection performances

are calculated according to certain evaluation criteria. Although AUC is recommended to be used as a criterion

in the evaluation of anomaly-based methods, it has been stated that accuracy criteria should also be taken into

account in data sets with imbalanced class distribution [56].

5. Performance Evaluation

In this section, performance evaluation is made as to the attack detection and prevention mechanism of OF

protocol. Also, the benefits of OF are investigated to prevent identified malicious traffic, by using SDN

controller facilities.

Floodlight [59] is an open-source OF controller with a modular architecture. Through the API provided by the

Floodlight controller, periodic and aperiodic data collection are performed. After that, the derivation of new

features from the basic features of the flow inputs collected, and the implementation of three different

components responsible for flow entry modification tasks were performed. The Statistics Collector module,

which collects statistics and generates new features, has been implemented. An anomaly detector module has

been implemented, where models developed from both RNN and EncDecAD methods can be applied and

together with which different detection algorithms can be easily integrated. The results of this action are then

sent to the Anomaly Prevention module to provide intrusion countermeasures. This enables the user to create or

employ their preferred anomaly detection technique as long as it can forward the required information to the

Anomaly Prevention module. Performance assessment trials were conducted with some of the network traffic in

the ISCX2012 data set.

5.1. Testbed environment and traffic generation

SAnDet system was implemented as Floodlight controller modules for anomaly detection and prevention

functions. OF-enabled switches are required to run experiments. Open vSwitch [60], a software switch capable

of handling the necessary traffic loads, is used for this purpose. The experimental environment of the study was

provided by Mininet [61] emulation software, which is an open-source tool that is frequently used in the

literature. This emulation environment supports OpenFlow vSwitch [60], which is superior to hardware switches

in its features and is designed to develop SDN-supported network prototypes. The emulation environment was

hosted on a virtual server with 16 GB of RAM, and a quad-core 3 GHz processor. Besides, Floodlight [59] is

used as controller software because of the open-source functionality that it provides. Figure 8 shows the

experimental setup together with Floodlight modules used to evaluate the two approaches mentioned above. The

controller software is run in a virtual machine on the server. Network traffic captured for performance evaluation

is injected into a single switch (in this case software-based Open vSwitch). It should be made clear that the

proposed mechanism can be applied to multiple OF-enabled switches and more general network topologies with

the corresponding prevention rules.

Some parameters need to be set in OF-based statistics collection. In particular, a specific value has to be set for

the idle timeout for each flow entry. This is because the collector module requests any flow entry to expire to

gather the relevant flow statistics. Therefore, the time window is specified by assigning the statistical collection

period to 10 seconds, and the idle timeout to 3 seconds.

Table 2. The number of all flows collected from traffic generated

Day Normal
Attack type

DoS Portscan

11 June Friday 3452552 0 0

12 June Saturday 557885 210569 252874

16 June Wednesday 2213469 0 0

Total 5820763 463443

Normal or benign traffic of the ISCX2012 data set is used to evaluate the performance of the attack detection and

prevention mechanism. To be more precise, traffic captured on "Friday 11 June" and "Wednesday 16 June" is

used as normal network traffic. Besides, benign traffic, which includes the "Saturday" traffic track, is played

normally, and specified DoS and port scanning attacks are performed at certain time intervals.

The ISCX2012 dataset [62] was produced in 2012, catching traffic in the network emulation environment for

more than a week. The authors describe attack scenarios while α profiles, a dynamic approach to creating an

attack detection dataset with normal and malicious network behavior, whereas β profiles describe typical user

behavior such as email writing or web browsing. These profiles are used to create a different data set that is

packet-based and flow-based in both directions. The dynamic strategy enables the ongoing generation of fresh

data sets. Although this data set includes a wide variety of attacks such as SSH brute force, DoS, or DDoS, the

traffic traces containing these attacks were not used in this study because it disrupts the attack characteristics of

the tcpreplay tool.

