[1] Laursen L (2014) A preventable cancer. Nature 516(7529): S2-3. doi: 10.1038/516S2a.
[2] Llovet JM, Zucman-Rossi J, Pikarsky E, et al (2016) Hepatocellular carcinoma. Nat Rev Dis Primers 2:16018.
[3] Nio K, Yamashita T, Kaneko S (2017) The evolving concept of liver cancer stem cells. Mol Cancer 16(4):4.
[4] Marquardt JU, Edlich F (2019) Predisposition to Apoptosis in Hepatocellular Carcinoma: From Mechanistic Insights to Therapeutic Strategies. Front Oncol 9:1421.
[5] Bruttel VS, Wischhusen J (2014) Cancer Stem Cell Immunology: Key to Understanding Tumorigenesis and Tumor Immune Escape? Front Immunol 5:360.
[6] Sistigu A, Musella M, Galassi C, et al (2020) Tuning Cancer Fate: Tumor Microenvironment's Role in Cancer Stem Cell Quiescence and Reawakening. Front Immunol 11:2166.
[7] Chan LH, Luk ST, Ma S (2015) Turning hepatic cancer stem cells inside out--a deeper understanding through multiple perspectives. Mol Cells 38(3):202.
[8] Cheng Z, Li X, Ding J (2015) Characteristics of liver cancer stem cells and clinical correlations. Cancer Lett 379(2):230.
[9] Na Li, Ying Zhu (2019) Targeting liver cancer stem cells for the treatment of hepatocellular carcinoma. Ther Adv Gastroenterol 12:1-22.
[10] Liu L L, Fu D, Ma Y, et al (2011) The Power and the Promise of Liver Cancer Stem Cell Markers. Stem Cell Develop 20(12):2023-2030.
[11] Liu Y M, Li XF, Liu H, et al (2015) Ultrasound-targeted microbubble destruction-mediated downregulation of CD133 inhibits epithelial-mesenchymal transition, stemness and migratory ability of liver cancer stem cells. Oncol Rep 34(6):2977.
[12] Stephan M, Manish S, Alf S, Julio V, Pützer Brigitte M (2018) Emerging functional markers for cancer stem cell-based therapies: Understanding signaling networks for targeting metastasis. Semin Cancer Biol 53: S1044579X1830018X-.
[13] Cristóbal Ion, Rincón Raúl, Rebeca M, Federico R, García-Foncillas Jesús (2014) Role of oncogenic k-ras in cancer stem cell activation by aberrant wnt/β-catenin signaling. J Natl Cancer Inst 8: djt373.
[14] L Ciuffreda, I Falcone, UC Incani, A Del Curatolo, F Conciatori, S Matteoni, S Vari, V Vaccaro, F Cognetti, M Milella (2014) PTEN expression and function in adult cancer stem cells and prospects for therapeutic targeting. Adv Biol Regul 56;66-80.
[15] Csiszar K (2001) Lysyl oxidases: a novel multifunctional amine oxidase family Prog Nucleic Acid Res Mol Biol 70:1-32.
[16] Vallet SD, Ricard-Blum S (2019) Lysyl oxidases: from enzyme activity to extracellular matrix cross-links. Essays Biochem 63(3):349-364.
[17] Lucero HA, Kagan HM (2006) Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell Mol Life Sci 63(19-20):2304-2316.
[18] Akiri G, Sabo E, Dafni H, et al (2003) Lysyl oxidase‑related protein‑1 promotes tumor fibrosis and tumor progression in vivo. Cancer Res Apr 1;63(7):1657-66. Erratum in: Cancer Res. 2004 Mar 15;64(6):2306. PMID: 12670920.
[19] Peinado H, Moreno‑Bueno G, Hardisson D, et al (2008) Lysyl oxidase‑like 2 as a new poor prognosis marker of squamous cell carcinomas. Cancer Res 68:4541‑4550.
[20] Martin A, Salvador F, Moreno-Bueno G, Floristan A, Ruiz-Herguido C, Cuevas EP (2015) Lysyl oxidase-like 2 represses Notch1 expression in the skin to promote squamous cell carcinoma progression. EMBO J 34(8):1090-1109.
[21] Hong X, Yu J (2019) Silencing of lysyl oxidase‑like 2 inhibits the migration, invasion and epithelial‑to‑mesenchymal transition of renal cell carcinoma cells through the Src/FAK signaling pathway. Int J Oncol 54(5):1676-1690.
