1. Cheon KH, Park C, Kang MH, Kang IG, Lee MK, Lee H, Kim HE, Jung HD, Jang TS. Construction of tantalum/poly(ether imide) coatings on magnesium implants with both corrosion protection and osseointegration properties. Bioact Mater. 2021;6(4):1189-1200.
2. Kumari S, Tiyyagura HR, Pottathara YB, Sadasivuni KK, Ponnamma D, Douglas TEL, Skirtach AG, Mohan MK. Surface functionalization of chitosan as a coating material for orthopaedic applications: a comprehensive review. Carbohydr Polym. 2021;255:No. 117487.
3. Pazarceviren AE, Tezcaner A, Evis Z. Multifunctional natural polymer-based metallic implant surface modifications. Biointerphases. 2021;16(2):No. 020803.
4. Chen Q, Yu S, Zhang DH, Zhang WJ, Zhang HD, Zou JC, Mao ZW, Yuan Y, Gao CY, Liu RH. Impact of antifouling PEG layer on the performance of functional peptides in regulating cell behaviors. J Am Chem Soc. 2019;141(42):16772-16780.
5. Smith AJ, Dieppe P, Vernon K, Porter M, Blom AW. Failure rates of stemmed metal-on-metal hip replacements: analysis of data from the national joint registry of england and wales. Lancet. 2012;379(9822):1199-1204.
6. Yang SS, Wang Y, Luo S, Shan CJ, Geng YB, Zhang TH, Sheng SR, Zan XJ. Building polyphenol and gelatin films as implant coating, evaluating from in vitro and in vivo performances. Colloids Surf B. 2019;181:549-560.
7. Wang YK, Teng WSY, Zhang ZJ, Zhou XZ, Ye YX, Lin P, Liu A, Wu Y, Li BH, Zhang CD, et al. A trilogy antimicrobial strategy for multiple infections of orthopedic implants throughout their life cycle. Bioact Mater. 2021;6(7):1853-1866.
8. Goodman SB, Yao ZY, Keeney M, Yang F. The future of biologic coatings for orthopaedic implants. Biomaterials. 2013;34(13):3174-3183.
9. Fang Y, Guo J, Wu D, Wu LY, Song LX, Zhang Z, Zhao YS, Chang CK. Integration analysis of JAK2 or RUNX1 mutation with bone marrow blast can improve risk stratification in the patients with lower risk myelodysplastic syndrome. Front Oncol. 2021;10:No. 610525.
10. Song K, Liu N. Effect of 1,25-dihydroxyvitamin don bone marrow mesenchymal stem cells differentiation and osteoporosis through wingless-related integration site 5 (Wnt5)/tumor growth factor-beta TGF-beta signaling pathway. J Biomater Tissue Eng. 2020;10(11):1706-1712.
11. Zhang J, Ma XY, Lin D, Shi HS, Yuan Y, Tang W, Zhou HJ, Guo H, Qian JC, Liu CS. Magnesium modification of a calcium phosphate cement alters bone marrow stromal cell behavior via an integrin-mediated mechanism. Biomaterials. 2015;53:251-264.
12. Liu W, Liu C, Liu C, Li Y, Pan L, Wang J, Jian X. Surface chemical modification of poly(phthalazinone ether nitrile ketone) through RhBMP-2 and antimicrobial peptide conjugation for enhanced osteogenic and antibacterial activities in vitro and in vivo. Chem Eng J. 2021;424:No. 130321.
13. Matter MT, Maliqi L, Keevend K, Guimond S, Ng J, Armagan E, Rottmar M, Herrmann IK. One-step synthesis of versatile antimicrobial nano-architected implant coatings for hard and soft tissue healing. ACS Appl Mater Interfaces. 2021;13(28):33300-33310.
14. Del Olmo JA, Perez-Alvarez L, Pacha-Olivenza MA, Ruiz-Rubio L, Gartziandia O, Vilas-Vilela JL, Alonso JM. Antibacterial catechol-based hyaluronic acid, chitosan and poly (n-vinyl pyrrolidone) coatings onto Ti6Al4V surfaces for application as biomedical Implant. Int J Biol Macromol. 2021;183:1222-1235.
15. Ejima H, Richardson JJ, Liang K, Best JP, van Koeverden MP, Such GK, Cui JW, Caruso F. One-step assembly of coordination complexes for versatile film and particle engineering. Science. 2013;341(6142):154-157.