Table 3. Number of samples produced from flows collected over time

Day Normal
Attack type

DoS Portscan

11 June Friday 8640 0 0

12 June Saturday 8275 55 35

16 June Wednesday 8644 0 0

Total 25559 90

These traffic trace files were used in experiments to assess the accuracy and detection abilities of the OF

approach. Replaying captured packet trace data and injecting produced traffic onto a particular Ethernet port is

accomplished using the tcpreplay [63] program, which is capable of replaying captured traffic at the rate at

which it is captured. To perform the attack, hping3 [64], a programmable software tool, was used to allow

sending packet strings with random protocol field values. This enables packets to be sent to a predefined

destination IP address and port to perform a DoS attack. Finally, through the hping3 tool, the attack is performed

by randomly selecting the source and destination ports with a specific source and destination IP address for the

portscan scenario.

Using the flow statistics gathered from the OF switches during the flow collection time interval, the derived

features corresponding to that time interval are calculated and added to the data set as a single instance In other

words, with the aid of derived features, numerous flow entries during the time interval in which the statistics are

collected are aggregated into a single instance in the data set. A similar process was repeated for flows at

successive time intervals in order to generate a time series dataset in which each instance corresponds to a time

step. Since each instance corresponding to sequential time steps in the dataset comprises several features

(derived features), a multivariate time series dataset is produced. The maximum active duration, maximum

packet counts, and maximum byte counts for all flows during the specified time interval are also included as a

derived feature. The number of all flows collected from the generated traffic is shown in Table 2. Besides, the

number of samples containing features derived from the flows collected in a certain time interval (10 seconds) is

shown in Table 3.

5.2. Anomaly detection and mitigation

The SSL (Semi-Supervised Learning) strategy has been chosen as a learning strategy because it requires less

information, time, and effort, and unlabeled data is easier to obtain for an intrusion detection system than labeled

data [65]. To explain the SSL strategy with greater clarity, during the training phase it is known that the dataset

comprises only normal examples, which is supervised information (labeled as normal) for the model. In the

testing phase, we provide no information about the dataset, and we expect the model to classify the samples as

normal or abnormal (the label which is not been trained before) Furthermore, this strategy is better suited to the

detection methods' unsupervised training nature.

Figure 8. The Semi-Supervised Learning Strategy [65]

As can be seen in Figure 8, the data set is divided into two separate parts as training and test data sets. To create

a normal profile of the network traffic by applying the SSL strategy, only the labeled data set containing normal

flow characteristics is used in the training phase. The testing process makes use of an unlabeled data set

containing both normal and attack flow characteristics.

Figure 9. The schematic representation of the experimental environment

Since the techniques used in this analysis are parameterized, the models' performance should be calculated using

the right parameters. Because abnormal data is not included in the training process, the cross-validation

operation cannot be accomplished in hyperparameter optimization [66]. Thus, the adjustment of the

hyperparameters is done mostly taking into account the suggestions mentioned by Patterson and Gibson [67].

Following that, the RNN and EncDecAD hyperparameters are often set by trial and error.

Table 4. The evaluation results of RNN and EncDecAD

Method Window Size Bottleneck
layer

dimension

Accuracy AUC

EncDecAD 6 32 0.993 0.933

EncDecAD 4 48 0.993 0.932

EncDecAD 10 8 0.992 0.931

EncDecAD 7 32 0.992 0.924

EncDecAD 8 32 0.993 0.920

EncDecAD 5 96 0.99 0.911

EncDecAD 9 8 0.992 0.911

EncDecAD 3 48 0.992 0.886

RNN 5 32 0.98 0.87

RNN 10 64 0.99 0.864

RNN 6 32 0.987 0.820

RNN 3 8 0.992 0.818

RNN 8 64 0.99 0.808

RNN 9 48 0.991 0.805

RNN 4 32 0.978 0.792

RNN 7 64 0.991 0.766

The experiments were carried out using a basic deep autoencoder architecture. The architectural diagram of the

RNN and the architectural diagram of EncDecAD are shown in Figure 3 and Figure 4, respectively (when the

window size is 3). Models were trained and developed using different dimensions such as 8, 16, 32, 48, 64, 80,

and 96 in the bottleneck layer of RNN and hidden layers of EncDecAD. The dimensions of the layers in the best

performing RNN and EncDecAD models were established by trial and error while maintaining the layer count

constant, that is, conforming to the given architectures. The following parameters are utilized in the RNN and

