1 Ahn, Y., Jang, Y., Selvapalam, N., Yun, G. & Kim, K. Supramolecular velcro for reversible underwater adhesion. Angew. Chem. Int. Ed. 52, 3140-3144 (2013).
2 Guo, J., Yuan, C., Guo, M., Wang, L. & Yan, F. Flexible and voltage-switchable polymer velcro constructed using host–guest recognition between poly (ionic liquid) strips. Chem. Sci. 5, 3261-3266 (2014).
3 Chen, F., Ren, Y., Guo, J. & Yan, F. Thermo-and electro-dual responsive poly (ionic liquid) electrolyte based smart windows. Chem. Commun. 53, 1595-1598 (2017).
4 Jiang, H., Kelch, S. & Lendlein, A. Polymers move in response to light. Adv. Mater. 18, 1471-1475 (2006).
5 Li, J. et al. Enhanced photocatalytic activity of g-C3N4-ZnO/HNTs composite heterostructure photocatalysts for degradation of tetracycline under visible light irradiation. RSC Adv. 5, 91177-91189., doi: 10.1039/C5RA17360D (2015).
6 Roy, D., Brooks, W. L. & Sumerlin, B. S. New directions in thermoresponsive polymers. Chem. Soc. Rev. 42, 7214-7243 (2013).
7 Xiao, Y.-Y. et al. Light-, pH-and thermal-responsive hydrogels with the triple-shape memory effect. Chem. Commun. 52, 10609-10612 (2016).
8 Moon, H. C., Lodge, T. P. & Frisbie, C. D. Solution processable, electrochromic ion gels for sub-1 V, flexible displays on plastic. Chem. Mater. 27, 1420-1425 (2015).
9 Beaujuge, P. M. & Reynolds, J. R. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 110, 268-320 (2010).
10 Massaro, M. et al. Design of PNIPAAM covalently grafted on halloysite nanotubes as a support for metal-based catalysts. RSC adv. 6, 55312-55318 (2016).
11 Shibayama, M., Suetoh, Y. & Nomura, S. Structure relaxation of hydrophobically aggregated poly (N-isopropylacrylamide) in water. Macromolecules 29, 6966-6968 (1996).
12 Stodolak-Zych, E. et al. Spectroscopic studies of the influence of CNTs on the thermal conversion of PAN fibrous membranes to carbon nanofibers. J. Mol. Struct. 1126, 94-102, doi:https://doi.org/10.1016/j.molstruc.2016.01.022 (2016).
13 Sheikhi, M. et al. Adsorption properties of the molecule resveratrol on CNT(8,0-10) nanotube: Geometry optimization, molecular structure, spectroscopic (NMR, UV/Vis, excited state), FMO, MEP and HOMO-LUMO investigations. J. Mol. Struct. 1160, 479-487, doi:https://doi.org/10.1016/j.molstruc.2018.01.005 (2018).
14 khosroshahy, M. B., Daliri, M. S., Abdoli, A., Navi, K. & Bagherzadeh, N. A 3D universal structure based on molecular-QCA and CNT technologies. J. Mol. Struct. 1119, 86-95, doi:https://doi.org/10.1016/j.molstruc.2016.04.025 (2016).
15 Fan, J.-J. et al. A novel strategy for sulfur-doped carbon nanotube as a highefficient Pt catalyst support toward methanol oxidation reaction. J. Mater. Chem. A 5, 19467-19475 . (2017).
16 Hiltrop, D. et al. Pd deposited on functionalized carbon nanotubes for the electrooxidation of ethanol in alkaline media. Electrochem commun. 63, 30-33. (2016).
17 Ombaka, L. M., Ndungu, P. & Nyamori, V. O. Usage of carbon nanotubes as platinum and nickel catalyst support in dehydrogenation reactions. Catal. Today 217, 65-75. (2013).
18 Wang, W., Chu, W., Wang, N., Yang, W. & Jiang, C. Mesoporous nickel catalyst supported on multi-walled carbon nanotubes for carbon dioxide methanation. Int. J. Hydrogen Energy 41, 967-975. (2016).