16. Li X, Gao P, Tan J, Xiong K, Maitz MF, Pan C, Wu H, Chen Y, Yang Z, Huang N. Assembly of metal–phenolic/catecholamine networks for synergistically anti-inflammatory, antimicrobial, and anticoagulant coatings. ACS Appl Mater Interfaces. 2018;10(47):40844-40853.
17. Zhang B, Yao RJ, Li LH, Wang YN, Luo RF, Yang L, Wang YB. Green tea polyphenol induced Mg2+-rich multilayer conversion coating: toward enhanced corrosion resistance and promoted in situ endothelialization of AZ31 for potential cardiovascular applications. ACS Appl Mater Interfaces. 2019;11(44):41165-41177.
18. Lee S, Chang Y-Y, Lee J, Madhurakkat Perikamana SK, Kim EM, Jung Y-H, Yun J-H, Shin H. Surface engineering of titanium alloy using metal-polyphenol network coating with magnesium ions for improved osseointegration. Biomater Sci. 2020;8(12):3404-3417.
19. Zhong QZ, Pan SJ, Rahim MA, Yun G, Li JH, Ju Y, Lin ZX, Han YY, Ma YT, Richardson JJ, Caruso F. Spray assembly of metal-phenolic networks: formation, growth, and applications. ACS Appl Mater Interfaces. 2018;10(39):33721-33729.
20. Yang LW, Han LL, Ren J, Wei HL, Jia LY. Coating process and stability of metal-polyphenol film. Colloids Surf A Physicochem Eng Asp. 2015;484:197-205.
21. Li D, Xu X, Wang X, Li R, Cai C, Sun T, Zhao Y, Chen L, Xu J, Zhao N. General surface modification method for nanospheres via tannic acid-Fe layer-by-layer deposition: preparation of a magnetic nanocatalyst. ACS Appl Nano Mater. 2019;2(6):3510-3517.
22. Rahim MA, Ejima H, Cho KL, Kempe K, Mullner M, Best JP, Caruso F. Coordination-driven multistep assembly of metal-polyphenol films and capsules. Chem Mater. 2014;26(4):1645-1653.
23. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79(5):727-747.
24. Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev. 1998;56(11):317-333.
25. Lin G, Rahim MA, Leeming MG, Cortez-Jugo C, Besford QA, Ju Y, Zhong QZ, Johnston ST, Zhou JJ, Caruso F. Selective metal-phenolic assembly from complex multicomponent mixtures. ACS Appl Mater Interfaces. 2019;11(19):17714-17721.
26. Guo JL, Ping Y, Ejima H, Alt K, Meissner M, Richardson JJ, Yan Y, Peter K, von Elverfeldt D, Hagemeyer CE, Caruso F. Engineering multifunctional capsules through the assembly of metal-phenolic networks. Angew Chem Int Ed. 2014;53(22):5546-5551.
27. Xu LQ, Neoh KG, Kang ET. Natural polyphenols as versatile platforms for material engineering and surface functionalization. Prog Polym Sci. 2018;87:165-196.
28. Reitzer F, Allais M, Ball V, Meyer F. Polyphenols at interfaces. Adv Colloid Interface Sci. 2018;257:31-41.
29. Wen KS, Ruan X, Wang J, Yang L, Wei F, Zhao YX, Wang Q. Optimizing nucleophilic depolymerization of proanthocyanidins in grape seeds to dimeric proanthocyanidin b1 or b2. J Agric Food Chem. 2019;67(21):5978-5988.
30. Zhong XX, Qin BT, Dou GL, Xia C, Wang F. A chelated calcium-procyanidine-attapulgite composite inhibitor for the suppression of coal oxidation. Fuel. 2018;217:680-688.
31. Riihinen KR, Ou ZM, Godecke T, Lankin DC, Pauli GF, Wu CD. The antibiofilm activity of lingonberry flavonoids against oral pathogens is a case connected to residual complexity. Fitoterapia. 2014;97:78-86.
32. Haukioja E. Putting the insect into the birch-insect interaction. Oecologia. 2003;136(2):161-168.
33. Hou XD, Guan XQ, Cao YF, Weng ZM, Hu Q, Liu HB, Jia SN, Zang SZ, Zhou Q, Yang L, et al. Inhibition of pancreatic lipase by the constituents in St. John's Wort: in vitro and in silico investigations. Int J Biol Macromol. 2020;145:620-633.
