1. Calabro M, Rinaldi C, Santoro G, Crisafulli C (2021) The biological pathways of Alzheimer disease: a review. AIMS Neurosci 8 (1):86-132. doi:10.3934/Neuroscience.2021005
2. Wang J, Gu BJ, Masters CL, Wang YJ (2017) A systemic view of Alzheimer disease - insights from amyloid-beta metabolism beyond the brain. Nat Rev Neurol 13 (10):612-623
3. Pujol-Gimenez J, Martisova E, Perez-Mediavilla A, Lostao MP, Ramirez MJ (2014) Expression of the glucose transporter GLUT12 in Alzheimer's disease patients. J Alzheimers Dis 42 (1):97-101. doi:10.3233/JAD-132498
4. Mosconi L, De Santi S, Li J, Tsui WH, Li Y, Boppana M, Laska E, Rusinek H, de Leon MJ (2008) Hippocampal hypometabolism predicts cognitive decline from normal aging. Neurobiol Aging 29 (5):676-692. doi:10.1016/j.neurobiolaging.2006.12.008
5. Chen Z, Zhong C (2013) Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol 108:21-43. doi:10.1016/j.pneurobio.2013.06.004
6. McEwen BS, Reagan LP (2004) Glucose transporter expression in the central nervous system: relationship to synaptic function. Eur J Pharmacol 490 (1-3):13-24. doi:10.1016/j.ejphar.2004.02.041
7. Szablewski L (2017) Glucose Transporters in Brain: In Health and in Alzheimer's Disease. J Alzheimers Dis 55 (4):1307-1320. doi:10.3233/JAD-160841
8. Li H, Lan J, Wang G, Guo K, Han C, Li X, Hu J, Cao Z, Luo X (2020) KDM4B facilitates colorectal cancer growth and glucose metabolism by stimulating TRAF6-mediated AKT activation. J Exp Clin Cancer Res 39 (1):12. doi:10.1186/s13046-020-1522-3
9. Perluigi M, Pupo G, Tramutola A, Cini C, Coccia R, Barone E, Head E, Butterfield DA, Di Domenico F (2014) Neuropathological role of PI3K/Akt/mTOR axis in Down syndrome brain. Biochim Biophys Acta 1842 (7):1144-1153. doi:10.1016/j.bbadis.2014.04.007
10. Ali T, Kim T, Rehman SU, Khan MS, Amin FU, Khan M, Ikram M, Kim MO (2018) Natural Dietary Supplementation of Anthocyanins via PI3K/Akt/Nrf2/HO-1 Pathways Mitigate Oxidative Stress, Neurodegeneration, and Memory Impairment in a Mouse Model of Alzheimer's Disease. Mol Neurobiol 55 (7):6076-6093. doi:10.1007/s12035-017-0798-6
11. Llanos-Gonzalez E, Henares-Chavarino AA, Pedrero-Prieto CM, Garcia-Carpintero S, Frontinan-Rubio J, Sancho-Bielsa FJ, Alcain FJ, Peinado JR, Rabanal-Ruiz Y, Duran-Prado M (2020) Interplay Between Mitochondrial Oxidative Disorders and Proteostasis in Alzheimer's Disease. Front Neurosci-Switz 13. doi:ARTN 1444
10.3389/fnins.2019.01444
12. Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M (2017) Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends Pharmacol Sci 38 (7):592-607. doi:10.1016/j.tips.2017.04.005
13. Chen YY, Wang MC, Wang YN, Hu HH, Liu QQ, Liu HJ, Zhao YY (2020) Redox signaling and Alzheimer's disease: from pathomechanism insights to biomarker discovery and therapy strategy. Biomark Res 8:42. doi:10.1186/s40364-020-00218-z
14. Avery SV (2011) Molecular targets of oxidative stress. Biochem J 434 (2):201-210. doi:10.1042/BJ20101695
15. Grant CM, Quinn KA, Dawes IW (1999) Differential protein S-thiolation of glyceraldehyde-3-phosphate dehydrogenase isoenzymes influences sensitivity to oxidative stress. Mol Cell Biol 19 (4):2650-2656. doi:10.1128/MCB.19.4.2650
16. Huang K, Liang Q, Zhou Y, Jiang LL, Gu WM, Luo MY, Tang YB, Wang Y, Lu W, Huang M, Zhang SZ, Zhuang GL, Dai Q, Shen QC, Zhang J, Lei HM, Zhu L, Ye DY, Chen HZ, Zhou L, Shen Y (2019) A Novel Allosteric Inhibitor of Phosphoglycerate Mutase 1 Suppresses Growth and Metastasis of Non-Small-Cell Lung Cancer. Cell Metab 30 (6):1107-1119 e1108. doi:10.1016/j.cmet.2019.09.014
17. Pei L, Kong Y, Shao C, Yue X, Wang Z, Zhang N (2018) Heme oxygenase-1 induction mediates chemoresistance of breast cancer cells to pharmorubicin by promoting autophagy via PI3K/Akt pathway. J Cell Mol Med 22 (11):5311-5321. doi:10.1111/jcmm.13800
18. Liu F, Wu X, Jiang X, Qian Y, Gao J (2018) Prolonged inhibition of class I PI3K promotes liver cancer stem cell expansion by augmenting SGK3/GSK-3beta/beta-catenin signalling. J Exp Clin Cancer Res 37 (1):122. doi:10.1186/s13046-018-0801-8