19 Sadjadi, S., Heravi, M. M. & Raja, M. Combination of carbon nanotube and cyclodextrin nanosponge chemistry to develop a heterogeneous Pd-based catalyst for ligand and copper free C-C coupling reactions. Carbohyd. Polym. 185, 48-55, doi:https://doi.org/10.1016/j.carbpol.2018.01.020 (2018).
20 Metin, Ö., Can, H., Şendil, K. & Gültekin, M. S. Monodisperse Ag/Pd core/shell nanoparticles assembled on reduced graphene oxide as highly efficient catalysts for the transfer hydrogenation of nitroarenes. J. Colloid Interface Sci. 498, 378-386 (2017).
21 Parida, K., Varadwaj, G. B. B., Sahu, S. & Sahoo, P. C. Schiff base Pt (II) complex intercalated montmorillonite: a robust catalyst for hydrogenation of aromatic nitro compounds at room temperature. Ind. Eng. Chem. Res. 50, 7849-7856 (2011).
22 Song, J. et al. Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions. Appl. Catal., B. 227, 386-408 (2018).
23 Vahedi-Notash, N., Heravi, M. M., Alhampour, A. & Mohammadi, P. Ag nanoparticles immobilized on new mesoporous triazine-based carbon (MTC) as green and recoverable catalyst for reduction of nitroaromatic in aqueous media. Sci. Rep. 10, 19322, doi:10.1038/s41598-020-74232-4 (2020).
24 Sadjadi, S. Halloysite-based hybrids/composites in catalysis. Appl. Clay Sci. 189, 105537, doi:https://doi.org/10.1016/j.clay.2020.105537 (2020).
25 Leonhardt, S. E. S. et al. Chitosan as a support for heterogeneous Pd catalysts in liquid phase catalysis. Appl. Catal. A-Gen. 379, 30-37, doi:https://doi.org/10.1016/j.apcata.2010.02.029 (2010).
26 Sadjadi, S. Magnetic (poly) ionic liquids: A promising platform for green chemistry. J. Mol. Liqu. 323, 114994, doi:https://doi.org/10.1016/j.molliq.2020.114994 (2021).
27 Karimi, F., Zolfigol, M. A. & Yarie, M. A novel and reusable ionically tagged nanomagnetic catalyst: Application for the preparation of 2-amino-6-(2-oxo-2H-chromen-3-yl)-4-arylnicotinonitriles via vinylogous anomeric based oxidation. Mol. Catal. 463, 20-29, doi:https://doi.org/10.1016/j.mcat.2018.11.009 (2019).
28 Sadjadi, S., Akbari, M. & Heravi, M. M. Palladated Nanocomposite of Halloysite–Nitrogen-Doped Porous Carbon Prepared from a Novel Cyano-/Nitrile-Free Task Specific Ionic Liquid: An Efficient Catalyst for Hydrogenation. ACS Omega 4, 19442-19451, doi:10.1021/acsomega.9b02887 (2019).
29 Öztürk, B. Ö. Ammonium tagged Hoveyda-Grubbs catalysts immobilized on magnetically separable core-shell silica supports for ring-closing metathesis reactions. Microporous Mesoporous Mater. 267, 249-256, doi:https://doi.org/10.1016/j.micromeso.2018.04.002 (2018).
30 Teimuri-Mofrad, R., Gholamhosseini-Nazari, M., Payami, E. & Esmati, S. Ferrocene-tagged ionic liquid stabilized on silica-coated magnetic nanoparticles: Efficient catalyst for the synthesis of 2-amino-3-cyano-4H-pyran derivatives under solvent-free conditions. Appl. Organomet. Chem. 32, e3955, doi:10.1002/aoc.3955 (2018).
31 Rafiee, E. & Kahrizi, M. Mechanistic investigation of Heck reaction catalyzed by new catalytic system composed of Fe3O4@OA–Pd and ionic liquids as co-catalyst. J. Mol. Liq. 218, 625-631, doi:https://doi.org/10.1016/j.molliq.2016.02.055 (2016).