EncDecAD neural network configurations: In training trials, learning rates (learning rates) such as [0.1, 0.01,

0.001] are employed. The optimal value for the learning rate is 0.001. Both neural networks were trained using

the backpropagation technique and the conjugate gradient optimization approach, which is suggested for big data

sets and outputs with real values [67]. The Adam updater [68] was chosen to avoid the local minimum and seek

more efficient optimization alternatives. The following additional parameters are utilized in the EncDecAD

configuration. In hidden layers, the hyperbolic tangent function is utilized as the activation function. n the

hyperparameters used to configure the RNN, which is commonly used and recommended in [46], the sigmoid

activation function was used in addition to the output layer, and the mean square error loss function, and the soft-

max activation function were used in the output layer. Both RNN and EncDecAD models were implemented

with the library [69] based on Pytorch [70] and trained for 50 epochs with 16 batch sizes. Reconstruction error

was used as an anomaly score in both RNN and EncDecAD methods.

Figure 10. The plot of accuracy and AUC over a time window in RNN

0.992 0.978 0.98 0.987 0.991 0.99 0.991 0.99

0.818
0.792

0.87

0.82

0.766

0.808 0.805

0.864

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

3 4 5 6 7 8 9 10

Window size

Accuracy AUC

Initially, the normalization process was performed on the traffic traces by using the feature scaling method [71]

to bring all values to the range [0,1]. To assess the algorithms' performance, distinct training and test data sets

were used. The models were constructed by training the neural network exclusively on "Friday" and

"Wednesday" normal flow data. This is because models are developed in an unsupervised manner, and the label

for the final column in the dataset corresponds to the attack class that was not used during training. The testing

procedure included both normal and attack traffic on alternate days. All attacks classified as "anomalies" during

the testing procedure are those that are not "normal" or "benign." Metrics were computed for the performance

evaluation of an attack class using only normal flow records and attack class-specific flow data, ignoring any

other attack classes.

Figure 11. The plot of accuracy and AUC over a time window in EncDecAD

Performance evaluation of the methods is carried out using AUC and accuracy metrics. An assessment based on

the AUC criterion is performed as it is the de facto standard for imbalanced anomaly detection and easy

interpretation [72]. The AUC results of the methods are given in Table 4. When the results are examined, it is

seen that the EncDecAD method gives better results than RNN in different time windows and bottleneck layers

as can be seen in Figure 10 and Figure 11. It means that EncDecAD learns the relationship from the sequences

better than RNN. The results show that EncDecAD also gives better results compared to studies listed in Table 5

in terms of accuracy and AUC.

Table 5. The comparison of SAnDet with previous studies

Reference Method Number of

features

Attack

types

Controller Dataset Result

Niyaz et

al. [31]

Stacked

Autoencoder

TCP,

UDP and

ICMP flow

features

DDoS POX Traffic

datasets

collected

from

different

environments

Accuracy

% 95.65

0.992 0.993 0.99 0.993 0.992 0.993 0.992 0.992

0.886

0.932

0.911

0.933
0.924 0.92

0.911
0.931

0.8

0.85

0.9

0.95

1

1.05

3 4 5 6 7 8 9 10

Window size

Accuracy AUC

Tang et al.

[32]

Deep Neural

Network

6 features DoS,

U2R,

R2L,

Probes

OF controller KDD Accuracy

% 75.75

Tang et al.

