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Abstract
Background

Research has been looking into neural pathophysiology of post-traumatic stress disorder (PTSD) and
dynamic functioning connectivity (dFC) applying resting state functional magnetic resonance imaging
(rs-fMRI). Previous studies showed that PTSD related impairments are associated with alterations
distributed across different brain regions and disorganized functional connectivity, especially in Default
Mode Network and the cerebellar area. In this study, we specifically looked into dFC on a whole brain
level, and we focused on critical regions such as DMN and cerebellum.

Methods

To explore the characteristics of dFC among patients with PTSD, we collected rs-fMRI data from 27 PTSD
patients and 30 healthy controls. The study also added a control group of 33 trauma-exposed individuals
to further look into trauma impact. Utilizing group spatial independent component analysis (ICA), the
dynamic properties on whole brain level were detected with sliding time window approach, and k-means
clustering.

Results

Two reoccurring FC “States” were identified, with connections being more concentrated on a within-
network level in one state and more strongly inter-connected in the other state. Abnormalities in dFC were
found within DMN, between DMN and cerebellum, and between DMN and visual network.

Conclusions

The findings were in accordance with the study hypothesis that PTSD patients demonstrated deficits in
emotional modulation and dysfunctional self-referential thoughts, and the deficits could be indicated in
dFC alterations. Abnormalities in dFC among PTSD patients could serve as appropriate indicators of
PTSD symptoms including depression and anxiety, hypervigilance, as well as impaired cognitive
functioning and self-referential information processing. 

Introduction
Post-traumatic stress disorder (PTSD) is prevalent in population exposed to traumatic events and its
persisting negative impact on quality of life [1, 2]. According to a cross-national study, the prevalence of
PTSD reached 5.6% among population exposed to traumatic events, and the prevalence rate among
general population has reached approximately 3.6% [3]. More than half of PTSD patients remain
untreated [3], which has become a public health concern given the high suicide risk and related substance
abuse [4]. Symptoms of PTSD include hyperarousal, re-experiencing, avoidance, and negative or numb
emotional state [4, 5]. Impairments in fear processing, cognitive functioning and emotional modulation
are recognized to be associated with PTSD, which contribute to the chronicity of symptoms [1, 6]. Barriers
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still exist in identifying and treating PTSD, hence study of neural physiopathology is essential in further
facilitating diagnosis and treatment of this psychiatric disorder [7]. 

Multiple previous studies have demonstrated that PTSD related impairments are associated with
alterations in brain regions, as well as with disorganized functional connectivity [8, 9]. The assumption in
previous neuroimaging studies has been that fluctuations were static intrinsically during the entire
recording period [10, 11] 

Resting state networks (RSNs) has become a research focus in recent neural physiopathology studies,
using resting-state functional magnetic resonance imaging (rs-fMRI) [10, 12]. The measurement of RS-
fMRI serves to demonstrate the state of brain activity across brain areas by detecting how of blood
oxygen level-dependent (BOLD) signals were organized with no stimuli [13, 14, 15]. RSNs are thus made
available to be observed through rs-fMRI and be assessed to examine potential abnormalities within and
between different networks [16]. With regards to PTSD, much attention has been paid to RSNs, especially
default mode network (DMN). DMN mainly anchors posterior cingulate cortex (PCC), mPFC, precuneus,
and lateral temporal cortices [17, 18], and is an important network in self-related information processing
and emotional regulation. Disruptions in DMN are demonstrated to be related to PTSD symptoms
including difficulty regulating emotions and intrinsic thoughts [1]. In addition, cerebellum as a brain
region that has been understudied in psychiatric disorders is also shown to play a critical role in PTSD
symptomology. The altered functional connectivity between cerebellum and other regions such as
prefrontal regions is found to be associated with bodily consciousness and multisensory integration [19].
There is growing research interest in dynamic analysis instead of static analysis of brain network
connectivity on discrete level.  