32 Feng, H., He, C., Ma, G. & Zhiani, R. Imidazolium ionic liquid functionalized nano dendritic CuAl2O4 for visible light-driven photocatalytic degradation of dye pollutant. Inorg. Chem. Commun. 132, 108818, doi:https://doi.org/10.1016/j.inoche.2021.108818 (2021).
33 Afzali, E., Mirjafary, Z., Akbarzadeh, A. & Saeidian, H. vvComplexation of copper ion-containing immobilized ionic liquid in designed hierarchical-functionalized layered double hydroxide nanoreactor for azide–alkyne cycloaddition reaction. Inorg. Chem. Commun. 132, 108858, doi:https://doi.org/10.1016/j.inoche.2021.108858 (2021).
34 Tabrizi, M. et al. Efficient hydro-finishing of polyalfaolefin based lubricants under mild reaction condition using Pd on ligands decorated halloysite. J. Colloid Interface Sci. 581, 939-953, doi:https://doi.org/10.1016/j.jcis.2020.08.112 (2021).
35 Sadjadi, S., Lazzara, G., Malmir, M. & Heravi, M. M. Pd nanoparticles immobilized on the poly-dopamine decorated halloysite nanotubes hybridized with N-doped porous carbon monolayer: A versatile catalyst for promoting Pd catalyzed reactions. J. Catal. 366, 245-257, doi:https://doi.org/10.1016/j.jcat.2018.08.013 (2018).
36 Sadjadi, S., Akbari, M., Léger, B., Monflier, E. & Heravi, M. M. Eggplant-Derived Biochar-Halloysite Nanocomposite as Supports of Pd Nanoparticles for the Catalytic Hydrogenation of Nitroarenes in the Presence of Cyclodextrin. ACS Sustain. Chem. Eng. 7, 6720-6731, doi:10.1021/acssuschemeng.8b05992 (2019).
37 Karimi, S. et al. Pd on nitrogen rich polymer–halloysite nanocomposite as an environmentally benign and sustainable catalyst for hydrogenation of polyalfaolefin based lubricants. J. Ind. Eng. Chem. 97, 441-451, doi:https://doi.org/10.1016/j.jiec.2021.02.031 (2021).
38 Sadjadi, S., Koohestani, F. & Heravi, M. M. Fabrication of a metal free catalyst for chemical reactions through decoration of chitosan with ionic liquid terminated dendritic moiety. Sci. Rep. 10, 19666, doi:10.1038/s41598-020-76795-8 (2020).
39 Sadjadi, S., Malmir, M., Lazzara, G., Cavallaro, G. & Heravi, M. M. Preparation of palladated porous nitrogen-doped carbon using halloysite as porogen: disclosing its utility as a hydrogenation catalyst. Sci. Rep. 10, 2039, doi:10.1038/s41598-020-59003-5 (2020).
40 Mallik, S., Dash, S. S., Parida, K. M. & Mohapatra, B. K. Synthesis, characterization, and catalytic activity of phosphomolybdic acid supported on hydrous zirconia. J. Colloid Interface Sci. 300, 237–243. (2006).
41 Gao, C., Möhwald, H. & Shen, J. Thermosensitive poly (allylamine)-g-poly (N-isopropylacrylamide): synthesis, phase separation and particle formation. Polymer 46, 4088-4097 (2005).
42 Sadjadi, S. & Koohestani, F. Pd immobilized on polymeric network containing imidazolium salt, cyclodextrin and carbon nanotubes: Efficient and recyclable catalyst for the hydrogenation of nitroarenes in aqueous media. J. Mol. Liq. 301, 112414, doi:https://doi.org/10.1016/j.molliq.2019.112414 (2020).
43 Sadjadi, S., Koohestani, F. & Heravi, M. Biochar-Based Graphitic Carbon Nitride Adorned with Ionic Liquid Containing Acidic Polymer: A Versatile, Non-Metallic Catalyst for Acid Catalyzed Reaction. Molecules 25, 5958 (2020).