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Abstract

Fermatean fuzzy set idea obtained by combining fermatean fuzzy sets and hesitant fuzzy

sets can be used in practice to simplify the solution of complicated multi-criteria decision-

making (MCDM) problems. Initially, the notion of fermatean hesitant fuzzy set is given

and the operations related to this concept are presented. Aggregation operators according to

fermatean hesitant fuzzy sets are given and basic properties of these operators are studied.

To choose the best alternative in practice, a novel MCDM method that is obtained with

operators has been created. Finally, an example of infectious diseases was examined to

indicate the effectiveness of the suggested techniques.

1. Introduction

The reasoning and DM processes of people in the face of daily events are studied by many disciplines, including psychology, philosophy,

cognitive science, and artificial intelligence. These processes are generally tried to be described based on various mathematical and

statistical models. In this process, the problem of decision-making arises. DM is defined as the operation of selecting one or more of

the alternative forms of behavior faced by a person or an institution in order to achieve a specific goal. Research shows that while it is

sufficient to make many daily decisions intuitively, this path alone is not enough for complex and vital decisions. MCDM is a collection of

analytical approaches that appreciate the benefits and deficits of alternatives based on many criteria. MCDM methods are used to support

the DM process and to select one or more alternatives from a set of alternatives with different characteristics according to conflicting

criteria or to rank these alternatives. In other words, in MCDM methods, decision-makers(DMR) rank the alternatives with different char-

acteristics by evaluating them according to many criteria. MCDM is a set of methods that are frequently used in all areas of life and at all levels.

In general, uncertainty is the situation in which a given event may have different consequences and there is no information about the

probabilities of those consequences. Therefore, uncertainty is a very important notion for the DM process. It is not easy to know the

probabilities of events happening in real-life. Therefore, the DM process occurs under uncertainty. Fuzzy logic theory [33] proposes a strong

logical inference structure in the face of uncertain and imprecise knowledge. Fuzzy logic theory gives computers the ability to process

people’s linguistic data and work using people’s experiences. While gaining this ability, it uses symbolic expressions instead of numerical

expressions. These symbolic expressions are called fuzzy sets(FS). It is understood that the elements of fuzzy sets are actually decision

variables containing probability states. Instead of probability values of possibilities, fuzzy sets arise by assigning membership degrees to

each of them objectively.

In the FS A, the degree of belonging of an element to the set is ζA, while the degree of not belonging is 1− ζA. Therefore, the sum

of the degrees of belonging and not belonging is equal to 1. However, this situation is insufficient to explain the uncertainty in some

problems. For this reason, Atanassov [1] proposed the intuitionistic fuzzy set (IFS) theory, which is the generalization of FS. IFSs consist

of membership degree(MD) and non-membership degree(ND) whose sum is less than or equal to 1. Yager [29] defined Pythagorean

fuzzy set(PFS) as a more general and more comprehensive set than IFS. PFS is defined as the sum of the squares of MD and ND less

than or equal to 1. There is an extensive diversity of studies on FS, IFS, and PFS such as [2]-[5], [9]-[12], [16], [17], [23], [28], [30], [31], [35].

Yager [32] introduced the q-step orthopair fuzzy set. The basic rule in this set theory is that the sum of MD with ND should not be greater

than 1. Based on this idea, Senepati and Yager [19] introduced the Fermatean fuzzy set(FFS) and examined its basic features. In [20],

Fermatean arithmetic mean, division, and subtraction which are new transactions for FFS, are defined and some of their properties are

examined. In [21], new weighted aggregated operators related to FFSs are defined. [13] have defined fermatean fuzzy soft set(FFSS)

and entropy measures. Shahzadi and Akram [22] offered a new decision support algorithm with respect to the FFSS and defined the new

aggregated operators. Garg et al. [6] new FFS type aggregated operators defined by t-norm and t-conorm have been defined.
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2

The FS notion was generalized to the hesitant fuzzy set(HFS) notion by Torra [24]. This new set of the FS can handle the situations that the

complexity in building the MD does not get up from a margin of error or a certain probability distribution of the probable values, however,

originates from hesitation among a few several values [34]. Hence the HFS can more precisely reflect the people’s hesitancy in stating their

preferences over objects, compared to the FS and its other generalizations. Later, HFS and IFS were combined to obtain a new HFS which is

called intuitionistic hesitant fuzzy set(IHFS) [18]. The fundamental notion is to form the situation in which instead of a individual MD and

ND, human beings hesitate among a set of MD and ND and they require to symbolize such a hesitation. In [36], the notion of a dual HFS

was improved and was given some properties. As an extension of the dual IVHFS, the HIVIFS approach was given [14]. IIn [15], the notion

of IHFS to group DM problems using fuzzy cross-entropy was applied. The Pythagorean HFS(PFHS) was initially given by Khan et al [7].

PHFS compensates the case that the sum of its MDs is less than 1.

In this study, a new HFS which is called the fermatean hesitant fuzzy set will be given and investigated some properties. A new score

function will be defined for comparison between fermatean hesitant fuzzy numbers(FHN). In addition, aggregation operators connected to

FHS will be studied and the MCDM method related to FHFS will be introduced. An example of medical decision-making will be studied

that illustrates how the method works. Finally, the proposed method in this study will be compared with previously known methods.

2. Preliminaries

General information about the fermatean fuzzy environment and hesitant fuzzy sets is the subject of this section.

Throughout the paper, U , Σ as the initial universe and parameters sets, respectively will be denoted.

For ζN : U → [0,1] and ηN : U → [0,1], the FFS N is indicated by N = {(u,ζN(u),ηN(u)) : u ∈ U}. For the FFS, the condition

0 ≤ ζ 3
N(u)+η3

N(u)≤ 1 [19] is holds.

The degree of indeterminacy of u to N is described as θN(u) =
3

√
1− (ζ 3

N(u)+η3
N(u)), for any FFS N and u ∈U .

For FFSs N = {ζN ,ηN}, N1 = {ζN1
,ηN1

} and N2 = {ζN2
,ηN2

}, some operations as follows [19]:

i. N1 ∩N2 = (min{ζN1
,ζN2

},max{ηN1
,ηN2

});
ii. N1 ∪N2 = (max(ζN1

,ζN2
),min(ηN1

,ηN2
));

iii. Nt = (ηN ,ζN);

iv. N1 ⊞N2 =
(

3

√
ζ 3

N1
+ζ 3

N2
−ζ 3

N1
ζ 3

N2
,ηN1

ηN2

)
;

v. N1 ⊠N2 =
(

ζ 3
N1

ζ 3
N2
, 3

√
η3

N1
+η3

N2
−η3

N1
η3

N2

)
;

vi. αN =

(
3

√
1− (1−ζ 3

N)
α ,ηα

N

)
;

vii. Nα =

(
ζ 3

N1
,

3

√
1− (1−η3

N)
α

)
.

The properties of complement of FFS as follows [19]:

i. (N1 ∩N2)
c = Nc

1 ∪Nc
2 ;

ii. (N1 ∪N2)
c = Nc

1 ∩Nc
2 ;

iii. (N1 ⊞N2)
c = Nt

1 ⊠Nc
2 ;

iv. (N1 ⊠N2)
c = Nc

1 ⊞Nc
2 ;

v. α(N)c = (Nα )c;

vi. (Nc)α = (αN)c.