Latest research showed that dynamic alternations of functional connectivity (dFC), especially temporal
variability, could serve as indication of changes in patterns of neural activity on a macro level
[11]. Therefore, in this aspect, dFC compared to static FC could reveal more time variance features, and
provide more precise biomarkers of psychiatric disorders like PTSD [20]. The approach of group
independent component analysis, in the meantime, could be used to decompose the whole brain mRI
data into distinct functional regions [11]. This approach could help resolve the issue of merging areas
when applying regions of interest based atlas [11]. 

In our study, we explored potential differences in dFC among PTSD patients, trauma exposed individuals
without PTSD diagnosis, and healthy individuals. One hypothesis is that individuals with PTSD tend to
demonstrate alterations in dynamic functional connectivity in comparison to healthy individuals, and
trauma exposed individuals would demonstrate similar alterations but to a less significant extent.
Another hypothesis is that the alterations would be direct indicators of exposure to trauma and predictor
of level of trauma impact. Finally, it was also stipulated that trauma related alterations in functional
connectivity would correlate with and predictive of PTSD symptoms, including emotional symptoms,
impaired cognitive functioning and memory processing. 
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Materials And Methods
Materials and Methods

In 2014, 18th of July, a tropical category 4 typhoon named Rammasun severely affected Wenchang city in
Hainan province located in southern China. At least 14 deaths were reported as the consequence of the
disaster, and it was an especially hard hit on individuals dwelling locally. In addition, in Luodou town,
which is part of Wenchang city, a thousand individuals experienced being trapped by storm tide
subsequent to the destructive natural event. 70 individuals affected by the typhoon in the surrounding
area were recruited, and among these individuals, 36 were diagnosed with PTSD including nine males
and twenty-seven females. The other group of 34 were without PTSD (TECs, 7 males and 27 females).
Recruited subjects all went through screening with the PTSD Checklist-Civilian Version (PCL). Diagnostic
criteria specified in DSM IV was applied for diagnosing PTSD. Clinician-Administered PTSD Scale (CAPS)
were applied to assess clinical symptoms [10, 21]. Information is obtained through the scale regarding
duration, symptom onset, and impact on functioning. Presence or absence of comorbid disorders was
determined by applying the Structural Clinical Review for DSM IV. Additionally, 32 healthy controls were
recruited, including nine males and twenty-three females. These individuals didn’t meet diagnostic criteria
for PTSD, and the subjects were recruited from Haiko, a city about 35 kilometers away from Wenchang.
Assessment of depression and anxiety symptoms was conducted administering Self-Rating Depression
Scale (SDS) and Self-Rating Anxiety Scale (SAS). The whole process lasted from November 2014 to
January 2015.

The following were the applied general exclusion criteria: (a) age under eighteen   or above sixty-five; (b)
significant neurological and medical conditions; (c) history of head injury or loss of consciousness; (d)
left handedness; (e) current comorbid or lifetime comorbid psychiatric disorders other than depression
and anxiety; (f) psychotropic medication use (g) alcohol or substance abuse; (h) contraindications for
MRI, such as pregnancy, claustrophobia or ferromagnetic implants [22]. Completed imaging data was
unavailable for 3 female participants in PTSD group, and 6 other participants were excluded due to brain
infarction (1 female), denture-related artifact (1 female, 1 male), pregnancy (1 female), excessive head
movement (1 female, 1 male). Two male participants in HC group were excluded due to brain infarction
and 1 female participant was excluded due to excessive head movement. Eventually, 27 PTSD subjects,
33 TEC subjects and 30 HC subjects participated in the study. 

The study was conducted according to declaration of Helsinki. Approval was provided by committee of
ethics in the Second Xiangya Hospital of Central South University and Hainan General Hospital has
provided approval. Signed consent was collected from all participating subjects after being informed of
the study description.  