34. Wei LH, Chen TR, Fang HB, Jin Q, Zhang SJ, Hou J, Yu Y, Dou TY, Cao YF, Guo WZ, Ge GB. Natural constituents of St. John's Wort inhibit the proteolytic activity of human thrombin. Int J Biol Macromol. 2019;134:622-630.
35. Zhu W, Yin ZQ, Zhang Q, Guo SF, Shen Y, Liu T, Liu B, Wan L, Li S, Chen X, et al. Proanthocyanidins inhibit osteoclast formation and function by inhibiting the NF-kappa B and JNK signaling pathways during osteoporosis treatment. Biochem Biophys Res Commun. 2019;509(1):294-300.
36. Rein D, Paglieroni TG, Pearson DA, Wun T, Schmitz HH, Gosselin R, Keen CL. Cocoa and wine polyphenols modulate platelet activation and function. J Nutr. 2000;130(8):2120S-2126S.
37. Zan XJ, Hoagland DA, Wang T, Peng B, Su ZH. Polyelectrolyte uptake by PEMs: impacts of molecular weight and counterion. Polymer. 2012;53(22):5109-5115.
38. Gust J, Suwalski J. Use of mssbaure-spectroscopy to study reaction-products of polyphenols and iron compounds. Corrosion. 1994;50(5):355-365.
39. Zhou YN, Xing XH, Liu ZH, Cui LW, Yu AF, Feng Q, Yang HJ. Enhanced coagulation of ferric chloride aided by tannic acid for phosphorus removal from wastewater. Chemosphere. 2008;72(2):290-298.
40. Bock CW, Markham GD, Katz AK, Glusker JP. The arrangement of first-and second-shell water molecules around metal ions: effects of charge and size. Theor Chem Acc. 2006;115(2-3):100-112.
41. Khalili AA, Ahmad MR. A Review of cell adhesion studies for biomedical and biological applications. Int J Mol Sci. 2015;16(8):18149-18184.
42. Palmer J, Flint S, Brooks J. Bacterial cell attachment, the beginning of a biofilm. J Ind Microbiol Biotechnol. 2007;34(9):577-588.
43. Lu HP, Liu Y, Guo J, Wu HL, Wang JX, Wu G. Biomaterials with antibacterial and osteoinductive properties to repair infected bone defects. Int J Mol Sci. 2016;17(3):No. 334.
44. Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987;237(4822):1588-1595.
45. Li ZT, Huang XH, Lin LC, Jiao YP, Zhou CR, Liu ZH. Polyphenol and Cu2+ surface-modified chitin sponge synergizes with antibacterial, antioxidant and pro-vascularization activities for effective scarless regeneration of burned skin. Chem Eng J. 2021;419:No. 129488.
46. Callaway DA, Jiang JX. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J Bone Miner Metab. 2015;33(4):359-370.
47. Snezhkina AV, Kudryavtseva AV, Kardymon OL, Savvateeva MV, Melnikova NV, Krasnov GS, Dmitriev AA. ROS generation and antioxidant defense systems in normal and malignant cells. Oxid Med Cell Longev. 2019;2019:No. 6175804.
48. Sun SW, Huang SQ, Shi YN, Shao YT, Qiu JR, Sedjoah R, Yan ZZ, Ding LP, Zou DD, Xin ZH. Extraction, isolation, characterization and antimicrobial activities of non-extractable polyphenols from pomegranate peel. Food Chem. 2021;351:No. 129232.
49. Yang YH, Zhang T. Antimicrobial activities of tea polyphenol on phytopathogens: a review. Molecules. 2019;24(4):No. 816.
50. Zhao Y, Liu R, Fan Y, Zhao B, Qian W, Guo J, Li C, Chen S, Luo G, Deng H, Zhang J. Self-sealing hemostatic and antibacterial needles by polyphenol-assisted surface self-assembly of multifunctional nanoparticles. Chem Eng J. 2021;425:No. 130621.
51. Ki SH, Lee S, Kim D, Song SJ, Hong SP, Cho S, Kang SM, Choi JS, Cho WK. Antibacterial film formation through iron(III) complexation and oxidation-induced cross-linking of OEG-DOPA. Langmuir. 2019;35(45):14465-14472.
52. Sun HQ, Lu XM, Gao PJ. The exploration of the antibacterial mechanism of Fe3+ against bacteria. Braz J Microbiol. 2011;42(1):410-414.