Definition 2.1. [19] Choose a FFS N = {ζN ,ηN}. For FFS N,

SF = ζ 3
N −η3

N . (2.1)

is said to be a score function.

The function SF is in [−1,1].

Take the two FFSs N1 = {ζN1
,ηN1

} and N2 = {ζN2
,ηN2

}. If the following condition (A) is hold, then it is called a natural quai-ordering

concerning the FFS [19]:

(A) N1 ≥ N2 ⇔ mN1
≤ nN2

.

For the two FFSs N1 and N2;

(a) SFN1
< SFN2

⇒ N1 < N2,

(b) SFN1
> SFN2

⇒ N1 > N2,

(c) SFN1
= SFN2

⇒ N1 ∼ N2.

Definition 2.2. [19] For a FFS N = {ζN ,ηN}, the accuracy function of FFS N is defined as:

AF = ζ 3
N +η3

N . (2.2)
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3

Then, AF ∈ [0,1]. Clearly, 0 ≤ AF = ζ 3
N +η3

N ≤ 1. Further, θ 3
N +AF = 1. The larger the AF , the higher the accuracy of the FFS N. The

lower the hN , the higher the accuracy of the FFS N.

For the two FFSs N1 = (ζN1
,ηN1

) and N2 = (ζN2
,ηN2

);
(a) SFN1

< SFN2
⇒ N1 < N2,

(b) SFN1
> SFN2

⇒ N1 > N2,

(c) SFN1
= SFN2

⇒ N then

(i) AFN1
< AFN2

⇒ N1 < N2,

(ii) AFN1
> AFN2

⇒ N1 > N2,

(iii) AFN1
= AFN2

⇒ N1 = N2.

For two FFS N,M, from a binary relation ≤(SF,AF), it may be shown as N ≤(SF,AF) M iff the condition (B) holds:

(B) (SFN < SFM)∨ (SFN = SFM ∧AFN ≤ AFM).

Definition 2.3. [25] The set

T = {(u, tT (u)) : u ∈U} (2.3)

is called HFS, where tT (u) indicates the set of some values in unit interval, that is probable MD of u ∈U to T .

From now on, HFN will be used as t = tT (u) throughout the paper.

Definition 2.4. The following operations are hold for three HFNs t, t1, t2:

1. tc = ∪δ∈t{1−δ};

2. t1 ∩ t2 = ∪δ1∈t1,δ2∈t2
min{δ1,δ2};

3. t1 ∪ t2 = ∪δ1∈t1,δ2∈t2
max{δ1,δ2}.

Definition 2.5. The set

PT = {(u,ζPT
(u),ηPT

(u)) : u ∈U} (2.4)

is called PHFS in U, where (ζPT
(u),ηPT

(u)) are functions from U to [0,1], showing a probable MD and ND of u ∈U in PT respectively.

Further, for each element u ∈U

(i.) ∀tPT
(u) ∈ ζPT

(u), ∃t
′

PT
(x) ∈ ηPT

(x), such that 0 ≤ t2
PT
(u)+ t

′2
PT
(u)≤ 1

(ii.) ∀t
′

PT
(u) ∈ ηPT

(u), ∃tPT
(u) ∈ ζPT

(u), such that 0 ≤ t2
PT
(u)+ t

′2
PT
(u)≤ 1.

3. Fermatean Hesitant Fuzzy Sets

Definition 3.1. The set

FT = {(u,ζFT
(u),ηFT

(u)) : u ∈U} (3.1)

is called a fermatean hesitant fuzzy set(FH), where

(i.) For each element u ∈ U, ζFT
(u), ηFT

(u) are functions from U to [0,1], demonstrating a likely MD and ND of element u ∈ U in FT

respectively,

(ii.) ∀ tFT
(u) ∈ ζFT

(u), ∃ t
′

FT
(u) ∈ ηFT

(u), such that 0 ≤ t3
FT
(u)+ t

′3
FT
(u)≤ 1,

(iii.) ∀ t
′

FT
(u) ∈ ηFT

(u), ∃ tFT
(u) ∈ ζFT

(u), such that 0 ≤ t3
FT
(u)+ t

′3
FT
(u)≤ 1.

From this stage on, the set of all elements belonging to FH’s will be denoted by FH(U). If U has only (u,ζFT
(u),ηFT

(u)), it is called a

fermatean hesitant fuzzy number(FHN (represented by t̃ = {ζt̃ ,ηt̃}).

Example 3.2. For U, consider a set FH in U given by

FT = {(u1, [0.80,0.92,0.85,1], [0.1,0.64,0.56]),(u2, [0.08,0.77,0.84], [0.23,0.81,0.90]),(u3, [0.0,0.25,0.58,0.63], [0.61,0.941])}

Then, 0.83 +0.03 = 0.512, 0.923 +0.03 = 0.78, 0.853 +0.03 = 0.614, 13 +0.03 = 1.

Secondly, 0.083 +0.233 = 0.0127, 0.773 +0.233 = 0.47, 0.843 +0.233 = 0.605

and 0.03 +0.613 = 0.227, 0.253 +0.613 = 0.243, 0.583 +0.613 = 0.422, 0.633 +0.613 = 0.477.

Calculations are also made according to other values. It is clear from here that {ζt̃(u1),ηt̃(u1)}, {ζt̃(u2),ηt̃(u2)} and {ζt̃(u3),ηt̃(u3)} are

FHs.

We note that if ζFT
(u) and ηFT

(u) have only one element, then the FH become a FFS. Further, if the ND is {0}, then FH become a HFS.

θFT
(u) =

⋃

tFT
(u)∈ζFT

(u),t
′
FH

(u)∈ηFT
(u)

3

√
1− t3

FT
− t

′3
FT

is said to be a indeterminacy degree of u to FT , where 1− t3
FT

− t
′3
FH

≥ 0 with for any FH FT = {(u,ζFT
(u),ηFH

(u)) : u ∈U}.
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4

Definition 3.3. The basic operations for three FHNs t̃ = {ζt̃ ,ηt̃}, t̃1 = {ζt̃1
,ηt̃1

}, t̃2 = {ζt̃2
,ηt̃2

} and α > 0 are as follows:

For three FHNs t̃ = {ζt̃ ,ηt̃}, t̃1 = {ζt̃1
,ηt̃1

}, t̃2 = {ζt̃2
,ηt̃2

} and α > 0, then

i. t̃1 ∪ t̃2 = (max{ζt̃1
.ζt̃2

},min{ηt̃1
,ηt̃2

}),

ii. t̃1 ∩ t̃2 = (min{ζt̃1
,ζt̃2

},max{ηt̃1
,ηt̃2

}).

iii. t̃c = (ηt̃ ,ζt̃).

iv. t̃1 ⊞ t̃2 =

(
⋃

t̃t1
∈ζt̃1

,t̃t2
∈ζt̃2

{
3

√
t3
t̃1
+ t3

t̃2
− t3

t̃1
t3
t̃2

}
,
⋃

t
′

t̃1
∈ηt̃1

,t
′

t̃2
∈ηt̃2

{
t
′

t̃1
, t

′

t̃2

})
.

v. t̃1 ⊠ t̃2 =

(
⋃

t̃t1
∈ζt̃1

,t̃t2
∈ζt̃2

{
t̃t1 , t̃t2

}
,
⋃

t
′

t̃1
∈ηt̃1

,t
′

t̃2
∈ηt̃2

{
3

√
t̃
′3
1 + t̃

′3
2 − t̃

′3
1 t̃

′3
2

})
.

vi. α t̃ =

(
⋃

t̃t∈ζt̃

{
3

√
1−
(
1− (t̃t)

3
)α
}
,
⋃

t
′

t̃
∈ηt̃

{(
t
′

t̃

)α})
,α > 0.

vii. t̃α =

(
⋃

t̃t∈ζt̃

{
tα
t̃

}
,
⋃

t
′

t̃
∈ηt̃

{
3

√
1−
(

1− (t
′3
t̃
)α
)})

,α > 0.