Data Acquisition

The resting-state magnetic resonance imaging scans were completed with the use of 3 Tesla MRI
scanner (Skyra, Siemens Medical Solutions, Erlangen, Germany), standard 32 channel head coil [4].
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Participating subjects received instructions to close their eyes, lie still and not fall asleep. High resolution
T1-weighted 3D images were captured with a sagittal magnetized, single shot, rapid gradient-recalled
sequence of echo to co-register and normalize subsequently. The repetition time or echo time equals
2300/1.97ms, with the flip angle equaling 9°. FOV equals 256 × 256 mm2, matrix equals 256 × 256, total
176 slices, with slice thickness equaling 1 mm. The scanning lasted 500 seconds for each MRI. Resting-
state fMRI scans of the whole brain were obtained with the use of gradient-echo planar imaging (Total
volumes equaled 250, TR/TE equaled 2000/30 ms, flip angle equaled 90°, FOV equaled 230 × 230 mm2,
matrix equaled 64 × 64, 35 slices and no intersection gap, slice thickness = 3.6 mm). Anterior-posterior
commissure was referred to for parallel alignment. 

Data preprocessing 

Data was processed with the use of toolbox Data Processing and Analysis of Brain Imaging (DPABI)
(http://rfmri.org/dpabi), which was run in MATLAB (Mathworks Inc., Sherborn, MA, USA) [23].
Realignment of data to the first volume was carried out for the purpose of correcting head motions. Data
was further assorted into gray matter, white matter and cerebrospinal fluid with the use of the Tissue
Probability Map template. Subsequently, the normalization matrix acquired was used to smooth the
functional images spatially with the convolutional effect of an isotropic Gaussian kernel of 6 mm. 

Corrective measures were performed on head motion post realignment. Exclusion of subjects with head
motion exceeding 1.0 mm or rotation exceeding 1.0º when scanned was performed. Group differences
were evaluated with the formula: Head Motion/Rotation L being the time series length and in current
study L=240 [24]. It was indicated in the results that the two groups were not significantly different in
quality of image (One-way ANOVA, F = 1.39, p = 0.255 for translational motion, and F = 0.125, p = 0.883
for rotational motion).

Group independent component analysis (ICA)

Following data preprocessing, group spatial ICA was conducted with the GIFT toolbox based on Matlab
2020a [25, 26] for data to be decomposed into functional networks. 

Data reduction was conducted with application of principle component analysis. At subject-specific data
level, independent components (ICs) were reduced to 120 with the application of principal components
analysis. Group ICs were further decreased to 100 at group level, with the expectation-maximization
algorithm [27, 28]. The ICA algorithm was repeatedly run for 20 times in ICASSO [27，29] in order to ensure
the infomax ICA algorithm stability and reliability [30]. 

We subsequently clustered components that resulted from last step. We conducted manual confirmation
of peak activation coordinates and examined if they were distributed in grey matter primarily [31].
Approximately 34 relevant components were selected based on the previous procedures for estimating
reliability. Via back-reconstruction approach (GICA) we obtained subject-specific spatial maps, as well as
time courses [32].

http://rfmri.org/dpabi
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Related intrinsic connectivity networks were identified as a result of the described procedures. In addition,
confirmation of high to low frequency fluctuation ratio and whether peak activation coordinates were
mainly grey matter located was made to eventually narrow the ICs to 34. 

Dynamic functional connectivity

Sliding window approach

There was growing application of sliding time window approach in research for investigating DFC, and
we used this approach in the study to look at time-varying changes in FC [11, 27, 33, 34]. Resting state
data was segmented and resulted in windows of 22 repetition times with a size of 44s. It has been
demonstrated that this segment length well balanced the ability to resolve dynamics and correlation
matrix estimation quality [27]. A window length of 30 to 60 seconds was identified consequently, and
topological assessments of brain networks were stabilized at around 30 seconds [27]. The window length
was restricted with a sigma 3-TR of Gaussian, one repetition time [33]. Above mentioned steps resulted in
218 windows that consecutively distributed across the whole scan. In order to encompass all possible
pairs of the 34 ICs selected within each window, we calculated 34 x 34 pair-wise covariance matrix. In
addition, the L1 norm was used in LASSO framework in order to promote sparsity in estimation with 100
repetitions [33, 35]. The resulting values were transformed into z-scores, which was achieved through
Fisher’s z transformation to reduce variance effect. Eventually, the matrices that went through z-
transformation were residualized with nuanced variables including gender and age [31].