[73]

Recurrent

Neural

Network

6 features DoS POX NSL-KDD Accuracy

%89

Braga et

al. [38]

SOM 6 features DDoS NOX KDD99 Accuracy

% 98.57

Kokila et

al. [22]

SVM Flow

statistics

DDoS SDN

controller

DARPA % 95.11

Abubakar

et al. [74]

Neural

network

7 features DoS,

U2R,

R2L,

and

scan

OpenDaylight NSLKDD Accuracy

%97

Wang et

al. [75]

SVM Feature

reduction

DDoS Ryu KDD99 Accuracy

% 99

The

proposed

approach

(SAnDet)

EncDecAD

(LSTM)

21 features DoS

and

Portscan

Floodlight ISCX2012 as

normal traffic

and attack

with hping3

Accuracy

% 99.3

AUC %

93.3

Table 5 shows a performance comparison with previous works. We compare them in terms of methods, number

of features, attack types, controller software, dataset, and performance metrics. Similar to previous studies, the

proposed detection approach is also trained with normal network traffic and tested with both normal and attack

traffic during the test phase. In terms of real-time anomaly detection from a multivariate time series flow-based

data, our research differs from previous work. In other words, considering the flow features in a specific time

step as multivariate and attempting to detect whether an attack is occurring within a specific time window (which

contains multiple time steps) is a contribution that distinguishes this study from others. Another superior aspect

of this study is the evaluation of the proposed approach using a more recent data set than previous studies.

On the other hand, while the proposed method detects flows with characteristics that differ from the normal

profile as anomalies, the use of fewer attack types in the evaluation phase can be seen as a weakness of the study

in contrast to previous studies.

In addition, it is essential to note that comparing the accuracy and AUC results in Table 5 with those of previous

studies would not be a fair evaluation, as this study employs a different methodological approach. However, it

would be appropriate to announce the results as both accuracy and AUC criteria so that future studies can make

comparisons.

6. Conclusion

In this study, an intrusion detection and prevention architecture called SAnDet is proposed and implemented as a

controller application. To put it more clearly, a statistics collection module using the OF protocol, an anomaly-

based attack detection module that uses the EncDecAD method to detect attacks, and an intrusion prevention

module that can prevent attacks via the OF protocol when an attack is detected is implemented as an SDN

controller application. By employing a semi-supervised learning strategy, the attack detection capabilities of the

RNN and EncDecAD algorithms for anomaly detection were researched. The models were created using solely

normal flow-based data. Besides, the tests of the models were carried out using a time series data set containing

both normal and abnormal. Experimental results were obtained using ROC curves, AUC, and accuracy metrics.

According to the results, it has been observed that EncDecAD has a higher rate of detecting attacks compared to

other methods recommended in the literature.

As a future study, it is important to investigate how the method will perform by increasing the types of attacks in

the data set. In addition, how the change in the time interval for statistics collection will affect system

performance in terms of both controller load and attack detection rate is another future work.

Declaration of Interest Statement

The authors declare that they have no conflict of interest.

REFERENCES

[1] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network Anomaly Detection: Methods, Systems
and Tools,” Commun. Surv. Tutorials, IEEE, vol. 16, no. 1, pp. 303–336, 2014, doi:
10.1109/SURV.2013.052213.00046.

[2] N. McKeown, “How SDN will shape networking,” ONS 2011, 2011.
https://www.youtube.com/watch?v=c9-K5O_qYgA (accessed Jan. 20, 2018).

[3] H. Kim and N. Feamster, “Improving network management with software defined networking,” IEEE
Commun. Mag., vol. 51, no. 2, pp. 114–119, 2013, doi: 10.1109/MCOM.2013.6461195.

[4] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “SDN Security: A Survey,” in Future Networks and
Services (SDN4FNS), 2013 IEEE SDN for, 2013, pp. 1–7, doi: 10.1109/SDN4FNS.2013.6702553.

[5] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A Survey of Security in Software Defined Networks,”
Commun. Surv. Tutorials, IEEE, vol. PP, no. 99, p. 1, 2015, doi: 10.1109/COMST.2015.2453114.

[6] S. Dotcenko, A. Vladyko, and I. Letenko, “A fuzzy logic-based information security management for
software-defined networks,” in Advanced Communication Technology (ICACT), 2014 16th International
Conference on, 2014, pp. 167–171, doi: 10.1109/ICACT.2014.6778942.

[7] T. Jafarian, M. Masdari, A. Ghaffari, and K. Majidzadeh, “A survey and classification of the security
anomaly detection mechanisms in software defined networks,” Cluster Comput., pp. 1–19, Sep. 2020,

doi: 10.1007/s10586-020-03184-1.