It should be noted that the results from these processes are also an FHN.

Theorem 3.4. For three FHNs t̃ = {ζt̃ ,ηt̃}, t̃1 = {ζt̃1
,ηt̃1

}, t̃2 = {ζt̃2
,ηt̃2

}, the following hold:

1) t̃1 ⊞ t̃2 = t̃2 ⊞ t̃1
2) t̃1 ⊠ t̃2 = t̃2 ⊠ t̃1
3) α (̃t1 ⊞ t̃2) = α t̃1 ⊞α t̃2, α > 0

4) (α1 +α2)̃t = α1t̃ ⊞α2t̃ , α1, α2 > 0

5) (̃t1 ⊠ t̃2)
α = t̃α

1 ⊠ t̃α
2 , α > 0

6) t̃α1+α2 = t̃α1 ⊠ t̃α2 , α1,α2 > 0

Proof. We will only prove item 1. Since other items can be proved in a similar way, they are not included here.

1) t̃1 ⊞ t̃2 =




⋃

t̃t1
∈ζt̃1

,t̃t2
∈ζt̃2

{
3

√
t3
t̃1
+ t3

t̃2
− t3

t̃1
t3
t̃2

}
,

⋃

t
′

t̃1
∈ηt̃1

,t
′

t̃2
∈ηt̃2

{
t
′

t̃1
, t

′

t̃2

}



=




⋃

t̃t2
∈ζt̃2

,t̃t1
∈ζt̃1

{
3

√
t3
t̃2
+ t3

t̃1
− t3

t̃2
t3
t̃1

}
,

⋃

t
′

t̃2
∈ηt̃1

,t
′

t̃1
∈ηt̃1

{
t
′

t̃2
, t

′

t̃1

}



= t̃1 ⊞ t̃2

Example 3.5. Let t̃1 = ({0.71,0.86},{0.55,0.64}) and t̃2 = ({0.59,0.78},{0.35,0.45})be two FHNs. For α > 0,

t̃1 ⊞ t̃2 = ({0.788,0.873,0.893,0.932},{0.1925,0.2475,0.224,0.288})

t̃1 ⊠ t̃2 = ({0.5867,0.624,0.5926,0.648},{0.42,0.554,0.5074,0.671})

α t̃1 = ({0.903,0.954},{0.3025,0.41})

α t̃2 = ({0.712,0.897},{0.1225,0.2025})

Definition 3.6. Let t̃ = {ζt̃ ,ηt̃} be a FHN. Then,

S(̃t) =
1

Et̃t ∈ ζt̃
∑

t̃t∈ζt̃

t3
t̃
−

1

E
t
′

t̃

∈ ηt̃
∑

t
′

t̃
∈ηt̃

t
′3
t̃

(3.2)

is said to be a score function of t̃ (S(̃t) ∈ [−1,1]).

In this definition, Et̃t and E
t
′

t̃

denote the number of elements in ζt̃ and ηt̃ , respectively.

Let t̃1 = {ζt̃1
,ηt̃1

}, t̃2 = {ζt̃2
,ηt̃2

} be two FHN’s. If the score functions are chosen as S(̃t1) of t̃1 and S(̃t2) of t̃2, we have

1) If S(̃t1)< S(̃t2) ⇒ t̃1 < t̃2.

2) If S(̃t1)> S(̃t2) ⇒ t̃1 > t̃2.

3) If S(̃t1) = S(̃t2) ⇒ t̃1 ∼ t̃2.

Example 3.7. Let t̃1 = ({0.59,0.78,0.93},{0.15,0.54,0.67}), t̃2 = ({0.20,0.80,0.95},{0.10,0.84,0.95}),
t̃3 = ({0.00,0.44,0.81,0.92},{0.09,0.79,0.88}) be three FHN’s. From Definition 3.2, S(̃t1) = 0.36, S(̃t2) = 0.025 and S(̃t3) = −0.045.

Hence, S(̃t1)> S(̃t2)> S(̃t3).

Example 3.8. Let t̃1 = ({0.7,0.6},{0.5,0.699,0.6}), t̃2 = ({0.5303,0.78},{0.2,0.8}) be two FHN’s. S(̃t1) = 0.52 and S(̃t2) = 0.52. That

is S(̃t1) = S(̃t2).

When S(̃t1) = S(̃t2), it cannot possible to differentiate between t̃1 and t̃2. Naturally, such situations are very common in real life. The

following definition can be given as a solution to this situation.
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5

Definition 3.9. Let t̃ = (ζt̃ ,ηt̃) be a FHN. Then,

A(̃t) =
1

Et̃t ∈ ζt̃
∑

t̃t∈ζt̃

t3
t̃
+

1

E
t
′

t̃

∈ ηt̃
∑

t
′

t̃
∈ηt̃

t
′3
t̃

(3.3)

is called the accuracy degree of t̃.

S(̃t) and A(̃t) in this definition can be understood as the mean value and standard deviation in statistics, respectively. Based on this idea, the

following definition can be given:

Definition 3.10. Take two FHN’s t̃1 = {ζt̃1
,ηt̃1

}, t̃2 = {ζt̃2
,ηt̃2

}. Let S(̃t1), A(̃t1) and S(̃t2) A(̃t2) be denoted the score functions and the

deviation degrees of t̃1 and t̃2, respectively. Wee have,

1) If S(̃t1)< S(̃t2)⇒ t̃1 < t̃2.

2) If S(̃t1)> S(̃t2)⇒ t̃1 > t̃2.

3) If S(̃t1) = S(̃t2)⇒ t̃1 ∼ t̃2.

a. If A(̃t1)< A(̃t2)⇒ t̃1 < t̃2.

b. If A(̃t1)> A(̃t2)⇒ t̃1 > t̃2.

c. If A(̃t1) = A(̃t2)⇒ t̃1 ∼ t̃2.

Example 3.11. Take the values in Example 3.8. Then, A(̃t1) = 0.621 and A(̃t2) = 0.5723. From Definition 3.10, while S(̃t1) = S(̃t2),
A(̃t1)> A(̃t2)⇒ t̃1 > t̃2.

It can be seen from Example 3.11 that for the two FHNs t̃1 and t̃2, the number of elements of the corresponding fermatean MD is not equal.