Clustering analysis

The clustering method of k-means was applied for clustering the 218 window FC matrices obtained from
last analysis step, with the goal to identify reoccurring FC states. The L1 distance (Manhattan distance)
was employed to measure the similarity of FC matrices between windows, since it was more effective
compared to L2 distance when being applied on high-dimension data [11]. According to Allen et al. [11],
when performing subsampling of windows, a result of approximately 2 windows for each subject was
produced. Therefore, through silhouette, the cluster number of 2 was set. The optimal cluster number was
tested again through repeating the analysis with other set number, however almost identical clusters were
produced and lacked significant distinction. The cluster number of 2 was also widely applied in previous
literature [27, 33, 36]. All FC matrices were clustered into either state I or state II. The calculated medians
of the FC matrices were computed as the centroids of two clusters. The k-means algorithm was repeated
for 100 times to reduce potential random selection bias. The clustering analysis procedures were
performed on all subjects as a whole group, and on the three sub-groups separately. The purpose of this
step was to compare the differences among the three groups in terms of the connectivity pattern as well
as connection strength of the two states. Permutation one-way analysis of variance (ANOVA) was applied
for state comparison among the three groups (p<0.01, FDR corrected).

State analysis
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In order to explore the temporal properties of the two dFC states, we obtained the comparison of number
of state transitions, fractional windows, and mean dwell time among the three groups (HC, PTSD, TEC).
This analysis was based on the previous clustering analysis results, and therefore the temporal properties
of the three groups were calculated separately. The temporal properties of the whole group were also
calculated, however the results were not used since it was not meaningful for this study. For “fractional
windows”, the measurement was number of windows in one state. For “mean dwell time”, the
measurement was average amount of consecutive windows in one state before shifting into the other
state. For “number of transitions”, it stood for literal meaning which was the times these three groups
switched from one state to the other, indicating reliability of each state. Since there were three groups of
subjects, ANOVA was applied to examine between-group differences among healthy controls, PTSD
subjects and trauma-exposed subjects, with year of education, age and gender as covariates (p<0.01,
FDR corrected). 

Statistical comparisons and correlations analysis

We applied ANOVA for comparison of the significance of differences among demographic and clinical
characteristics (p<0.001). We compared the three groups in pairs, and gained the p values for the three
sets of comparison. The analysis was performed via SPSS Statistic, release version 26.0 (Chicago, IL,
USA) .  

In order to examine correlations between SDS and SAS scores of clinical scales and altered network
temporal properties, Spearman’s correlation analysis was performed in PTSD and control group (p<0.05,
uncorrected). We also performed correlational analysis in PTSD group between CAPS and IES scores and
altered network temporal properties. We applied SPSS to perform all statistical analysis.

Results
Demographic and clinical characteristics

Table 1 presented the results of analysis for clinical and demographic characteristics. There was no
significant difference among control, PTSD and trauma exposed groups in gender distribution (p=0.912)
or in age (F=0.317, p=0.729). It was found that the three groups were significantly different on education
level (F=8.396, p<0.001). In addition, it was demonstrated that the SAS as well as SDS scores in PTSD
group is significantly higher compared to TEC and HC groups (p<0.001), while the scores of HC group are
the lowest among the three groups. The PCL scores of PTSD group is higher than those of trauma
exposed groups (p<0.001) significantly. The mean scores of CAPS among PTSD patients is 78.2±19.3. 

Intrinsic connectivity networks

We grouped all identified 34 independent components into seven intrinsic connectivity networks and one
region – the cerebellar region - on the basis of the functional and anatomical properties. The networks are
as followed: basal ganglia (BG), Auditory Network (AUD), Visual Network (VIS), Sensory-Motor Network
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(SMN), Central Executive Network, Default Mode Network (DMN), SN, and cerebellum (CM). Here,
cerebellum refers to the cerebellar region. Spatial maps of the selected ICs are presented in Figure 1. 

