[1] Mohanty SK, Satapathy A, Naidu MM, Mukhopadhyay S, Sharma S, Barton LM, Stroberg E, Duval EJ, Pradhan D, Tzankov A, Parwani AV: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and coronavirus disease 19 (COVID-19) - anatomic pathology perspective on current knowledge. Diagn Pathol 2020, 15:103.
[2] Hanming G, Wei W, Gongsheng Y: Research Square 2020.
[3] V'Kovski P, Kratzel A, Steiner S, Stalder H, Thiel V: Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol 2020.
[4] Singla R, Mishra A, Joshi R, Jha S, Sharma AR, Upadhyay S, Sarma P, Prakash A, Medhi B: Human animal interface of SARS-CoV-2 (COVID-19) transmission: a critical appraisal of scientific evidence. Vet Res Commun 2020, 44:119-30.
[5] Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF: The proximal origin of SARS-CoV-2. Nat Med 2020, 26:450-2.
[6] Zheng J: SARS-CoV-2: an Emerging Coronavirus that Causes a Global Threat. Int J Biol Sci 2020, 16:1678-85.
[7] Ye Q, Wang B, Mao J: The pathogenesis and treatment of the `Cytokine Storm' in COVID-19. J Infect 2020, 80:607-13.
[8] Noroozi R, Branicki W, Pyrc K, Labaj PP, Pospiech E, Taheri M, Ghafouri-Fard S: Altered cytokine levels and immune responses in patients with SARS-CoV-2 infection and related conditions. Cytokine 2020, 133:155143.
[9] Zhang W, Zhao Y, Zhang F, Wang Q, Li T, Liu Z, Wang J, Qin Y, Zhang X, Yan X, Zeng X, Zhang S: The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin Immunol 2020, 214:108393.
[10] Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB: Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 323:1824-36.
[11] Perricone C, Triggianese P, Bartoloni E, Cafaro G, Bonifacio AF, Bursi R, Perricone R, Gerli R: The anti-viral facet of anti-rheumatic drugs: Lessons from COVID-19. J Autoimmun 2020, 111:102468.
[12] Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, Wang Q, Xu Y, Li M, Li X, Zheng M, Chen L, Li H: Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 2020, 10:766-88.
[13] Wilton KM, Matteson EL: Malignancy Incidence, Management, and Prevention in Patients with Rheumatoid Arthritis. Rheumatol Ther 2017, 4:333-47.
[14] Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C: Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Front Immunol 2020, 11:1708.
[15] Gu H, Yuan G: Identification of key genes in SARS-CoV-2 patients on bioinformatics analysis. bioRxiv 2020:2020.08.09.243444.
[16] Gu H, Yuan G: Identification of potential key genes for SARS-CoV-2 infected human bronchial organoids based on bioinformatics analysis. bioRxiv 2020:2020.08.18.256735.
[17] Gu H, Yuan G: Identification of potential biomarkers and inhibitors for SARS-CoV-2 infection. medRxiv 2020:2020.09.15.20195487.
[18] Yi Y, Lagniton PNP, Ye S, Li E, Xu RH: COVID-19: what has been learned and to be learned about the novel coronavirus disease. Int J Biol Sci 2020, 16:1753-66.
[19] Walsh KA, Jordan K, Clyne B, Rohde D, Drummond L, Byrne P, Ahern S, Carty PG, O'Brien KK, O'Murchu E, O'Neill M, Smith SM, Ryan M, Harrington P: SARS-CoV-2 detection, viral load and infectivity over the course of an infection. J Infect 2020, 81:357-71.
[20] Ni W, Yang X, Yang D, Bao J, Li R, Xiao Y, Hou C, Wang H, Liu J, Yang D, Xu Y, Cao Z, Gao Z: Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care 2020, 24:422.
[21] Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, Brayne C, Burns A, Cohen-Mansfield J, Cooper C, Costafreda SG, Dias A, Fox N, Gitlin LN, Howard R, Kales HC, Kivimaki M, Larson EB, Ogunniyi A, Orgeta V, Ritchie K, Rockwood K, Sampson EL, Samus Q, Schneider LS, Selbaek G, Teri L, Mukadam N: Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396:413-46.