[8] Y. Hande and A. Muddana, “A survey on intrusion detection system for software defined networks
(SDN),” Int. J. Bus. Data Commun. Netw., vol. 16, no. 1, pp. 28–47, 2020, doi:
10.4018/IJBDCN.2020010103.

[9] Y. Zhang, “An adaptive flow counting method for anomaly detection in SDN,” Proceedings of the ninth
ACM conference on Emerging networking experiments and technologies. ACM, Santa Barbara,
California, USA, pp. 25–30, 2013, doi: 10.1145/2535372.2535411.

[10] T. Ha et al., “Suspicious traffic sampling for intrusion detection in software-defined networks,” Comput.
Networks, vol. 109, Part, pp. 172–182, 2016, doi: http://dx.doi.org/10.1016/j.comnet.2016.05.019.

[11] B. R. Granby, B. Askwith, and A. K. Marnerides, “SDN-PANDA: Software-Defined Network Platform
for ANomaly Detection Applications,” in 2015 IEEE 23rd International Conference on Network
Protocols (ICNP), 2015, pp. 463–466, doi: 10.1109/ICNP.2015.58.

[12] S. Hommes, R. State, and T. Engel, “Implications and detection of DoS attacks in OpenFlow-based
networks,” 2014 IEEE Glob. Commun. Conf. GLOBECOM 2014, pp. 537–543, 2014, doi:
10.1109/GLOCOM.2014.7036863.

[13] L. F. Carvalho, G. Fernandes, J. J. P. C. Rodrigues, L. S. Mendes, and M. L. Proenca, “A novel anomaly
detection system to assist network management in SDN environment,” IEEE Int. Conf. Commun., 2017,
doi: 10.1109/ICC.2017.7997214.

[14] D. He, S. Chan, X. Ni, and M. Guizani, “Software-Defined-Networking-Enabled Traffic Anomaly
Detection and Mitigation,” IEEE Internet Things J., vol. 4, no. 6, pp. 1890–1898, Dec. 2017, doi:
10.1109/JIOT.2017.2694702.

[15] L. F. Carvalho, T. Abrão, L. de S. Mendes, and M. L. Proença, “An ecosystem for anomaly detection and
mitigation in software-defined networking,” Expert Syst. Appl., vol. 104, pp. 121–133, Aug. 2018, doi:
10.1016/J.ESWA.2018.03.027.

[16] H. Peng, Z. Sun, X. Zhao, S. Tan, and Z. Sun, “A Detection Method for Anomaly Flow in Software
Defined Network,” IEEE Access, 2018, doi: 10.1109/ACCESS.2018.2839684.

[17] S. A. Mehdi, J. Khalid, and S. A. Khayam, “Revisiting traffic anomaly detection using software defined
networking,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2011, vol. 6961 LNCS, pp. 161–180, doi:
10.1007/978-3-642-23644-0_9.

[18] S. E. Schechter, J. Jung, and A. W. Berger, “Fast detection of scanning worm infections,” Lect. Notes
Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 3224, pp. 59–
81, 2004, doi: 10.1007/978-3-540-30143-1_4.

[19] J. Twycross and M. M. Williamson, “Implementing and Testing a Virus Throttle,” in Proceedings of the
12th Conference on USENIX Security Symposium - Volume 12, 2003, p. 20.

[20] M. M. Williamson, “Throttling viruses: Restricting propagation to defeat malicious mobile code,” in
Proceedings - Annual Computer Security Applications Conference, ACSAC, 2002, vol. 2002-January, pp.
61–68, doi: 10.1109/CSAC.2002.1176279.

[21] M. V. Mahoney, “Network traffic anomaly detection based on packet bytes,” in Proceedings of the 2003
ACM symposium on Applied computing - SAC ’03, 2003, p. 346, doi: 10.1145/952532.952601.