Dynamic functional connectivity state analysis

Temporal properties

K-means analysis resulted in two recurring functional connectivity states. The resulting State I is more
sparsely connected, and State II is more strongly interconnected in comparison. Among all the
participants, State I (79%) occurrence is more frequent than State II (21%). As shown in Figure 2A and B,
the two functional connectivity state patterns are visually different in distribution of connectivity
strength. 

As presented in Figure 3A and B, differences were observed when looking at group-specific centroid of
clusters. In State I, connections were segregated and were mainly concentrated within DMN and CEN
networks. It was also observed that the connection between DMN and CEN was negative, which indicated
that DMN was negatively correlated with CEN in resting state. State II on the other hand demonstrated
stronger interconnectivity between networks. In addition, more within-network connections were active in
State II, including AUD, VIS, SMN, SN, CB, CEN and DMN. The interconnections involved the AUD, VIS, BG,
SMN, and CM. State II was also a state where large scale brain connections were stronger and more
interactive since both CEN and DMN were activated. The CEN-AUD, CEN-VIS, CEN-SMN connections were
among the most salient connections in state II, while DMN and SN also demonstrated positive
connections with other networks. Notably, BG and CB demonstrated mostly negative connections with
other networks in this state. 

It was shown in Figure 4A that State I occurred more frequently for all three groups of participants. In
addition, compared to control group, State I occurred significantly more frequent in PTSD group
(p=0.026). Meanwhile, it was observed that there was more frequent occurrence in State I for TEC group
compared to control group, but PTSD had the most frequent occurrence in State I among the three
groups.  

Figure 4B visually illustrated mean dwell time for the three groups. It was concluded that PTSD patients
dwelled significantly longer in the less activated and connected state (p=0.0094), in comparison with HC
group. The difference of dwell time in State II between HC and PTSD group was also statistically
significant (p=0.0075). In addition, the trauma-exposed participants compared to control group generally
remained longer in State I.    

With regards to number of transitions, healthy controls were shown to transit the most frequently between
two states, in comparison to PTSD and TEC groups, and the transition frequency of healthy controls was
found to be higher than PTSD group (p<0.05). Among the three groups, the transition frequency was the
lowest in PTSD group among the three groups. The result is presented in Figure 4C.
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Correlational analysis (Table 2) demonstrated significant correlations between temporal properties and
clinical scores (p<0.05). For SAS scores which indicated anxiety symptom, significant correlation was
observed with State I mean dwell time. For SDS scores which indicated depressive symptom, significant
correlations were found with State I and State II mean dwell time, and fractional windows. For symptom
of hypervigilance, significant correlations were found with State I mean dwell time and number of
transitions. Notably, among all significant correlations, two negative correlations were identified:
correlation between dwell time in State II and SDS scores and correlation between number of transitions
and hypervigilance. 

Strength of dynamics states 

Based on the described methods, connection strength of the two states was compared among the three
groups. Since the difference was not significant for TEC group, only the comparison between HC and
PTSD group was further discussed. In state I, 6 within- and between-network connections were identified
that were stronger among healthy controls (HC>PTSD, p<0.01, corrected). Notably, for control
group>PTSD group connections, 100% of them (6/6) were related to DMN network, including within-DMN,
DMN-VIS and DMN-CB network connections. We found 1 between-network connection that was stronger
among the PTSD group (HC<PTSD, p<0.01, corrected). which was consistent with the result of State I.
The connection was located within CEN-SN network. The same analysis was repeated for State II. When
comparing healthy controls to PTSD patients, there was only 1 between-network connection that was
stronger among the PTSD group (HC<PTSD, p<0.01, FDR corrected).

Discussion
In the past few years, research has been looking into the abnormalities on functional connectivity level for
PTSD in order to identify diagnostic biomarkers. Dynamic functional connectivity during resting state has
been proven by scholars to be effective in predicting neuropsychiatric disorders [11, 37]. This is one of the
first studies to look at whole brain level network functional connectivity during resting state using
independent component analysis among research on PTSD. With the hope to further understand
the neural physiopathology of PTSD and thus facilitate more precise diagnosis, we focused on the
specific as well as common time-varying alterations of functional network connectivity. 

