1. Valino AD, Dizon JRC, Espera AH, Chen Q, Messman J, Advincula RC (2019) Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Progress in Polymer Science 98:101162.
2. Penumakala PK, Santo J, Thomas A (2020) A critical review on the fused deposition modeling of thermoplastic polymer composites. Composites Part B: Engineering 201:108336.
3. Olmos D, González-Benito J (2007) Visualization of the morphology at the interphase of glass fibre reinforced epoxy-thermoplastic polymer composites. European Polymer Journal 43 (4):1487-1500.
4. Bhattacharjee Y, Biswas S, Bose S (2020) Chapter 5 - Thermoplastic polymer composites for EMI shielding applications. In: Joseph K, Wilson R, George G (eds) Materials for Potential EMI Shielding Applications. Elsevier, pp 73-99.
5. Santoro D, Bellisario D, Quadrini F, Santo L (2020) Anisogrid thermoplastic composite lattice structure by innovative out-of-autoclave process. The International Journal of Advanced Manufacturing Technology 109 (7):1941-1952.
6. Saenz-Castillo D, Martín MI, García-Martínez V, Ramesh A, Battley M, Güemes A (2020) A comparison of mechanical properties and X-ray tomography analysis of different out-of-autoclave manufactured thermoplastic composites. Journal of Reinforced Plastics and Composites 39 (19-20):703-720.
7. Asim M, Jawaid M, Saba N, Ramengmawii, Nasir M, Sultan MTH (2017) 1 - Processing of hybrid polymer composites—a review. In: Thakur VK, Thakur MK, Gupta RK (eds) Hybrid Polymer Composite Materials. Woodhead Publishing, pp 1-22.
8. Pantani R, Coccorullo I, Speranza V, Titomanlio G (2005) Modeling of morphology evolution in the injection molding process of thermoplastic polymers. Progress in Polymer Science 30 (12):1185-1222.
9. Sposito A, Hoang V, DeVoe DL (2016) Rapid real-time PCR and high resolution melt analysis in a self-filling thermoplastic chip. Lab on a Chip 16 (18):3524-3531.
10. Pantelakis SG, Katsiropoulos CV, Labeas GN, Sibois H (2009) A concept to optimize quality and cost in thermoplastic composite components applied to the production of helicopter canopies. Composites Part A: Applied Science and Manufacturing 40 (5):595-606.
11. Baho O, Ausias G, Grohens Y, Férec J (2020) Simulation of laser heating distribution for a thermoplastic composite: effects of AFP head parameters. The International Journal of Advanced Manufacturing Technology 110 (7):2105-2117.
12. Chen J, Fu K, Li Y (2021) Understanding processing parameter effects for carbon fibre reinforced thermoplastic composites manufactured by laser-assisted automated fibre placement (AFP). Composites Part A: Applied Science and Manufacturing 140:106160.
13. Dhinakaran V, Surendar KV, Hasunfur Riyaz MS, Ravichandran M (2020) Review on study of thermosetting and thermoplastic materials in the automated fiber placement process. Materials Today: Proceedings 27:812-815.
14. Oromiehie E, Gain AK, Prusty BG (2021) Processing parameter optimisation for automated fibre placement (AFP) manufactured thermoplastic composites. Composite Structures 272:114223.
15. Schuster A, Mayer M, Willmeroth M, Brandt L, Kupke M (2020) Inline Quality Control for Thermoplastic Automated Fibre Placement. Procedia Manufacturing 51:505-511.
16. Peeters D, Deane M, O’Higgins R, Weaver PM (2020) Morphology of ply drops in thermoplastic composite materials manufactured using laser-assisted tape placement. Composite Structures 251:112638.
17. Velu R, Vaheed N, Ramachandran MK, Raspall F (2020) Experimental investigation of robotic 3D printing of high-performance thermoplastics (PEEK): a critical perspective to support automated fibre placement process. The International Journal of Advanced Manufacturing Technology 108 (4):1007-1025.
18. Hosseini SMA, Baran I, van Drongelen M, Akkerman R (2021) On the temperature evolution during continuous laser-assisted tape winding of multiple C/PEEK layers: The effect of roller deformation. International Journal of Material Forming 14 (2):203-221.
19. Stokes-Griffin CM, Compston P (2016) Investigation of sub-melt temperature bonding of carbon-fibre/PEEK in an automated laser tape placement process. Composites Part A: Applied Science and Manufacturing 84:17-25.
20. Baho O, Ausias G, Grohens Y, Barile M, Lecce L, Férec J (2021) Automated fibre placement process for a new hybrid material: A numerical tool for predicting an efficient heating law. Composites Part A: Applied Science and Manufacturing 144:106360.
21. Arns J-Y, Oromiehie E, Arns C, Prusty BG (2021) Micro-CT analysis of process-induced defects in composite laminates using AFP. Materials and Manufacturing Processes:1-10.