However, if the measurement of the distance between them is computed, the corresponding number of elements will be equal.

Definition 3.12. Let t̃1 = {ζt̃1
,ηt̃1

}, t̃2 = {ζt̃2
,ηt̃2

}, t̃3 = {ζt̃3
,ηt̃3

} be three FHN’s in U. If the cases

D1. 0 ≤ D(̃t1, t̃2)≤ 1,

D2. D(̃t1, t̃2) = D(̃t2, t̃1),
D3. D(̃t1, t̃2) = 0 if and only if t̃1 = t̃2.

are hold, then the function D : FH×FH→ [0,1] (D(̃t1, t̃2)) is called a distance measure.

Definition 3.13. Let t̃1, t̃2 be two FHN’s. Then,

D(̃t1, t̃2) =
1

2

[
1

Eui

Eui

∑
i=1

∣∣∣(tβ (k)

t̃1
(ui))

3 − (t
β (k)

t̃2
(ui))

3
∣∣∣+

1

Eui

Eui

∑
i=1

∣∣∣(t
′β (k)

t̃1
(ui))

3 − (t
′β (k)

t̃2
(ui))

3
∣∣∣
]

(3.4)

is defined as a distance measure of t̃1, t̃2, where t
β (k)

t̃1
, t

β (k)

t̃2
, t

β (k)

t̃′1
, t

β (k)

t̃′2
be the ith largest value in t̃1, t̃2 respectively.

The number of elements in FHNs can be different. In this case, they can be made equivalent by adding elements to the FHN, which has

fewer elements. The lowest factor according to the pessimistic principle is added while the contrary situation will be embraced in the

optimistic principle.

Now let’s give an example of distance measure:

Example 3.14. Take the FHNs t̃1 = ({0.68,0.75,92},{0.56,0.72,0.84}), t̃2 = ({0.47,0.65,0.93},{0.38,0.78,0.88}). Then,

D(̃t1, t̃2) =
1

2

[
1

3

(∣∣∣0.682 −0.472
∣∣∣+
∣∣∣0.752 −0.652

∣∣∣+
∣∣∣0.922 −0.932

∣∣∣
)
+

1

3

(∣∣∣0.562 −0.382
∣∣∣+
∣∣∣0.722 −0.782

∣∣∣+
∣∣∣0.842 −0.882

∣∣∣
)]

=
1

2
[0.043+0.104] = 0.0735

4. Aggregation Operator

Definition 4.1. For a number of FHNs t̃i = {ζt̃i
,ηt̃i

} (1 ≤ i ≤ n), a fermatean hesitant fuzzy weighted average(FHWA) operator is a

function FHWA : FHNn → FHN, where

FHWA(̃t1, t̃2, · · · , t̃n) = ω1t̃1 ⊞ω2t̃2 ⊞ · · ·⊞ωnt̃n (4.1)

where ωi is a weight vector of t̃i (∑
n
i=1 ωi = 1).

Theorem 4.2. For i = 1,2, · · · ,n, take FHNs t̃i = {ζt̃i
,ηt̃i

}. The FHWA operator is defined as:

FHWA(̃t1, t̃2, · · · , t̃n) =

(
⋃

t̃t1
∈ζt̃1

,t̃t2
∈ζt̃2

,··· ,t̃tn∈ζt̃n

3

√
1−

n

∏
i=1

(
1− t3

t̃i

)ωi

,
⋃

t
′

t̃1
∈ηt̃1

,t
′

t̃2
∈ηt̃2

,··· ,t
′

t̃n
∈ηt̃n

n

∏
i=1

(
t
′

t̃i

)ωi

)
(4.2)
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Proof. Mathematical Induction Method will be used in the proof of this theorem. For n = 1, according to Theorem 3.4, since

FHWA(̃t1) =
3

√
1−
(

1− t3
t̃1

)ωi

=
3

√(
t̃3
1

)ωi = t̃1.

This result shows that Equation 4.2 is satisfied for n = 1. In this step, let’s assume that for n = k, Equation 4.2 is compensated. Thus, it

should be shown that for n = k+1, Equation 4.2 also compensated. Therefore,

ω1t̃1 ⊞ω2t̃2 ⊞ · · ·⊞ωk t̃k ⊞ωk+1t̃k+1 =

(
⋃

t̃t1
∈ζt̃1

,t̃t2
∈ζt̃2

,··· ,t̃tk∈ζt̃k

3

√√√√1−
k

∏
i=1

(
1− t3

t̃i

)ωi

,
⋃

t
′

t̃1
∈ηt̃1

,t
′

t̃2
∈ηt̃2

,··· ,t
′

t̃k
∈ηt̃k

k

∏
i=1

(
t
′

t̃i

)ωi

)

⊞

(
⋃

t̃tk+1
∈ζt̃k+1

3

√
1−
(

1− t3
t̃k+1

)ωk+1

,
⋃

t
′

t̃k+1
∈ηt̃k+1

(
t
′

t̃k+1

)ωk+1

)

=

(
⋃

t̃t1
∈ζt̃1

,t̃t2
∈ζt̃2

,··· ,t̃tk+1
∈ζt̃k+1

3

√√√√1−
k+1

∏
i=1

(
1− t3

t̃i

)ωi

,
⋃

t
′

t̃1
∈ηt̃1

,t
′

t̃2
∈ηt̃2

,··· ,t
′

t̃k+1
∈ηt̃k+1

k+1

∏
i=1

(
t
′

t̃i

)ωi

)
.

This result is desired.

Definition 4.3. For i = 1,2, · · · ,n, choose FHNs t̃i = {ζt̃i
,ηt̃i

} and for (ωi ≥ 0) take weight vector of t̃i ω . Then, a Fermatean hesitant fuzzy

weighted geometric (FHWG) operator is a mapping FHWG : FHNn → FHN, where

FHWG(̃t1, t̃2, · · · , t̃n) = t̃
ω1

1 ⊠ t̃
ω2

2 ⊠ · · ·⊠ t̃ωn
n (4.3)

Theorem 4.4. For FHNs t̃i = {ζt̃i
,ηt̃i

} (1 ≤ i ≤ n), the FHWG operator

FHWG(̃t1, t̃2, · · · , t̃n) =

(
⋃

t̃t1
∈ζt̃1

,t̃t2
∈ζt̃2

,··· ,t̃tn∈ζt̃n

n

∏
i=1

(
t̃ti

)ωi

,
⋃

t
′

t̃1
∈ηt̃1

,t
′

t̃2
∈ηt̃2

,··· ,t
′

t̃n
∈ηt̃n

3

√
1−

n

∏
i=1

(
1− t

′3
t̃i

)ωi

,

)
. (4.4)

Theorem 4.5. For FHNs t̃i = {ζt̃i
,ηt̃i

} i = 1,2, · · · ,n,

FHWG(̃t1, t̃2, · · · , t̃n) ≤ FHWA(̃t1, t̃2, · · · , t̃n) (4.5)

Since ∏
n
i=1(̃ti)

ωi ≤ ∑
n
i=1 ωit̃i, for t̃i > 0, ωi > 0, and ∑

n
i=1 ωi = 1 (the equality holds iff t̃1 = t̃2 = · · ·= t̃n) [26], this theorem can be easily

proved.

