1. García Depraect O, Muñoz R, van Lier JB, et al (2020) Three-stage process for tequila vinasse valorization through sequential lactate, biohydrogen and methane production. Bioresour Technol 307:123160. doi: 10.1016/j.biortech.2020.123160
2. Gallipoli A, Braguglia CM, Gianico A, et al (2020) Kitchen waste valorization through a mild-temperature pretreatment to enhance biogas production and fermentability: Kinetics study in mesophilic and thermophilic regimen. J Environ Sci (China) 89:167–179. doi: 10.1016/j.jes.2019.10.016
3. Hovorukha V, Havryliuk O, Gladka G, et al (2021) Hydrogen dark fermentation for degradation of solid and liquid food waste. Energies 14:1–12. doi: 10.3390/en14071831
4. Masilamani D, Madhan B, Shanmugam G, et al (2016) Extraction of collagen from raw trimming wastes of tannery: a waste to wealth approach. J Clean Prod 113:338–344. doi: 10.1016/j.jclepro.2015.11.087
5. Theuerl S, Klang J, Prochnow A (2019) Process disturbances in agricultural biogas production—causes, mechanisms and effects on the biogas microbiome: A review. Energies. doi: 10.3390/en12030365
6. Andreides M, Pokorná-Krayzelová L, Říhová Ambrožová J, et al (2021) Key parameters influencing hydrogen sulfide removal in microaerobic sequencing batch reactor. Biochem Eng J 168:107951. doi: 10.1016/j.bej.2021.107951
7. Ramos I, Peña M, Fdz-Polanco M (2014) Where does the removal of H2S from biogas occur in microaerobic reactors? Bioresour Technol 166:151–157. doi: 10.1016/j.biortech.2014.05.058
8. Sołowski G, Konkol I, Cenian A (2020) Methane and Hydrogen Production from Cotton Wastes in Dark Fermentation Process Under Anaerobic and Microaerobic Conditions. In: Naddeo V, M. B, KH C (eds) Front. Water-Energy-Nexus—Nature-Based Solut. Adv. Technol. Best Pract. Environ. Sustain. Springer Cham, pp 285–287
9. Rangel C, Sastoque J, Calderon J, et al (2020) Hydrogen production by dark fermentation process: Effect of initial organic load. Chem Eng Trans 79:133–138. doi: 10.3303/CET2079023
10. Seifert K, Zagrodnik R, Stodolny M, Łaniecki M (2018) Biohydrogen production from chewing gum manufacturing residue in a two-step process of dark fermentation and photofermentation. Renew Energy 122:526–532. doi: 10.1016/j.renene.2018.01.105
11. Tsapekos P, Kougias PG, Angelidaki I (2018) Mechanical pretreatment for increased biogas production from lignocellulosic biomass; predicting the methane yield from structural plant components. Waste Manag 78:903–910. doi: 10.1016/j.wasman.2018.07.017
12. Bertalero G, Addebito P, Bancario CC, Cliente CAL (2020) Proteinaceous methanotrophs for feed additive using biowaste as carbon and nutrients source. Bioresour Technol 313:123646. doi: 10.1016/j.biortech.2020.123646
13. Hitit ZY, Zampol Lazaro C, Hallenbeck PC (2017) Increased hydrogen yield and COD removal from starch/glucose based medium by sequential dark and photo-fermentation using Clostridium butyricum and Rhodopseudomonas palustris. Int J Hydrogen Energy 42:18832–18843. doi: 10.1016/j.ijhydene.2017.05.161
14. Chiumenti A, Boscaro D, Da Borso F, et al (2018) Biogas from fresh spring and summer grass: Effect of the harvesting period. Energies. doi: 10.3390/en11061466
15. Hu X, Meneses YE, Stratton J, et al (2021) Integration of ozone with co-immobilized microalgae-activated sludge bacterial symbiosis for efficient on-site treatment of meat processing wastewater. J Environ Manage 285:112152. doi: 10.1016/j.jenvman.2021.112152
16. Vasco-Correa J, Khanal S, Manandhar A, Shah A (2018) Anaerobic digestion for bioenergy production: Global status, environmental and techno-economic implications, and government policies. Bioresour Technol 247:1015–1026. doi: 10.1016/j.biortech.2017.09.004
17. Akoma ON, Ononugbo CM, Eze CC, et al (2019) Microbial Assessment of Selected, Locally- Fermented and Ready-to-eat Cassava Products Sold in Lokoja, Nigeria. Asian Food Sci J 1–9. doi: 10.9734/afsj/2019/v8i429997