[22] R. T. Kokila, S. Thamarai Selvi, and K. Govindarajan, “DDoS detection and analysis in SDN-based
environment using support vector machine classifier,” in 6th International Conference on Advanced
Computing, ICoAC 2014, Aug. 2015, pp. 205–210, doi: 10.1109/ICoAC.2014.7229711.

[23] R. Sathya and R. Thangarajan, “Efficient anomaly detection and mitigation in software defined
networking environment,” in Electronics and Communication Systems (ICECS), 2015 2nd International
Conference on, 2015, pp. 479–484, doi: 10.1109/ECS.2015.7124952.

[24] C. Yang, “Anomaly network traffic detection algorithm based on information entropy measurement
under the cloud computing environment,” Cluster Comput., vol. 22, no. 4, pp. 8309–8317, Jul. 2019, doi:
10.1007/s10586-018-1755-5.

[25] R. Wang, Z. Jia, and L. Ju, “An entropy-based distributed DDoS detection mechanism in software-
defined networking,” in Proceedings - 14th IEEE International Conference on Trust, Security and
Privacy in Computing and Communications, TrustCom 2015, Dec. 2015, vol. 1, pp. 310–317, doi:
10.1109/Trustcom.2015.389.

[26] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and V. Maglaris, “Combining Open Flow
and sFlow for an effective and scalable anomaly detection and mitigation mechanism on SDN
environments,” Comput. Networks, vol. 62, pp. 122–136, 2014, doi: 10.1016/j.bjp.2013.10.014.

[27] N. Visible and H.- Packard, “Traffic Monitoring using sFlow,” Analysis, 2003.
http://www.sflow.org/sFlowOverview.pdf.

[28] J. Francois and O. Festor, “Anomaly traceback using software defined networking,” in 2014 IEEE
International Workshop on Information Forensics and Security (WIFS), 2014, pp. 203–208, doi:
10.1109/WIFS.2014.7084328.

[29] L. Deng and D. Yu, “Deep learning: Methods and applications,” Foundations and Trends in Signal
Processing, vol. 7, no. 3–4. Now Publishers Inc, pp. 197–387, 2013, doi: 10.1561/2000000039.

[30] S. K. Dey and M. M. Rahman, “Flow based anomaly detection in software defined networking: A deep
learning approach with feature selection method,” in 4th International Conference on Electrical
Engineering and Information and Communication Technology, iCEEiCT 2018, Jan. 2019, pp. 630–635,
doi: 10.1109/CEEICT.2018.8628069.

[31] Q. Niyaz, W. Sun, and A. Y. Javaid, “A Deep Learning Based DDoS Detection System in Software-
Defined Networking (SDN),” arXiv Prepr. arXiv1611.07400, 2016.

[32] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho, “Deep learning approach for
Network Intrusion Detection in Software Defined Networking,” in Proceedings - 2016 International
Conference on Wireless Networks and Mobile Communications, WINCOM 2016: Green
Communications and Networking, Dec. 2016, pp. 258–263, doi: 10.1109/WINCOM.2016.7777224.

[33] S. Garg, N. Kumar, J. J. P. C. Rodrigues, and J. J. P. C. Rodrigues, “Hybrid deep-learning-based anomaly
detection scheme for suspicious flow detection in SDN: A social multimedia perspective,” IEEE Trans.
Multimed., vol. 21, no. 3, pp. 566–578, Mar. 2019, doi: 10.1109/TMM.2019.2893549.

[34] J. Li, Z. Zhao, and R. Li, “Machine learning-based IDS for softwaredefined 5G network,” IET Networks,
vol. 7, no. 2, pp. 53–60, Mar. 2018, doi: 10.1049/iet-net.2017.0212.

[35] A. Santos Da Silva, J. A. Wickboldt, L. Z. Granville, and A. Schaeffer-Filho, “ATLANTIC: A framework
for anomaly traffic detection, classification, and mitigation in SDN,” Proc. NOMS 2016 - 2016
IEEE/IFIP Netw. Oper. Manag. Symp., no. Noms, pp. 27–35, 2016, doi: 10.1109/NOMS.2016.7502793.