[22] Arvanitakis Z, Shah RC, Bennett DA: Diagnosis and Management of Dementia: Review. JAMA 2019, 322:1589-99.
[23] Elmore S: Apoptosis: a review of programmed cell death. Toxicol Pathol 2007, 35:495-516.
[24] Pustylnikov S, Costabile F, Beghi S, Facciabene A: Targeting mitochondria in cancer: current concepts and immunotherapy approaches. Transl Res 2018, 202:35-51.
[25] Yuan G, Yang S, Liu M, Yang S: RGS12 is required for the maintenance of mitochondrial function during skeletal development. Cell Discov 2020, 6:59.
[26] Cai T, Hua B, Luo D, Xu L, Cheng Q, Yuan G, Yan Z, Sun N, Hua L, Lu C: The circadian protein CLOCK regulates cell metabolism via the mitochondrial carrier SLC25A10. Biochim Biophys Acta Mol Cell Res 2019, 1866:1310-21.
[27] Xu L, Cheng Q, Hua B, Cai T, Lin J, Yuan G, Yan Z, Li X, Sun N, Lu C, Qian R: Circadian gene Clock regulates mitochondrial morphology and functions by posttranscriptional way. bioRxiv 2018:365452.
[28] Schieber M, Chandel NS: ROS function in redox signaling and oxidative stress. Curr Biol 2014, 24:R453-62.
[29] Weinberg SE, Sena LA, Chandel NS: Mitochondria in the regulation of innate and adaptive immunity. Immunity 2015, 42:406-17.
[30] Burtscher J, Cappellano G, Omori A, Koshiba T, Millet GP: Mitochondria: In the Cross Fire of SARS-CoV-2 and Immunity. iScience 2020, 23:101631.
[31] Hussain A, Mahawar K, Xia Z, Yang W, El-Hasani S: Obesity and mortality of COVID-19. Meta-analysis. Obes Res Clin Pract 2020, 14:295-300.
[32] Kass DA, Duggal P, Cingolani O: Obesity could shift severe COVID-19 disease to younger ages. Lancet 2020, 395:1544-5.
[33] Zhu Z, Hua B, Xu L, Yuan G, Li E, Li X, Sun N, Yan Z, Lu C, Qian R: CLOCK promotes 3T3-L1 cell proliferation via Wnt signaling. IUBMB Life 2016, 68:557-68.
[34] Zhu Z, Hua B, Shang Z, Yuan G, Xu L, Li E, Li X, Sun N, Yan Z, Qian R, Lu C: Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition. Biomed Res Int 2016, 2016:5438589.
[35] Zhu Z, Xu L, Cai T, Yuan G, Sun N, Lu C, Qian R: Clock represses preadipocytes adipogenesis via GILZ. J Cell Physiol 2018, 233:6028-40.
[36] Liu J, Li Q, Li X, Qiu Z, Li A, Liang W, Chen H, Cai X, Chen X, Duan X, Li J, Wu W, Xu M, Mao Y, Chen H, Li J, Gu W, Li H: Zika Virus Envelope Protein induces G2/M Cell Cycle Arrest and Apoptosis via an Intrinsic Cell Death Signaling Pathway in Neuroendocrine PC12 Cells. Int J Biol Sci 2018, 14:1099-108.
[37] Gebhardt A, Habjan M, Benda C, Meiler A, Haas DA, Hein MY, Mann A, Mann M, Habermann B, Pichlmair A: mRNA export through an additional cap-binding complex consisting of NCBP1 and NCBP3. Nat Commun 2015, 6:8192.
[38] Yuan G, Yang S, Ng A, Fu C, Oursler MJ, Xing L, Yang S: RGS12 Is a Novel Critical NF-kappaB Activator in Inflammatory Arthritis. iScience 2020, 23:101172.