[22] Cuevas EP, Eraso P, MJ Mazón, et al (2017) LOXL2 drives epithelial-mesenchymal transition via activation of IRE1-XBP1 signalling pathway. Sci Rep 7:44988.
[23] Carmen C, Aki P W, Huang Y P, et al (2014) Lysyl oxidase-like 2 is critical to tumor microenvironment and metastatic niche formation in hepatocellular carcinoma. Hepatology 60(5):1645-1658.
[24] Wu L, Zhu Y (2015) The function and mechanisms of action of LOXL2 in cancer. Int J Mol Med 36(5):1200-4.
[25] Liang C, Wang X, Zhang Z, et al (2020) ACOT11 promotes cell proliferation, migration and invasion in lung adenocarcinoma. Transl Lung Cancer Res 9(5):1885-1903.
[26] Saleem M, Qadir MI, Perveen N, et al (2013) Inhibitors of Apoptotic Proteins: New Targets for Anticancer Therapy. Chem Biol Drug Design 82(3):243-251.
[27] Lee TKW, Cheung VCH, Ng IOL (2013) Liver tumor-initiating cells as a therapeutic target for hepatocellular carcinoma. Cancer Lett 338(1):101-109.
[28] Booth LA, Tavallai S, Hamed HA, Cruickshanks N, Dent P (2014) The role of cell signalling in the crosstalk between autophagy and apoptosis. Cell Signal Mar;26(3):549-55.
[29] Wu L H, Zhang Y, Zhu Y, et al (2015) Mechanism Analyses for Elucidating the Role of LOXL2 knockdown in Hepatocellular Carcinoma. J Agr Sci Tech 5(5):370-379.
[30] Frazzi R (2021) BIRC3 and BIRC5: multi‐faceted inhibitors in cancer. Cell Biosci Jan 7;11(1):8. doi: 10.1186/s13578-020-00521-0.
[31] Smolewski P, Robak T (2011) Inhibitors of apoptosis proteins (IAPs) as potential molecular targets for therapy of hematological malignancies. Curr Mol Med 11(8):633-649.
[32] Fu PY, Hu B, Ma XL, et al (2019) New insight into BIRC3: A novel prognostic indicator and a potential therapeutic target for liver cancer. J Cell Biochem 120(1):6035-6045.
[33] Arkin M (2005) Protein-protein interactions and cancer: small molecules going in for the kill. Curr Op Chem Biol 9(3):317-324.
[34] Gu L, Zhu N, Zhang H, et al (2009) Regulation of XIAP translation and induction by MDM2 following irradiation. Can Cell 15:363-375.
[35] Moreno-Càceres, Joaquim, Fabregat I (2015) Apoptosis in liver carcinogenesis and chemotherapy. Hepat Oncol 2(4):381-397.
[36] Zhao Y, Yu H, Hu W (2014) The regulation of MDM2 oncogene and its impact on human cancers. Acta Biochim Biophys Sin 46(3):180-189.
[37] Cao H, Chen X, Wang Z, et al (2020) The role of MDM2–p53 axis dysfunction in the hepatocellular carcinoma transformation. Cell Death Discov 6:1-4.
[38] Galluzzi, L, Pietrocola, F, Pedro JMB, Amaravadi, RK, Baehrecke, EH, Cecconi F, et al (2015) Autophagy in malignant transformation and cancer progression. EMBO J 34(7):856-80.
[39] Song YJ, Zhang SS, Guo XL (2013) Autophagy contributes to the survival of CD133+ liver cancer stem cells in the hypoxic and nutrient-deprived tumor microenvironment. Cancer Lett 339(1):70-81.
[40] Li J, Hu SB, Wang LY (2017) Autophagy-dependent generation of Axin2+ cancer stem-like cells promotes hepatocarcinogenesis in liver cirrhosis. Oncogene 36(48).
[41] Liu K, Lee J, Kim JY, et al (2017) Mitophagy Controls the Activities of Tumor Suppressor p53 to Regulate Hepatic Cancer Stem Cells. Mol Cell 68(2):281.
[42] He W, Wang Q, Xu J, et al (2012) Attenuation of TNFSF10/TRAIL-induced apoptosis by an autophagic survival pathway involving TRAF2- and RIPK1/RIP1-mediated MAPK8/JNK activation. Autophagy 8(12):1811-1821.
[43] Comb WC, Cogswell P, Sitcheran R, et al (2011) IKK-dependent, NF-κB-independent control of autophagic gene expression. Oncogene 30(14):1727.