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Abstract
Background:	The	modifiable	areal	unit	problem	(MAUP)	arises	when	the	support	size	of	a	spatial

variable	affects	the	relationship	between	prevalence	and	environmental	risk	factors.	Its	effect	on

Schistosomiasis	modelling	studies	could	lead	to	unreliable	parameter	estimates.	The	present	research

aims	to	quantify	MAUP	effects	on	environmental	drivers	of	Schistosoma	japonicum	infection	by	(i)

bringing	all	covariates	to	the	same	spatial	support,	(ii)	estimating	individual-level	regression

parameters	at	30	m,	90	m,	250	m,	500	m,	and	1	km	spatial	supports,	and	(iii)	quantifying	the

differences	between	parameter	estimates	using	five	models.

Methods:	We	modelled	the	prevalence	of	Schistosoma	japonicum	using	sub-provinces	health

outcome	data	and	pixel-level	environmental	data.	We	estimated	and	compared	regression

coefficients	from	convolution	models	using	Bayesian	statistics.

Results:	Increasing	the	spatial	support	to	500	m	gradually	increased	the	parameter	estimates	and

their	associated	uncertainties.	Abrupt	changes	in	the	parameter	estimates	occur	at	1	km	spatial

support,	resulting	in	loss	of	significance	of	almost	all	the	covariates.	No	significant	differences	were

found	between	the	predicted	values	and	their	uncertainties	from	the	five	models.	We	provide

suggestions	to	define	an	appropriate	spatial	data	structure	for	modelling	that	gives	more	reliable

parameter	estimates	and	a	clear	relationship	between	risk	factors	and	the	disease.

Conclusions:	Inclusion	of	quantified	MAUP	effects	was	important	in	this	study	on	schistosomiasis.

This	will	support	helminth	control	programs	by	providing	reliable	parameter	estimates	at	the	same

spatial	support,	and	suggesting	the	use	of	an	adequate	spatial	data	structure,	to	generate	reliable

maps	that	could	guide	efficient	mass	drug	administration	campaigns.

Full	Text
Due	to	technical	limitations,	full-text	HTML	conversion	of	this	manuscript	could	not	be	completed.	

However,	the	manuscript	can	be	downloaded	and	accessed	as	a	PDF.
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Figure	1

Study	Area:	The	Mindanao	region	in	The	Philippines.	Blue	dots	are	the	aggregated	survey

data	at	barangay-level.
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Figure	2

Environmental	risk	factors	extraction	at	pixel-level	from	cities	within	barangays
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Figure	3

Posterior	estimates	and	their	credible	intervals:	a)	Normalized	difference	vegetation	index;

b)	Normalized	difference	water	index;	c)	Land	surface	temperature	day	d)	Land	surface

temperature	night;	e)	Elevation;	f)	Nearest	distance	to	water	bodies.	Abbreviations:	SSA,

Spatial	support	of	analysis
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Figure	4

Density	plots	for	the	risk	factors	regression	coefficients:	a)	Normalized	difference	vegetation

index;	b)	Normalized	difference	water	index;	c)	Land	surface	temperature	day	d)	Land

surface	temperature	night;	e)	Elevation;	f)	Nearest	distance	to	water	bodies
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Figure	5

Residual	plot	for	the	five	increasing	spatial	supports	of	analysis.	The	x	axis	represents	the

fitted	prevalence	values	for	the	five	spatial	supports	of	analysis.	The	y	axis	represents	the

residuals	calculated	by	the	difference	between	the	observed	and	predicted	prevalence

values.
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Figure	6

Proportion	of	simulated	prevalence	data	that	fit	the	observed	maximum	prevalence	value.

a)	SSA=30m,	b)	SSA=90m,	c)	SSA=250m,	d)	SSA=500m,	e)	SSA=1	km.	Abbreviations:	SSA,

Spatial	support	of	analysis.
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Figure	7

Proportion	of	simulated	prevalence	data	that	fit	the	observed	minimum	prevalence	value.	a)

SSA=30m,	b)	SSA=90m,	c)	SSA=250m,	d)	SSA=500m,	e)	SSA=1	km.	Abbreviations:	SSA,

Spatial	support	of	analysis.
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Figure	8

Proportion	of	simulated	prevalence	data	that	fit	the	observed	mean	prevalence	value.	a)

SSA=30m,	b)	SSA=90m,	c)	SSA=250m,	d)	SSA=500m,	e)	SSA=1	km.	Abbreviations:	SSA,

Spatial	support	of	analysis.
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