State Connectivity

Two distinct reoccurring states were identified during the entire fMRI scan across all participants. It could
be observed from our results that connections in State I were more concentrated on a within-network
level, while state II being more strongly inter-connected. In addition, State II was a more strongly
connected state in terms of the within-network connection strength. The different states demonstrated
time-varying dynamic features of human brain activity during resting state. When conducting cross-group
comparison, we observed significant differences between PTSD patients and healthy controls in the two
states, which indicated that there existed alterations of dynamic functional connectivity among PTSD
patients, and the alterations could serve as diagnostic markers of PTSD. 
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Temporal Properties 

As we observed in the study, PTSD group demonstrated significantly less flexibility when transitioning
between two states, which was indicated by number of transitions. Despite that the differences between
trauma exposed individuals and healthy controls were not statistically significant, the trend of decreased
transitional flexibility as trauma impact level increase was illustrated by our results. 

In addition, the PTSD group and TEC group also tended to remain longer in the less active, less strongly
interconnected state, which is State I, when comparing to control group. It was stipulated that exposure to
trauma might affect flexibility in functional connectivity, which could be a direct marker of cognitive
functioning decline. 

Based on previous studies, PTSD patients typically demonstrated lower variance in connectivity [38].
Especially, in State I, within-DMN connections were stronger, while between-network connections were
weak and the whole brain connectivity was more segregated and less activated, which might be closer to
a “baseline default state” [39]. Lower variance and less flexible transition might indicate that individuals
with PTSD had already formed an altered default state where trauma was perseverating [38]. 

The perseverating effect of trauma could be further evidenced by the fact that trauma exposed subjects
without PTSD also demonstrated less flexibility in transitioning between states compared to healthy
controls. The results of analysis on temporal properties testified our hypothesis that individuals with
PTSD tended to demonstrate alterations in dynamic functional connectivity, especially in terms of
“baseline default state” with less flexibility and less active connectivity. Trauma exposed individuals
demonstrated similar alterations but to a less significant extent. 

Correlational Analysis 

The Spearman correlation analysis resulted in significantly negative correlation between number of
transitions and hypervigilance. This indicated that lower flexibility of state transition might have “primed”
the symptoms such as hypervigilance and hyperarousal [38]. Taken together, the results indicated that
trauma might affect baseline default state of human brain and the alteration might serve as basis of
hypervigilant symptoms. 

The correlational analysis also resulted in significantly positive correlation between dwell time in State I
and emotional symptoms in PTSD group, including anxiety and depression. In addition, negative
correlation between dwell time in State II and depression and anxiety was also observed. Increased dwell
time in State I and decreased dwell time in State II was observed as trauma effect level increased, as both
PTSD and TEC group dwell longer in State I compared to HC group. Combined with correlational analysis
results, we stipulated that PTSD patients tended to remain longer in the weaker connected state, in which
more depressive or anxiety symptoms might occur [36]. Trauma exposure was also stipulated to be
associated with emotional symptoms, as TEC group also dwelled longer in the weaker connected state
compared to HC group. This is consistent with previous studies regarding PTSD emotional
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symptomology. The results revealed that trauma related alterations in dFC were also predictive of
emotional symptoms of PTSD, testifying our hypothesis.   

Between-group Comparison of Connectivity Strength

In our study, connectivity strength was also analyzed, and there were significant differences between
PTSD and health control group. The resulted significant differences in connectivity strength between
healthy controls and PTSD patients were mainly related to DMN and cerebellar region, which was in
accordance with previous literature. Scholars have pointed out that default mode network (DMN) is one
of the most accurate networks in classifying PTSD patients, and serves as a significant biomarker [40].
Previous studies revealed disrupted resting state connectivity in DMN for patients diagnosed with PTSD
[1, 41]. It has been known that DMN is related to episodic memory and self-related information
processing, and weaker connections in DMN could be associated with symptoms such as intrusive
memories, ruminations and even dissociation [1, 10]. In our studies, PTSD group demonstrated weaker
connectivity strength within DMN network in State I, which was a baseline default state, in comparison to
HC group. When compared with healthy controls, PTSD group also demonstrated weaker connection
strength in DMN-cerebellum and DMN-VIS. 