18. Dreschke G, Papirio S, Sisinni DMG, et al (2019) Effect of feed glucose and acetic acid on continuous biohydrogen production by Thermotoga neapolitana. Bioresour Technol 273:416–424. doi: 10.1016/j.biortech.2018.11.040
19. Łochyńska M, Frankowski J (2018) The biogas production potential from silkworm waste. Waste Manag 79:564–570. doi: 10.1016/j.wasman.2018.08.019
20. Pan CM, Fan YT, Zhao P, Hou HW (2008) Fermentative hydrogen production by the newly isolated Clostridium beijerinckii Fanp3. Int J Hydrogen Energy 33:5383–5391. doi: 10.1016/j.ijhydene.2008.05.037
21. Moodley P, Gueguim Kana EB (2018) Comparative study of three optimized acid-based pretreatments for sugar recovery from sugarcane leaf waste: A sustainable feedstock for biohydrogen production. Eng Sci Technol an Int J 21:107–116. doi: 10.1016/j.jestch.2017.11.010
22. Moriarty K (2013) Feasibility Study of Anaerobic Digestion of Food Waste in St. Bernard, Louisiana A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America’s Land Initiative: Siting Renewable Energy on Potentially Contaminated La. Natl Renew Energy Lab. doi: https://www.nrel.gov/docs/fy13osti/57082.pdf
23. Marks S, Dach J, Garcia-Morales JL, Fernandez-Morales FJ (2020) Bio-energy generation from synthetic winery wastewaters. Appl Sci 10:1–9. doi: 10.3390/app10238360
24. Janczak D, Malinska K, Czekała W, et al (2017) Biochar to reduce ammonia emissions in gaseous and liquid phase during composting of poultry manure with wheat straw. 66:36–45. doi: 10.1016/j.wasman.2017.04.033
25. Liang X, Zhu Y, Qi B, et al (2021) Structure-property-performance relationships of lactic acid-based deep eutectic solvents with different hydrogen bond acceptors for corn stover pretreatment. Bioresour Technol 336:125312. doi: 10.1016/j.biortech.2021.125312
26. Pineda-Muñoz CF, Conde-Baez L, Lucho-Constantino C, et al (2020) Ultrasonic Energy Effect on Dark Fermentation by Ultrasound Application Alone and in Combination with Heat Shock. Bioenergy Res 13:334–348. doi: 10.1007/s12155-020-10104-z
27. Nasirian N, Almassi M, Minaei S, Widmann R (2011) Development of a method for biohydrogen production from wheat straw by dark fermentation. Int J Hydrogen Energy 36:411–420. doi: 10.1016/j.ijhydene.2010.09.073
28. Toledo-Alarcón J, Cabrol L, Jeison D, et al (2020) Impact of the microbial inoculum source on pre-treatment efficiency for fermentative H2 production from glycerol. Int J Hydrogen Energy 45:1597–1607. doi: 10.1016/j.ijhydene.2019.11.113
29. Toledo-Alarcón J, Capson-Tojo G, Marone A, Paillet F (2017) Basics of bio-hydrogen production by dark fermentation. In: Bioreact. Microb. Biomass Energy Convers. pp 199–220
30. Sołowski G, Ziminski T, Cenian A (2021) A shift from anaerobic digestion to dark fermentation in glycol ethylene fermentation. Environ Sci Pollut Res. doi: 10.1007/s11356-020-12149-1
31. Rafieenia R, Girotto F, Peng W, et al (2017) Effect of aerobic pre-treatment on hydrogen and methane production in a two-stage anaerobic digestion process using food waste with different compositions. Waste Manag 59:194–199. doi: 10.1016/j.wasman.2016.10.028
32. Alibardi L, Cossu R (2016) Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products. Waste Manag 47:69–77. doi: 10.1016/j.wasman.2015.07.049
33. Sołowski G, Konkol I, Cenian A (2019) Perspectives of Hydrogen Production from Corn Wastes in Poland by Means of Dark Fermentation. Ecol Chem Eng S 26:255–263. doi: 10.1515/eces-2019-0031
34. Detman A, Mielecki D, Pleśniak Ł, et al (2018) Methane-yielding microbial communities processing lactate-rich substrates: A piece of the anaerobic digestion puzzle. Biotechnol Biofuels 11:1–18. doi: 10.1186/s13068-018-1106-z