Theorem 4.6. The FHWA and FHWG operators provide the boundedness property. That is, for a collection of FHNs t̃i = {ζt̃i
,ηt̃i

} and

1 ≤ i ≤ n, if ζ− = min{ζi}, ζ+ = max{ζi}, η− = min{ηi}, η+ = max{ηi}, then

(ζ−
,η+)≤ FHWA(̃t1, · · · , t̃n)≤ (ζ+

,η−)

(ζ−
,η+)≤ FHWG(̃t1, · · · , t̃n)≤ (ζ+

,η−)

Proof. We will only do proof for FHWA.

For a collection of FHNs t̃i = {ζt̃i
,ηt̃i

} (1 ≤ i ≤ n), we can take ζ− ≤ ζi ≤ ζ+, η− ≤ ηi ≤ η+. Suppose that t̃min = {ζ−,η+}, t̃max =

{ζ+,η−}.

n

∑
i=1

ωiζ
− ≤

n

∑
i=1

ωiζi ≤
n

∑
i=1

ωiζ
+ ≤

n

∑
i=1

ωiη
− ≤

n

∑
i=1

ωiηi ≤
n

∑
i=1

ωiη
+
. (4.6)

S(̃tmin) =


 1

Et̃t ∈ ζt̃
∑

t̃t∈ζt̃

ωiζ
−




3

−


 1

E
t
′

t̃

∈ ηt̃
∑

t
′

t̃
∈ηt̃

ωiη
+




3

S(̃tmax) =


 1

Et̃t ∈ ζt̃
∑

t̃t∈ζt̃

ωiζ
+




3

−


 1

E
t
′

t̃

∈ ηt̃
∑

t
′

t̃
∈ηt̃

ωiη
−




3

S(FHWA(̃t1, · · · , t̃n)) =


 1

Et̃t ∈ ζt̃
∑

t̃t∈ζt̃

ωiζi




3

−


 1

E
t
′

t̃

∈ ηt̃
∑

t
′

t̃
∈ηt̃

ωiηi




3

From here, S(̃tmin)≤ S(FHWA)≤ S(̃tmax) is obtained.
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Theorem 4.7. The FHWA and FHWG operators provide the idempotency property. If all t̃i (1 ≤ i ≤ n) are equal and t̃i = t̃ = {ζ ,η} with

∑
n
i=1 ωi = 1, then

FHWA(̃t1, · · · , t̃n) = t̃,

FHWG(̃t1, · · · , t̃n) = t̃.

Proof. We will only do proof for FHWA.

Since t̃i = t̃ = {ζ ,η}, then

FHWA(̃t1, · · · , t̃n) = FHWA(̃t, · · · , t̃) =

(
n

∑
i=1

ωiζ ,
n

∑
i=1

ωiη

)
= (ζ ,η) = t̃,

for all 1 ≤ i ≤ n.

Theorem 4.8. The FHWA and FHWG operators provide the monotonicity property. That is, For two collections of FHN t̃i = {ζt̃i
,ηt̃i

} and

ũi = {ζũi
,ηũi

}, if ζũi
≥ ζt̃i

and ηũi
≤ ηt̃i

for all i, then

FHWA(̃t1, · · · , t̃n) ≤ FHWA(ũ1, · · · , ũn)

FHWG(̃t1, · · · , t̃n) ≤ FHWG(ũ1, · · · , ũn)

Proof. Since ζũi
≥ ζt̃i

, ηũi
≤ ηt̃i

for all i, we have

n

∑
i=1

ωiζt̃i
≤

n

∑
i=1

ωiζũi
,

n

∑
i=1

ωiηũi
≤

n

∑
i=1

ωiηt̃i
.

Thus

S(FHWA(̃t1, · · · , t̃n)) =


 1

Et̃t ∈ ζt̃
∑

t̃t∈ζt̃

ωiζt̃i




3

−


 1

E
t
′

t̃

∈ ηt̃
∑

t
′

t̃
∈ηt̃i

ωiηt̃i




3

,

S(FHWA(ũ1, · · · , ũn)) =

(
1

Euũ
∈ ζũ

∑
uũ∈ζũ

ωiζũi

)3

−


 1

E
u
′
ũ

∈ ηũ
∑

u
′
ũ
∈ηũi

ωiηũi




3

.

From here, FHWA(̃t1, · · · , t̃n)≤ FHWA(ũ1, · · · , ũn) is obtained.

5. Method based on FHFSs

In MCDM, decision matrix (DCMX) techniques are employed to characterize attributes, weight them, and properly sum the weighted

attributes to offer a relative ranking among design alternatives. This matrix shows the assessment info of all alternatives according to an

attribute. A DCMX is formed of rows and columns that consent to the assessment of alternatives relative to different decision criteria. That

is, for m alternatives and n attributes, a DCMX is a m×n matrix with each element ti j being the j-th attribute value of the i-th alternative.

Consider there is an anonymous MCDM with different m alternatives U = {U1,U2, · · · ,Um}. Choose the universe of discourse including

the attributes as U and the set of all attributes as O = {O1,O2, · · · ,On}.

To assess the efficiency of the ith alternative Ui under the jth attribute O j , the DMR is supposed to ensure not only the info that the alternative

Ui compensates for the attribute O j, but also the info that the alternative Ui does not compensate the attribute O j. This two-part info may

be stated by ζi j and ηi j that demonstrates the MD that the alternative Ui compensates the attribute O j, ND that the alternative Ui does not

compensate the attribute O j, therefore, the efficiency of the alternative Ui under the attribute O j may be stated by a FHN ti j = {ζi j,ηi j}

with the condition that ∀ti j ∈ ζi j, ∃t
′

i j ∈ ηi j ⇒ 0 ≤ t3
i j + t

′3
i j ≤ 1, and ∀ti j ∈ ηi j, ∃t

′

i j ∈ ζi j ⇒ 0 ≤ t3
i j + t

′3
i j ≤ 1. The FHF DCMX T:

T=




t11 t12 · · · t1n

t21 t22 · · · t2n

...
...

...
...

tm1 tm2 · · · tmn




Since the attributes will have different degrees of importance, 0 ≤ ω j ≤ 1 and ∑
m
j=1 ω j for each attribute, ω = {ω1,ω2, · · · ,ωn}

T is a weight

vector for all attributes specified by the DMRs. Generally, the DMRs require to identify degrees of importance of attributes. Hence because

of the confusion and ambiguity of DM problems and naturally nominative structure of human consideration, info concerning attribute

weights is generally incomplete. Consider that the DMRs ensure the attribute weight info can be offered in undermentioned formats [8]:

1. If {ωi ≥ ω j}, then the ranking is weak.

2. If {ωi −ω j ≥ βi(> 0)}, the ranking is strict.

3. If {ωi ≥ βiω j}, 0 ≤ βi ≤ 1, then the ranking is by multiples.

4. If {λi ≤ ωi ≤ λi +βi}, 0 ≤ λi ≤ λi +βi ≤ 1, then it is in the form of an interval.
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5. If {ωi −ω j ≥ ωk −ωl}, for j 6= k 6= l, then the ranking is differences.

for i 6= j.

