1. Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis. Nature 485, 185-194 (2012).
2. Reetz, M. T. Laboratory evolution of stereoselective enzymes: a prolific source of catalysts for asymmetric reactions. Angew. Chem. Int. Ed. 50, 138-174 (2011).
3. Denard, C. A., Ren, H. & Zhao, H. Improving and repurposing biocatalysts via directed evolution. Curr. Opin. Chem. Biol. 25, 55-64 (2015).
4. Chen, K. & Arnold, F. H. Engineering new catalytic activities in enzymes. Nat. Catal. 3, 203-213 (2020).
5. Reetz, M. T., Wilensek, S., Zha, D. & Jaeger, K.-E. Directed evolution of an enantioselective enzyme through combinatorial multiple-cassette mutagenesis. Angew. Chem. Int. Ed. 40, 3589-3591 (2001).
6. Wijma, H. J., Floor, R. J. & Janssen, D. B. Structure- and sequence-analysis inspired engineering of proteins for enhanced thermostability. Curr. Opin. Struct. Biol. 23, 588-594 (2013).
7. Planas-Iglesias, J. et al. Computational design of enzymes for biotechnological applications. Biotech. Adv. 47, 107696 (2021).
8. Verma, R., Schwaneberg, U. & Roccatano, D. Computer-aided protein directed evolution: a review of web servers, databases and other computational tools for protein engineering. Comput. Struct. Biotech. J. 2, e201209008 (2012).
9. Ebert, M. C. & Pelletier, J. N. Computational tools for enzyme improvement: why everyone can – and should – use them. Curr. Opin. Chem. Biol. 37, 89-96 (2017).
10. Osuna, S. The challenge of predicting distal active site mutations in computational enzyme design. WIREs Comp. Mol. Sci. 11, e1502 (2021).
11. Acevedo-Rocha, C. G. et al. Pervasive cooperative mutational effects on multiple catalytic enzyme traits emerge via long-range conformational dynamics. Nat. Commun. 12, 1621 (2021).
12. Otten, R. et al. How directed evolution reshapes the energy landscape in an enzyme to boost catalysis. Science 370, 1442-1446 (2020).
13. Campbell, E. et al. The role of protein dynamics in the evolution of new enzyme function. Nat. Chem. Biol. 12, 944-950 (2016).
14. Hong, N.-S. et al. The evolution of multiple active site configurations in a designed enzyme. Nat. Commun. 9, 3900 (2018).
15. Broom, A. et al. Ensemble-based enzyme design can recapitulate the effects of laboratory directed evolution in silico. Nat. Commun. 11, 4808 (2020).
16. Warshel, A. et al. Electrostatic basis for enzyme catalysis. Chem. Rev. 106, 3210-3235 (2006).
17. Kemp, D. S. & Casey, M. L. Physical organic chemistry of benzisoxazoles. II. Linearity of the Bronsted free energy relationship for the base-catalyzed decomposition of benzisoxazoles. J. Am. Chem. Soc. 95, 6670-6680 (1973).
18. Rothlisberger, D. et al. Kemp elimination catalysts by computational enzyme design. Nature 453, 190-195 (2008).
19. Blomberg, R. et al. Precision is essential for efficient catalysis in an evolved Kemp eliminase. Nature 503, 418-421 (2013).
20. Risso, V. A. et al. De novo active sites for resurrected Precambrian enzymes. Nat. Commun. 8, 16113 (2017).
21. Merski, M. & Shoichet, B. K. Engineering a model protein cavity to catalyze the Kemp elimination. Proc. Nat. Acad. Sci. U.S.A. 109, 16179–16183 (2012).
22. Debler, E. W., Müller, R., Hilvert, D. & Wilson, I. A. An aspartate and a water molecule mediate efficient acid-base catalysis in a talored antibody pocket. Proc. Nat. Acad. Sci. U. S. A. 106, 18539-18544 (2009).
23. Vaissier, V., Sharma, S. C., Schaettle, K., Zhang, T. & Head-Gordon, T. Computational optimization of electric fields for improving catalysis of a designed Kemp eliminase. ACS Cat. 8, 219-227 (2018).
24. Lamba, V. et al. Kemp eliminase activity of Ketosteroid Isomerase. Biochemistry 56, 582-591 (2017).
25. Risso, V. A. et al. Enhancing a de novo enzyme activity by computationally-focused ultra-low-throughput screening. Chem. Sci. 11, 6134-6148 (2020).
26. Li, A. et al. A redox-mediated Kemp eliminase. Nat. Commun. 8, 14876 (2017).
27. Bordeaux, M., Tyagi, V. & Fasan, R. Highly diastereoselective and enantioselective olefin cyclopropanation using engineered myoglobin-based catalysts. Angew. Chem. Int. Ed. 54, 1744-1748 (2015).
28. Yi, J., Heinecke, J., Tan, H., Ford, P. C. & Richter-Addo, G. B. The distal pocket histidine residue in horse heart myoglobin directs the O-binding mode of nitrite to the heme iron. J. Am. Chem. Soc. 131, 18119-18128 (2009).
29. Wang, B. et al., Nitrosyl myoglobins and their nitrite precursors: crystal structural and quantum mechanics and molecular mechanics theoretical investigations of preferred Fe–NO ligand orientations in myoglobin distal pockets. Biochemistry 57, 4788-4802 (2018).
30. Marshall, L. R., Zozulia, O., Lengyel-Zhand, Z. & Korendovych, I. V. Minimalist de novo design of protein catalysts. ACS Cat. 9, 9265-9275 (2019).