[36] C. Pang, Y. Jiang, and Q. Li, “FADE: Detecting forwarding anomaly in software-defined networks,” Jul.
2016, doi: 10.1109/ICC.2016.7510990.

[37] Y. Cui et al., “SD-Anti-DDoS: Fast and efficient DDoS defense in software-defined networks,” J. Netw.
Comput. Appl., vol. 68, pp. 65–79, 2016, doi: http://dx.doi.org/10.1016/j.jnca.2016.04.005.

[38] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack detection using
NOX/OpenFlow,” in Proceedings - Conference on Local Computer Networks, LCN, 2010, pp. 408–415,
doi: 10.1109/LCN.2010.5735752.

[39] “Open Networking Foundation.” https://www.opennetworking.org/.

[40] ONF and O. N. Foundation, “Software-Defined Networking: The New Norm for Networks,” 2012. doi:
citeulike-article-id:12475417.

[41] Y. Jarraya, T. Madi, and M. Debbabi, “A Survey and a Layered Taxonomy of Software-Defined
Networking,” Commun. Surv. Tutorials, IEEE, vol. PP, no. 99, p. 1, 2014, doi:
10.1109/COMST.2014.2320094.

[42] N. McKeown et al., “OpenFlow: Enabling Innovation in Campus Networks,” SIGCOMM Comput.
Commun. Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008, doi: 10.1145/1355734.1355746.

[43] L. Deng and D. Yu, “Deep learning: methods and applications,” Found. trends signal Process., vol. 7, no.

3–4, pp. 197–387, 2014.

[44] R. Hecht-Nielsen, “Replicator neural networks for universal optimal source coding,” Science (80-.).,
vol. 269, no. 5232, pp. 1860–1863, 1995.

[45] S. Hawkins, H. He, G. Williams, and R. Baxter, “Outlier detection using replicator neural networks,” in
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 2002, vol. 2454 LNCS, pp. 170–180, doi: 10.1007/3-540-46145-0_17.

[46] C. G. Cordero, S. Hauke, M. Muhlhauser, and M. Fischer, “Analyzing flow-based anomaly intrusion
detection using Replicator Neural Networks,” in 2016 14th Annual Conference on Privacy, Security and
Trust, PST 2016, 2016, pp. 317–324, doi: 10.1109/PST.2016.7906980.

[47] H. A. Dau, V. Ciesielski, and A. Song, “Anomaly detection using replicator neural networks trained on
examples of one class,” in Asia-Pacific Conference on Simulated Evolution and Learning, 2014, pp.
311–322.

[48] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to
prevent neural networks from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, 2014.

[49] L. Tóth and G. Gosztolya, “Replicator neural networks for outlier modeling in segmental speech
recognition,” in International Symposium on Neural Networks, 2004, pp. 996–1001.

[50] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp. 1735–
1780, Nov. 1997, doi: 10.1162/neco.1997.9.8.1735.

[51] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and G. Shroff, “LSTM-based Encoder-
Decoder for Multi-sensor Anomaly Detection.” Accessed: May 04, 2019. [Online]. Available:
https://arxiv.org/pdf/1607.00148.pdf.

[52] O. Gu, P. Fogla, D. Dagon, W. Lee, and B. Škorić, “Measuring intrusion detection capability: An
information-theoretic approach,” in Proceedings of the 2006 ACM Symposium on Information, Computer
and Communications Security, ASIACCS ’06, 2006, vol. 2006, pp. 90–101, doi:
10.1145/1128817.1128834.

[53] Y. Xin et al., “Machine Learning and Deep Learning Methods for Cybersecurity,” IEEE Access, p. 1,
2018, doi: 10.1109/ACCESS.2018.2836950.

[54] K. A. Spackman, “SIGNAL DETECTION THEORY: VALUABLE TOOLS FOR EVALUATING
INDUCTIVE LEARNING,” in Proceedings of the Sixth International Workshop on Machine Learning,
Elsevier, 1989, pp. 160–163.

[55] T. Fawcett, “ROC Graphs: Notes and Practical Considerations for Researchers,” HP Labs Tech Rep.
HPL-2003-4, pp. 1–38, 2004, doi: 10.1.1.10.9777.