What has happened so far is explained to define the problem. Now, the optimal weights of the attributes will be determined by maximizing

the deviation method.

The assessment of the attribute weights is crucial for MCDM. A maximizing deviation technique to define the attribute weights for solving

MCDM problems with quantitative info is suggested by Wang [27]. Here, an optimization model based on the maximizing deviation method

to define the optimal weight of attribute under FHF framework has been built. The deviation of Ui relative to all other alternatives can be

given as:

For the attribute O j ∈ O, the deviation of the alternative Ui to all the other alternatives can be expressed as: For 1 ≤ i ≤ n and 1 ≤ j ≤ n, and

d(ti j, tk j) =
1

2

[
1

v

v

∑
λ=1

∣∣∣(tβ (λ )
i j )2 − (t

β (λ )
k j

)2
∣∣∣+

1

v

v

∑
λ=1

∣∣∣(t
′β (λ )
i j )2 − (t

′β (λ )
k j

)2
∣∣∣
]

(5.1)

Di j(ω) =
m

∑
k=1

ω jd(ti j, tk j)

denotes the FHF distance between PHNs ti j, tk j defined as in.

Definition 5.1. For 1 ≤ j ≤ n,

D j(ω) =
m

∑
k=1

Di j(ω) (5.2)

=
m

∑
i=1

m

∑
k=1

ω j

(
1

2

1

v

v

∑
λ=1

[∣∣∣(tβ (λ )3
i j − t

β (λ )
k j

3)
∣∣∣
]
++

1

v

v

∑
λ=1

[∣∣∣(t
′β (λ )3
i j )− t

′β (λ )3
k j

∣∣∣
])

then the deviation value of all alternatives from the other alternatives, for the Oj attribute, is D j(ω). By selecting the weight vector ω that

maximizes all deviation values, a nonlinear programming model for all the attributes can be obtained:

(M−1) s.t.

{
maxD(ω) = ∑

n
j=1 ∑

m
i=1 ∑

m
k=1 ω jd(ti j, tk j)

ω j ≥ 0, 1 leq j ≤ n, ∑
n
j=1 ω j = 1

(5.3)

Model (M - 1) is solved as:

L(ω,δ ) =
n

∑
j=1

m

∑
i=1

m

∑
k=1

ω jd(ti j, tk j)+
δ

2

(
n

∑
j=1

ω j −1

)
= 0

The (M-1) model here is a constrained optimization problem and this model is called the Lagrange function, such that n is a real number

representing the Lagrange multiplier variable.

∂L

∂ω j
=

m

∑
i=1

m

∑
k=1

d(ti j, tk j)+δω j = 0 (5.4)

∂L

∂δ
=

1

2

(
n

∑
j=1

ω j −1

)
= 0 (5.5)

are partial derivatives for L. Then, for 1 ≤ j ≤ n,

ω j =
−∑

m
i=1 ∑

n
j=1 d(ti j, tk j)

δ
(5.6)

and we have

δ =−
3

√√√√ n

∑
j=1

(
m

∑
i=1

n

∑
j=1

d(ti j, tk j)

)3

. (5.7)

δ > 0, ∑
m
i=1 ∑

n
j=1 d(ti j, tk j) signify the sum of deviations of all the alternatives according to the jth attribute, and

3

√
∑

n
j=1

(
∑

m
i=1 ∑

n
j=1 d(ti j, tk j)

)3

signifies the sum of deviations of all the alternatives according to all the attributes.

Using Equation 5.6 and Equation 5.7, we have
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ω j =
∑

n
j=1 ∑

m
i=1 ∑

m
k=1 ω jd(ti j, tk j)

3

√
∑

n
j=1

(
∑

m
i=1 ∑

n
j=1 d(ti j, tk j)

)3
.

By normalizing ω j, we obtain

ω j =
∑

m
i=1 ∑

m
k=1 ω j

(
1
v ∑

v
λ=1

[∣∣∣(tβ (λ )3
i j − t

β (λ )
k j

3)
∣∣∣
]
+ 1

v ∑
v
λ=1

[∣∣∣(t
′β (λ )3
i j )− t

′β (λ )3
k j

∣∣∣
])

∑
n
j=1

[
∑

m
i=1 ∑

m
k=1 ω j

(
1
v ∑

v
λ=1

[∣∣∣(tβ (λ )3
i j − t

β (λ )
k j

3)
∣∣∣
]
+ 1

v ∑
v
λ=1

[∣∣∣(t
′β (λ )3
i j )− t

′β (λ )3
k j

∣∣∣
])] (5.8)

There are also cases where the weight vector can be known partially but not completely. For these cases, using the set of known weight

information, ∆, a new constrained optimization model can be constructed as follows:

(M−2)

{
maxD(ω) = ∑

n
j=1

[
∑

m
i=1 ∑

m
k=1 ω j

(
1
v ∑

v
λ=1

[∣∣∣(tβ (λ )3
i j − t

β (λ )
k j

3)
∣∣∣
]
+ 1

v ∑
v
λ=1

[∣∣∣(t
′β (λ )3
i j )− t

′β (λ )3
k j

∣∣∣
])]

s.t ω ∈ ∆, ω j ≥ 0, j = 1,2, · · · ,n, ∑
n
j=1 ω j = 1

(5.9)

where ∆ is a set of constraint conditions that the weight value ω j should compensate with respect to the necessities in real cases. This model

must be solved to obtain the optimal solution ω = {ω1,ω2, · · · ,ωn}.

5.1. Algorithm

A convenient approach can be given in this subsection, which will be helpful in solving MCDM problems where the info about the attribute

weights is incomplete known or not completely unknown, and the attribute values take the form of FHF info.

Step 1: For decision (ti j = {ζi j,ηi j}, 1 ≤ i ≤ n;1 ≤ j ≤ m), build the FHF decision matrices C = (hi j)m×n.

If two types of the attribute exist, then the FH DCMX can be converted into the normalized FHF DCMX DN = (µ)m×n, where

(µ)m×n =

{
ti j, if the attribute is of benefit type

tc
i j, if the attribute is of cost type.

(5.10)

In 5.10, tc
i j = {ηi j,ζi j} 1 ≤ i ≤ n;1 ≤ j ≤ m. When all attributes are identical, DCMX is not normalized.

Step 2: When the info concerning the attribute weights is completely unknown, from Equation 5.8, the attribute weights are obtained. When

the info concerning the attribute weights is partly known, with the solving of model (M - 2) attribute weights are obtained.

Step 3: Employ the improved aggregation operators to acquire the FHN ti 1 ≤ i ≤ n for the alternatives Ui. This is improved operators to

maintain the collective whole preference values ti i = 1,2, · · · ,n of alternative Ui, where ω = {ω1,ω2, · · · ,ωn}
T the weighting vector of the

attributes.

Step 4: By utilization Equation 3.2, the scores S(ti) and the deviation degree β (ti) of all the whole values ti are computed.

Step 5: Rank the alternatives Ui and then choose the best one.