22. Grouve WJB, Warnet LL, Rietman B, Visser HA, Akkerman R (2013) Optimization of the tape placement process parameters for carbon–PPS composites. Composites Part A: Applied Science and Manufacturing 50:44-53.
23. Geng P, Zhao J, Wu W, Wang Y, Wang B, Wang S, Li G (2018) Effect of Thermal Processing and Heat Treatment Condition on 3D Printing PPS Properties. Polymers 10 (8).
24. Barbosa LCM, de Souza SDB, Botelho EC, Cândido GM, Rezende MC (2019) Fractographic evaluation of welded joints of PPS/glass fiber thermoplastic composites. Engineering Failure Analysis 102:60-68.
25. Batista NL, Olivier P, Bernhart G, Rezende MC, Botelho EC (2016) Correlation between degree of crystallinity, morphology and mechanical properties of PPS/carbon fiber laminates. Materials Research 19 (1):195-201.
26. Dai SC, Ye L (2002) Characteristics of CF/PEI tape winding process with on-line consolidation. Composites Part A: Applied Science and Manufacturing 33 (9):1227-1238.
27. Hou M, Ye L, Lee HJ, Mai YW (1998) Manufacture of a carbon-fabric-reinforced polyetherimide (CF/PEI) composite material. Composites Science and Technology 58 (2):181-190.
28. Çelik O, Peeters D, Dransfeld C, Teuwen J (2020) Intimate contact development during laser assisted fiber placement: Microstructure and effect of process parameters. Composites Part A: Applied Science and Manufacturing 134:105888.
29. Doll G Thermoplastic composites technologies for future aircraft structures. In: Liebl J (ed) Vehicles of Tomorrow 2019, Wiesbaden, 2021// 2021. Springer Fachmedien Wiesbaden, pp 129-138
30. Kollmannsberger A, Lichtinger R, Hohenester F, Ebel C, Drechsler K (2017) Numerical analysis of the temperature profile during the laser-assisted automated fiber placement of CFRP tapes with thermoplastic matrix. Journal of Thermoplastic Composite Materials 31:089270571773830.
31. Levy A, Heider D, Tierney J, Gillespie JW (2013) Inter-layer thermal contact resistance evolution with the degree of intimate contact in the processing of thermoplastic composite laminates. Journal of Composite Materials 48 (4):491-503.
32. Stokes-Griffin CM, Compston P (2015) The effect of processing temperature and placement rate on the short beam strength of carbon fibre–PEEK manufactured using a laser tape placement process. Composites Part A: Applied Science and Manufacturing 78:274-283.
33. Stokes-Griffin CM, Kollmannsberger A, Compston P, Drechsler K (2019) The effect of processing temperature on wedge peel strength of CF/PA6 laminates manufactured in a laser tape placement process. Composites Part A: Applied Science and Manufacturing 121:84-91.
34. Venkatesan C, Velu R, Vaheed N, Raspall F, Tay T-E, Silva A (2020) Effect of process parameters on polyamide-6 carbon fibre prepreg laminated by IR-assisted automated fibre placement. The International Journal of Advanced Manufacturing Technology 108 (4):1275-1284.
35. Del Castillo DS, Martin I, Rodriguez-Lence F, GUEMES A On-line monitoring of a laser-assisted fiber placement process with CFR thermoplastic matrix by using fiber Bragg gratings. In: 8th European workshop on structural health monitoring (EWSHM 2016), 2016.
36. Hosseini SA, Baran I, van Drongelen M, Akkerman R (2021) On the temperature evolution during continuous laser-assisted tape winding of multiple C/PEEK layers: The effect of roller deformation. International Journal of Material Forming 14 (2):203-221
37. Comer AJ, Ray D, Obande WO, Jones D, Lyons J, Rosca I, O’ Higgins RM, McCarthy MA (2015) Mechanical characterisation of carbon fibre–PEEK manufactured by laser-assisted automated-tape-placement and autoclave. Composites Part A: Applied Science and Manufacturing 69:10-20.
38. Azab M, Parry G, Estevez R (2020) An analytical model for DCB/wedge tests based on Timoshenko beam kinematics for accurate determination of cohesive zone lengths. International Journal of Fracture 222 (1):137-153
39. Yan T, Yan F, Li S, Li M, Liu Y, Zhang M, Jin L, Shang L, Liu L, Ao Y (2020) Interfacial enhancement of CF/PEEK composites by modifying water-based PEEK-NH2 sizing agent. Composites Part B: Engineering 199:108258.
40. Lu C, Xu N, Zheng T, Zhang X, Lv H, Lu X, Xiao L, Zhang D (2019) The Optimization of Process Parameters and Characterization of High-Performance CF/PEEK Composites Prepared by Flexible CF/PEEK Plain Weave Fabrics. Polymers 11 (1).
41. Yan M, Tian X, Peng G, Li D, Zhang X (2018) High temperature rheological behavior and sintering kinetics of CF/PEEK composites during selective laser sintering. Composites Science and Technology 165:140-147.