[39] Yuan G, Xu L, Cai T, Hua B, Sun N, Yan Z, Lu C, Qian R: Clock mutant promotes osteoarthritis by inhibiting the acetylation of NFkappaB. Osteoarthritis Cartilage 2019, 27:922-31.
[40] Gu H, Yuan G: Identification of specific biomarkers and pathways in the synovial tissues of patients with osteoarthritis in comparison to rheumatoid arthritis. bioRxiv 2020:2020.10.22.340232.
[41] Menezes SM, Leal FE, Dierckx T, Khouri R, Decanine D, Silva-Santos G, Schnitman SV, Kruschewsky R, Lopez G, Alvarez C, Talledo M, Gotuzzo E, Nixon DF, Vercauteren J, Brassat D, Liblau R, Vandamme AM, Galvao-Castro B, Van Weyenbergh J: A Fas(hi) Lymphoproliferative Phenotype Reveals Non-Apoptotic Fas Signaling in HTLV-1-Associated Neuroinflammation. Front Immunol 2017, 8:97.
[42] Merino-Gracia J, Garcia-Mayoral MF, Rodriguez-Crespo I: The association of viral proteins with host cell dynein components during virus infection. FEBS J 2011, 278:2997-3011.
[43] Bai L, Chen MM, Chen ZD, Zhang P, Tian S, Zhang Y, Zhu XY, Liu Y, She ZG, Ji YX, Li H: F-box/WD Repeat-Containing Protein 5 Mediates the Ubiquitination of Apoptosis Signal-Regulating Kinase 1 and Exacerbates Nonalcoholic Steatohepatitis in Mice. Hepatology 2019, 70:1942-57.
[44] Yuan G, Hua B, Cai T, Xu L, Li E, Huang Y, Sun N, Yan Z, Lu C, Qian R: Clock mediates liver senescence by controlling ER stress. Aging 2017, 9:2647-65.
[45] Fan XF, Wang XR, Yuan GS, Wu DH, Hu LG, Xue F, Gong YS: [Effect of safflower injection on endoplasmic reticulum stress-induced apoptosts in rats with hypoxic pulmonary hypertension]. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2012, 28:561-7.
[46] Shabek N, Herman-Bachinsky Y, Ciechanover A: Ubiquitin degradation with its substrate, or as a monomer in a ubiquitination-independent mode, provides clues to proteasome regulation. Proc Natl Acad Sci U S A 2009, 106:11907-12.
[47] Schenkova K, Lutz J, Kopp M, Ramos S, Rivero F: MUF1/leucine-rich repeat containing 41 (LRRC41), a substrate of RhoBTB-dependent cullin 3 ubiquitin ligase complexes, is a predominantly nuclear dimeric protein. J Mol Biol 2012, 422:659-73.
[48] Yu Z, Chen T, Li X, Yang M, Tang S, Zhu X, Gu Y, Su X, Xia M, Li W, Zhang X, Wang Q, Cao X, Wang J: Lys29-linkage of ASK1 by Skp1-Cullin 1-Fbxo21 ubiquitin ligase complex is required for antiviral innate response. Elife 2016, 5.
[49] Jang SM, Redon CE, Aladjem MI: Chromatin-Bound Cullin-Ring Ligases: Regulatory Roles in DNA Replication and Potential Targeting for Cancer Therapy. Front Mol Biosci 2018, 5:19.
[50] Lu Y, Li J, Cheng D, Parameswaran B, Zhang S, Jiang Z, Yew PR, Peng J, Ye Q, Hu Y: The F-box protein FBXO44 mediates BRCA1 ubiquitination and degradation. J Biol Chem 2012, 287:41014-22.
[51] Du X, Meng F, Peng D, Wang Z, Ouyang W, Han Y, Gu Y, Fan L, Wu F, Jiang X, Xu F, Qin FX: Noncanonical Role of FBXO6 in Regulating Antiviral Immunity. J Immunol 2019, 203:1012-20.