6. Application to Infectious Diseases

We will do a study on diseases and the symptoms of these diseases. Let the diseases be given by the set

U = {viral f ever,malaria, typhoid,stomachproblem,chest problem}= {u1,u2,u3,u4,u5} and the symptoms by the set

A = {temprature,headache,stomachpain,cough}= {O1,O2,O3,O4}. The five possible alternatives Ui are to be assessed utilization the

FHF info of three DMRs as shown in T = (ti j) (1 ≤ i ≤ 5).

Consider that the info on the attribute weights is partially known, and the known weight info is presented as:

∆ = {0.18 ≤ ω1 ≤ 0.25, 0.22 ≤ ω2 ≤ 0.30, 0.27 ≤ ω3 ≤ 0.35, 0.33 ≤ ω4 ≤ 0.40,}

for ∑
4
j=1 = 1. Apparently, the counts of values in distinct FHNs are distinct. To more accurately compute the distance between two FHs, the

shorter one needs to be expanded until both have an identical length when compared. Looking at the desired regulations, it can be thought

that the DMRs are pessimistic. In this case, FHF data is given again in Table 2 by adding their minimum values.

Step 1. Normalize the DCMX. Since the measurements are identical, no normalization is performed.

Step 2. Run the model (M - 2) and build the individual objective model:
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O1 O2 O3 O4

U1 ((0.8, 0.7), (0.6, 0.5))) ((0.3, 0.5), (0.7, 0.9)) ((0.6), (0.6, 0.7, 0.8)) ((0.8, 0.9), (0.4, 0.5))

U2 ((0.6, 0.5, 0.7), (0.8)) ((0.5, 0.6), (0.6, 0.7)) ((0.8, 0.9), (0.4, 0.5)) ((0.7, 0.8), (0.4, 0.6))

U3 ((0.6, 0.7), (0.6, 0.8, 0.9)) ((0.6, 0.7, 0.9), (0.3, 0.4)) ((0.5, 0.7), (0.5, 0.6)) ((0.4, 0.5), (0.7, 0.9))

U4 ((0.9), (0.3, 0.4, 0.6)) ((0.6, 0.7), (0.6)) ((0.5, 0.6, 0.4), (0.7, 0.8)) ((0.6, 0.5), (0.8))

U5 ((0.3, 0.4), (0.8, 0.9)) ((0.7, 0.8), (0.5, 0.7)) ((0.4, 0.6), (0.6, 0.7)) ((0.7, 0.8, 0.9), (0.5))

Table 1: FH DCMX

O1 O2 O3 O4

U1 ({0.8, 0.8, 0.7}, {0.6, 0.6, 0.5}) ({0.3, 0.3, 0.5}, {0.7, 0.7, 0.9}) ({0.6, 0.6, 0.6}, {0.6, 0.7, 0.8}) ({0.8, 0.8, 0.9}, {0.4, 0.4, 0.5})

U2 ({0.6, 0.5, 0.7}, {0.8, 0.8, 0.8}) ({0.5, 0.5, 0.6}, {0.6, 0.6, 0.7}) ({0.8, 0.8, 0.9}, {0.4, 0.4, 0.5}) ({0.7, 0.7, 0.8}, {0.4, 0.4, 0.6})

U3 ({0.6, 0.6, 0.7}, {0.6, 0.8, 0.9}) ({0.6, 0.7, 0.9}, {0.3, 0.3, 0.4})) ({0.5, 0.5, 0.7}, {0.5, 0.5, 0.6)} ({0.4, 0.4, 0.5}, {0.7, 0.7, 0.9})

U4 ({0.9, 0.9, 0.9}, {0.3, 0.4, 0.6}) ({(0.6, 0.6, 0.7}, {0.6 0.6, 0.6}) ({0.5, 0.6, 0.4}, {0.7, 0.7, 0.8}) ({0.6, 0.6, 0.5}, {0.8, 0.8, 0.8})

U5 ({0.3, 0.3, 0.4}, {0.8, 0.8, 0.9}) ({0.7, 0.7, 0.8}, {0.5, 0.5, 0.7}) ({0.4, 0.4, 0.6}, {0.6, 0.6, 0.7}) ({0.7, 0.8, 0.9}, {0.5, 0.5, 0.5})

Table 2: FFH DCMX

(M−2)

{
maxD(ω) = 5.1091ω1 +5.1254ω2 +4.368ω3 +5.326ω4

s.t ω ∈ ∆, ω j ≥ 0, 1 ≤ j ≤ 4
(6.1)

To acquire the optimal weight vector ω = {0.15,0.27,0.33,0.22}T , this model will be solved.

Step 3. The decision info endowed in matrix T = (ti j)m×n and the FHWA operator to acquire the whole preferences values t̃i of the

alternatives Ui (i = 1,2,3,4,5) are benefited. Therefore,

t̃1 = ({0.6676,0.7261,0.708,0.643,0.6821,0.66,0.72,0.74},{0.581,0.6113,0.639,0.6247,0.6542,0.684,0.6102,0.671,

0.642,0.653,0.6871,0.718,0.5653,0.6,0.6216,0.5937,0.6247,0.6528,0.605,0.6365,0.6652,0.6354,0.6686,0.7})

t̃2 = ({0.7,0.72,0.7657,0.68,0.71,0.732,0.775,0.684,0.713,0.76,0.78,0.7,0.725,0.77,0.7887,0.7036,0.7304,0.774,

0.8,0.7162,0.72,0.7413,0.7824,0.8},{0.509,0.5565,0.55,0.6,0.531,0.58,0.5712,0.6244})

t̃3 = ({0.53,0.544,0.61,0.62,0.5731,0.585,0.64,0.6482,0.712,0.718,0.748,0.753,0.555,0.57,0.6263,0.636,0.6,0.605,

0.655,0.663,0.723,0.729,0.757,0.762},{0.5,0.532,0.523,0.565,0.52,0.5622,0.552,0.6,0.514,0.555,0.546,0.59,0.543,0.59,0.577,0.623,0.523

t̃4 = ({0.671,0.689,0.659,0.658,0.677,0.6452,0.7,0.71,0.6835,0.683,0.7,0.671},{0.62,0.643,0.643,0.6716,0.683,0.714})

t̃5 = ({0.6,0.64,0.703,0.645,0.68,0.735,0.61,0.65,0.712,0.66,0.7,0.743,0.6,0.64,0.705,0.65,0.682,0.737,

0.612,0.652,0.715,0.66,0.7,0.745},{0.582,0.612,0.64,0.67,0.6,0.623,0.68,0.682})

Step 4. Compute the scores S(̃ti) of whole FHNs t̃i: S(̃t1) = 0.0716, S(̃t2) = 0.2266, S(̃t3) = 0.0251, S(̃t4) = 0.021, S(̃t5) = 0.05053.

Step 5. Rank all the alternatives Ui according to the scores S(̃ti) of overall FHNs t̃i: We have S(̃t2)> S(̃t1)> S(̃t5)> S(̃t3)> S(̃t4) which

shows that U2 >U1 >U5 >U3 >U4. From this, it is understood that the best choice is U2.

Furthermore, when FHWG operator is used for the same problem, in the new approach here, the same operations will be performed starting

from Step 3.

7. Comparison

First, a comparison will be made between the FFN-specific MCDM method described by Senapati and Yager [19] and the method proposed

in this study.