19. Liu Y, Cao Y, Zhang W, Bergmeier S, Qian Y, Akbar H, Colvin R, Ding J, Tong L, Wu S, Hines J, Chen X (2012) A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther 11 (8):1672-1682. doi:10.1158/1535-7163.MCT-12-0131
20. Jo H, Mondal S, Tan D, Nagata E, Takizawa S, Sharma AK, Hou Q, Shanmugasundaram K, Prasad A, Tung JK, Tejeda AO, Man H, Rigby AC, Luo HR (2012) Small molecule-induced cytosolic activation of protein kinase Akt rescues ischemia-elicited neuronal death. Proc Natl Acad Sci U S A 109 (26):10581-10586. doi:10.1073/pnas.1202810109
21. Wang X, Wang W, Li L, Perry G, Lee HG, Zhu X (2014) Oxidative stress and mitochondrial dysfunction in Alzheimer's disease. Biochim Biophys Acta 1842 (8):1240-1247. doi:10.1016/j.bbadis.2013.10.015
22. Campos-Pena V, Toral-Rios D, Becerril-Perez F, Sanchez-Torres C, Delgado-Namorado Y, Torres-Ossorio E, Franco-Bocanegra D, Carvajal K (2017) Metabolic Syndrome as a Risk Factor for Alzheimer's Disease: Is Abeta a Crucial Factor in Both Pathologies? Antioxid Redox Signal 26 (10):542-560. doi:10.1089/ars.2016.6768
23. Yang S, Zhou F, Ma M, Yuan Y, Zhao S, Yu P (2020) Neuronostatin Promotion Soluble Abeta1-42 Oligomers: Induced Dysfunctional Brain Glucose Metabolism in Mice. Neurochem Res 45 (10):2474-2486. doi:10.1007/s11064-020-03106-y
24. Allen A, Messier C (2013) Plastic changes in the astrocyte GLUT1 glucose transporter and beta-tubulin microtubule protein following voluntary exercise in mice. Behav Brain Res 240:95-102. doi:10.1016/j.bbr.2012.11.025
25. Choeiri C, Staines W, Miki T, Seino S, Messier C (2005) Glucose transporter plasticity during memory processing. Neuroscience 130 (3):591-600. doi:10.1016/j.neuroscience.2004.09.011
26. Kumari U, Heese K (2010) Cardiovascular dementia - a different perspective. Open Biochem J 4:29-52. doi:10.2174/1874091X01004010029
27. <Amyloid b-Peptide Impairs Glucose Transport in Hippocampal and__Cortical Neurons_ Involvement of Membrane Lipid Peroxidation.pdf>.
28. Kumar M, Bansal N (2021) Implications of Phosphoinositide 3-Kinase-Akt (PI3K-Akt) Pathway in the Pathogenesis of Alzheimer's Disease. Mol Neurobiol. doi:10.1007/s12035-021-02611-7
29. Zhao Y, Hu X, Liu Y, Dong S, Wen Z, He W, Zhang S, Huang Q, Shi M (2017) ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer 16 (1):79. doi:10.1186/s12943-017-0648-1
30. De Strooper B, Vassar R, Golde T (2010) The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 6 (2):99-107. doi:10.1038/nrneurol.2009.218
31. Gwon AR, Park JS, Arumugam TV, Kwon YK, Chan SL, Kim SH, Baik SH, Yang S, Yun YK, Choi Y, Kim S, Tang SC, Hyun DH, Cheng AW, Dann CE, Bernier M, Lee J, Markesbery WR, Mattson MP, Jo DG (2012) Oxidative lipid modification of nicastrin enhances amyloidogenic ?-secretase activity in Alzheimer's disease. Aging Cell 11 (4):559-568
32. <Clearance of amyloid β-peptide.pdf>.
33. Selkoe DJ (2001) Clearing the brain's amyloid cobwebs. Neuron 32 (2):177-180
34. Tanzi RE, Moir RD, Wagner SL (2004) Clearance of Alzheimer's Abeta peptide: the many roads to perdition. Neuron 43 (5):605-608. doi:10.1016/j.neuron.2004.08.024
35. Walia V, Kaushik D, Mittal V, Kumar K, Verma R, Parashar J, Akter R, Rahman MH, Bhatia S, Al-Harrasi A, Karthika C, Bhattacharya T, Chopra H, Ashraf GM (2021) Delineation of Neuroprotective Effects and Possible Benefits of AntioxidantsTherapy for the Treatment of Alzheimer's Diseases by Targeting Mitochondrial-Derived Reactive Oxygen Species: Bench to Bedside. Molecular Neurobiology
36. Winkler EA, Nishida Y, Sagare AP, Rege SV, Bell RD, Perlmutter D, Sengillo JD, Hillman S, Kong P, Nelson AR, Sullivan JS, Zhao Z, Meiselman HJ, Wendy RB, Soto J, Abel ED, Makshanoff J, Zuniga E, De Vivo DC, Zlokovic BV (2015) GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration. Nat Neurosci 18 (4):521-530. doi:10.1038/nn.3966