[56] H. He and Y. Ma, Imbalanced Learning: Foundations, Algorithms, and Applications. Wiley, 2013.

[57] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “PayLess: A low cost network monitoring
framework for Software Defined Networks,” in 2014 IEEE Network Operations and Management
Symposium (NOMS), 2014, pp. 1–9, doi: 10.1109/NOMS.2014.6838227.

[58] Y. Abuadlla, G. Kvascev, S. Gajin, and Z. Jovanović, “Flow-based anomaly intrusion detection system
using two neural network stages,” Comput. Sci. Inf. Syst., vol. 11, no. 2, pp. 601–622, 2014, doi:
10.2298/CSIS130415035A.

[59] Floodlight, “Floodlight OpenFlow Controller.” http://www.projectfloodlight.org/floodlight/.

[60] “Open vSwitch.” http://openvswitch.org/.

[61] Mininet Team, “Mininet: An Instant Virtual Network on your Laptop (or other PC) - Mininet.”
http://mininet.org/.

[62] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward developing a systematic approach to
generate benchmark datasets for intrusion detection,” Comput. Secur., vol. 31, no. 3, pp. 357–374, 2012,
doi: http://dx.doi.org/10.1016/j.cose.2011.12.012.

[63] “Tcpreplay.” http://tcpreplay.synfin.net/.

[64] “Hping - Active Network Security Tool.” http://www.hping.org/ (accessed Nov. 16, 2020).

[65] S. Zavrak and M. Iskefiyeli, “Anomaly-Based Intrusion Detection from Network Flow Features Using
Variational Autoencoder,” IEEE Access, vol. 8, pp. 108346–108358, 2020, doi:
10.1109/ACCESS.2020.3001350.

[66] V. L. Cao, M. Nicolau, and J. McDermott, “Learning Neural Representations for Network Anomaly
Detection,” IEEE Trans. Cybern., vol. 49, no. 8, pp. 3074–3087, Aug. 2019, doi:
10.1109/TCYB.2018.2838668.

[67] J. Patterson and A. Gibson, Deep Learning: A Practitioner’s Approach. O’Reilly Media, 2017.

[68] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of initialization and momentum in
deep learning,” 2013. Accessed: Jan. 30, 2019. [Online]. Available:
http://www.cs.toronto.edu/~fritz/absps/momentum.pdf.

[69] “KDD-OpenSource/DeepADoTS: Repository of the paper ‘A Systematic Evaluation of Deep Anomaly
Detection Methods for Time Series’.” https://github.com/KDD-OpenSource/DeepADoTS (accessed Mar.
29, 2021).

[70] “PyTorch.” https://pytorch.org/ (accessed Nov. 16, 2020).

[71] S. Aksoy and R. M. Haralick, “Feature normalization and likelihood-based similarity measures for image
retrieval,” Pattern Recognit. Lett., vol. 22, no. 5, pp. 563–582, 2001.

[72] W. J. Krzanowski and D. J. Hand, ROC Curves for Continuous Data. CRC Press, 2009.

[73] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho, “Deep Recurrent Neural Network
for Intrusion Detection in SDN-based Networks,” in 2018 4th IEEE Conference on Network
Softwarization and Workshops, NetSoft 2018, Sep. 2018, pp. 462–469, doi:
10.1109/NETSOFT.2018.8460090.

[74] A. Abubakar and B. Pranggono, “Machine learning based intrusion detection system for software defined
networks,” in Proceedings - 2017 7th International Conference on Emerging Security Technologies, EST
2017, 2017, pp. 138–143, doi: 10.1109/EST.2017.8090413.

[75] P. Wang, K. M. Chao, H. C. Lin, W. H. Lin, and C. C. Lo, “An Efficient Flow Control Approach for
SDN-Based Network Threat Detection and Migration Using Support Vector Machine,” in 2016 IEEE
13th International Conference on e-Business Engineering (ICEBE), 2016, pp. 56–63, doi:
10.1109/ICEBE.2016.020.

	Declaration of Interest Statement