FFNs may be taken into account as a specific situation of FHNs when there is only one element in MD and ND. FHNs can be converted to

FFNs by computing the average value of the MD and MD. Later, the new info may be represented in Table 3.

O1 O2 O3 O4

U1 ({0.5, 0.5}) ({0.7, 0.4}) ({0.8, 0.7}) ({0.9, 0.4})

U2 ({0.7, 0.5}) ({0.8, 0.6}) ({0.9, 0.2}) ({0.6, 0.5})

U3 ({0.6, 0.8}) ({0.2, 0.9}) ({0.6, 0.5}) ({0.8, 0.4})

U4 ({0.9, 0.3}) ({0.5, 0.7}) ({0.7, 0.8}) ({0.7, 0.7})

U5 ({0.8, 0.7}) ({0.9, 0.5}) ({0.6, 0.6}) ({0.7, 0.6})

Table 3: FF DCMX
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With the comprehensive evaluation values using the FFWA, the score values are: S(U1) = 0.343, S(U2) = 0.5216, S(U3) = 0.102,

S(U4) = 0.095, S(U5) = 0.247. Then S(U2) > S(U1) > S(U5) > S(U3) > S(U4) which shows that U2 > U1 > U5 > U3 > U4. That is

the most desirable alternative is U2.

Second, a comparison will be made between the HFN-specific MCDM method and the method proposed in this study.

HFNs may be taken into account as a specific situation of FFNs, if DMRs solely think MDs in assessment. Then, FFNs may be converted

to HFNs by remaining solely the MDs, and the HF info may be shown in Table 4.

O1 O2 O3 O4

U1 {0.7, 0.8} {0.3, 0.4} {0.7} {0.9, 0.8}
U2 {0.6, 0.5, 0.7} {0.4, 0.5} {0.9, 0.8} {0.7, 0.8}
U3 {0.8} {0.6, 0.7} {0.4, 0.6, 0.5} {0.5, 0.6}
U4 ({0.3, 0.4}) ({0.7, 0.8}) ({0.5, 0.6}) ({0.6, 0.7, 0.8})

U5 {0.5, 0.6} {0.7, 0.8, 0.9} {0.6, 0.7} {0.3, 0.4}

Table 4: HF DCMX

If the hesitant fuzzy weighted average operator (HFWA) [25] is employed, score values are: S(U1) = 0.6345, S(U2) = 0.6891, S(U3) =
0.5297, S(U4) = 0.5813, S(U5) = 0.5674. Then S(U2) > S(U1) > S(U5) > S(U4) > S(U3) which shows that U2 > U1 > U5 > U4 > U3.

That is the most desirable alternative is U2.

Now, a comparison will be made between the intuitionistic hesitant fuzzy numbers and the proposed method.

IHFNs may be taken into account as a specific situation of PHFNs if DMRs are limited to the definition of PHFS. The PHFNs may be

converted to IHFNs by limiting the MD2 +ND2 ≤ 1, to the MD+ND ≤ 1, and the IHF info may be shown in Table 5.

O1 O2 O3 O4

U1 ({0.3, 0.4}, {0.5, 0.6}) ({0.5, 0.6}, {0.4, 0.3}) ({0.6}, {0.5, 0.4, 0.3}) ({0.5, 0.6}, {0.4, 0.3})

U2 ({0.3, 0.5, 0.4}, {0.5}) ({0.3, 0.4}, {0.6, 0.5}) ({0.6, 0.7}, {0.4, 0.6}) ({0.7, 0.6}, {0.6, 0.6})

U3 ({0.5, 0.6}, {0.4, 0.6, 0.8}) ({0.5, 0.6, 0.7}, {0.3, 0.4})) ({0.5, 0.7}, {0.5, 0.6)} ({0.4, 0.4}, {0.7, 0.9})

U4 ({0.9}, {0.3, 0.4, 0.6}) ({0.6, 0.7}, {0.7}) ({0.4, 0.6, 0.8}, {0.7, 0.8}) ({0.3, 0.4}, {0.6})

U5 ({0.3, 0.4}, {0.8, 0.9}) ({ 0.7, 0.8}, {0.5, 0.7}) ({0.4, 0.6}, {0.6, 0.7}) ({0.3, 0.4, 0.5}, {0.5})

Table 5: IHF DCMX

If the IHF weighted average operator (IHFWA) [15] is employed, score values are: S(U1) = 0.16035, S(U2) = 0.1967, S(U3) = 0.092,

S(U4) =−0.0868, S(U5) =−0.798. Then S(U2)> S(U1)> S(U3)> S(U4)> S(U5) which shows that U2 >U1 >U3 >U4 >U5. That is

the most desirable alternative is U2.

A comparison will be made between the PHFNs and the presented method. The values in Table 6 [7] will be used for this comparison.

O1 O2 O3 O4

U1 ({0.7, 0.8}, {0.5, 0.6}) ({0.3, 0.4}, {0.8, 0.9}) ({0.7}, {0.5, 0.6, 0.7}) ({0.8, 0.9}, {0.3, 0.4})

U2 ({0.5, 0.6, 0.7}, {0.7}) ({0.4, 0.5}, {0.7, 0.8}) ({0.8, 0.9}, {0.3, 0.4}) ({0.7, 0.8}, {0.5, 0.6})

U3 ({0.5, 0.6}, {0.6, 0.7, 0.8}) ({0.7, 0.8, 0.9}, {0.3, 0.4})) ({0.6, 0.7}, {0.5, 0.6)} ({0.3, 0.4}, {0.7, 0.9})

U4 ({0.8}, {0.3, 0.4, 0.5}) ({0.6, 0.7}, {0.7}) ({0.4, 0.5, 0.6}, {0.7, 0.8}) ({0.5, 0.6}, {0.7})

U5 ({0.3, 0.4}, {0.8, 0.9}) ({ 0.7, 0.8}, {0.5, 0.6}) ({0.4, 0.5}, {0.6, 0.7}) ({0.6, 0.7, 0.8}, {0.5})

Table 6: PHF DCMX [7]

If the PHF weighted average operator (PHFWA) [7] is employed, the score values are: S(U1) = 0.2757, S(U2) = 0.3047, S(U3) = 0.0402,

S(U4) =−0.0538, S(U5) = 0.0439. Then S(U2)> S(U1)> S(U5)> S(U3)> S(U4) which shows that U2 >U1 >U3 >U4 >U5. That is

the most desirable alternative is U2.

Comparisons made in this section are given in the table below:

8. Conclusion

In this study, a FH was obtained by combining the FFS and the HFS. For FHNs, the operations and comparison techniques were given. To

solve the MCDM problems under the FH environment, the FHWA and FHWG operators were put forward to aggregate the FHNs given

by the DMR. A MCDM technique combined with the presented operators is built to solve the MCDM problems in different situations.

Subsequently, a numerical example based on infectious diseases is provided to indicate the applications and advantages of the proposed

methods.
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Method ranking

for proposed method U2 >U1U5 >U3 >U4

for FFNs U2 >U1U5 >U3 >U4

for HFNs U2 >U1U5 >U4 >U3

for IHFNs U2 >U1U3 >U4 >U5

for PHFNs U2 >U1U5 >U3 >U4

Table 7: Comparison HF DCMX
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