35. Wu Y, Kovalovszki A, Pan J, et al (2019) Early warning indicators for mesophilic anaerobic digestion of corn stalk: A combined experimental and simulation approach. Biotechnol Biofuels. doi: 10.1186/s13068-019-1442-7
36. Lv N, Zhao L, Wang R, et al (2020) Novel strategy for relieving acid accumulation by enriching syntrophic associations of syntrophic fatty acid-oxidation bacteria and H2/formate-scavenging methanogens in anaerobic digestion. Bioresour Technol 313:123702. doi: 10.1016/j.biortech.2020.123702
37. Bartacek, J; Zabranska, J; Lens PNL (2007) Developments and constraints in fermentative hydrogen production. Biofuels, Bioprod Biorefining 1:201–214. doi: 10.1002/bbb.17
38. Lee KS, Lo YC, Lin PJ, Chang JS (2006) Improving biohydrogen production in a carrier-induced granular sludge bed by altering physical configuration and agitation pattern of the bioreactor. Int J Hydrogen Energy 31:1648–1657. doi: 10.1016/j.ijhydene.2005.12.020
39. Wainaina S, Awasthi MK, Sarsaiya S, et al (2020) Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies. Bioresour Technol 301:122778. doi: 10.1016/j.biortech.2020.122778
40. Sołowski G, Pastuszak K (2021) Modelling of dark fermentation of glucose and sour cabbage. Heliyon 7:e07690. doi: 10.1016/j.heliyon.2021.e07690
41. d’Ippolito G, Squadrito G, Tucci M, et al (2021) Electrostimulation of hyperthermophile Thermotoga neapolitana cultures. Bioresour Technol 319:124078. doi: 10.1016/j.biortech.2020.124078
42. Domański J, Marchut‐Mikołajczyk O, Cieciura‐Włoch W, et al (2020) Production of methane, hydrogen and ethanol from Secale cereale L. straw pretreated with sulfuric acid. Molecules 25:1013. doi: 10.3390/molecules25041013
43. Chojnacka A, Szczęsny P, Błaszczyk MK, et al (2015) Noteworthy facts about a methane-producing microbial community processing acidic effluent from sugar beet molasses fermentation. PLoS One. doi: 10.1371/journal.pone.0128008
44. Liu C, Luo G, Liu H, et al (2020) CO as electron donor for efficient medium chain carboxylate production by chain elongation: Microbial and thermodynamic insights. Chem Eng J 390:124577. doi: 10.1016/j.cej.2020.124577
45. Hassan GK, Hemdan BA, El-Gohary FA (2020) Utilization of food waste for bio-hydrogen and bio-methane production: influences of temperature, OLR, and in situ aeration. J Mater Cycles Waste Manag. doi: 10.1007/s10163-020-01014-5
46. Sołowski G, Konkol I, Shalaby M, Cenian A (2021) Methane and hydrogen production from potato wastes and wheat straw under dark fermentation. Chem Process Eng - Inz Chem i Proces 42:3–13. doi: 10.24425/cpe.2021.137335
47. She Y, Hong J, Zhang Q, et al (2020) Revealing microbial mechanism associated with volatile fatty acids production in anaerobic acidogenesis of waste activated sludge enhanced by freezing/thawing pretreatment. Bioresour Technol. doi: 10.1016/j.biortech.2020.122869
48. Murarka A, Dharmadi Y, Yazdani SS, Gonzalez R (2008) Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl Environ Microbiol 74:1124–1135. doi: 10.1128/AEM.02192-07
49. Sandriaty R, Priadi C, Kurnianingsih S, Abdillah A (2018) Potential of biogas production from anaerobic co-digestion of fat, oil and grease waste and food waste. E3S Web Conf 67:1–5. doi: 10.1051/e3sconf/20186702047
50. Rafieenia R, Lavagnolo MC, Pivato A (2018) Pre-treatment technologies for dark fermentative hydrogen production: Current advances and future directions. Waste Manag 71:734–748. doi: 10.1016/j.wasman.2017.05.024
51. Frigon JC, Mehta P, Guiot SR (2012) Impact of mechanical, chemical and enzymatic pre-treatments on the methane yield from the anaerobic digestion of switchgrass. Biomass and Bioenergy 36:1–11. doi: 10.1016/j.biombioe.2011.02.013
52. Ponsá S, Gea T, Sánchez A (2011) Anaerobic co-digestion of the organic fraction of municipal solid waste with several pure organic co-substrates. Biosyst Eng 108:352–360. doi: 10.1016/j.biosystemseng.2011.01.007