When looking into the specific independent components, it was shown that in a baseline default state,
PTSD had weaker connection strength between left posterior cerebellum and left precuneus. In addition,
weaker connections were also found among PTSD patients within the frontal lobe, and medial superior
frontal gyrus also connected less strongly with interior paracingulate cortex as well as left occipital lobe.
According to previous studies, weaker connection between left posterior cerebellum and bilateral
precuneus could be indicative of state reliving and dissociative symptoms [42]. Individuals with PTSD
also demonstrated weaker connections between cerebellum and frontal regions, which were associated
with emotional regulation and awareness [42]. Considering the critical role posterior cerebellum plays in
emotional regulation, the decrease of connectivity between this part and precuneus as well as frontal
regions could evidence deficits in emotional modulation and dysfunctional self-referential
thoughts among PTSD patients [43]. 

Similarly, altered connectivity between frontal lobe and occipital lobe also pointed to difficulty in
processing of self-referential thoughts [44]. Finally, medial superior frontal gyrus and interior
paracingulate cortex were also known to have association with cognitive functioning and self-referential
information processing [5], and therefore the weaker connection could be associated with dysfunction in
these two aspects. Therefore, this is another evidence suggesting that alterations in functional
connectivity, especially in within- and between-network connection strength could be predictive of PTSD.
The connectivity strength difference between PTSD group and HC group serves as predictive factor
specifically in terms of cognitive functioning change and dissociative symptoms.  

There are several limitations regarding the present study that should be noted and considered. Firstly, the
sample size is small, especially when it comes to PTSD patients. Future study should consider a larger
sample of PTSD patients in order to obtain more representative results. Second of all, this study is cross-
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sectional, and a more profound study could be conducted through tracking the cohort and applying
longitudinal research methods. Finally, we only selected 34 independent components based on their
relevance for the analysis. More independent components could be encompassed in order to obtain a
more comprehensive and precise result.  

Conclusion
Two distinctive states were identified during the entire fMRI scanning process, with State I being more
segregated and less strongly connected and closer to a “baseline default state”, and state II being more
strongly interconnected with increase connectivity strength. It was found that subjects that were exposed
to trauma, including TEC and PTSD subjects, demonstrated trend of longer dwell time in State I, which
had correlation with emotional symptoms including depressive and anxious mood. Trauma exposed
subjects also tended to transit less frequently between states, pointing to impairments in cognitive
functioning. PTSD patients was found to demonstrate significantly weaker connectivity strength
especially in DMN-cerebellum and DMN-VIS connections when compared with healthy controls.
Specifically, weaker connectivity was found among PTSD patients between left posterior cerebellum and
left precuneus, within the frontal lobe, between medial superior frontal gyrus and interior paracingulate
cortex as well as left occipital lobe. The results of this study testified our hypothesis that individuals
exposed to trauma demonstrated alterations in dFC compared to healthy individuals, and there were
significant alterations when it comes to diagnosed PTSD patients. It was also proved that trauma related
alterations in functional connectivity were predictive of PTSD symptoms, including emotional symptoms,
impaired cognitive functioning and memory processing. This study evidenced that dynamic functional
connectivity could serve as a diagnostic biomarker of PTSD especially in terms of deficits in cognition,
emotional modulation, and dysfunctional self-referential thoughts. 
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Tables
Table 1: Demographics and clinical characteristics of the healthy controls, PTSD patients and TEC group

PTSD (n=27) TEC (n=33) HC (n=30) p Value

Gender (males/females) 7/20 7/26 7/23 .912*

Age (year) 48.4±10.3 48.5±7.5 49.9±6.1 .729**

Education (year) 6.4±3.4 7.0±3.4 9.7±3.3 <0.001**

Days after
the disaster to examination

105.5±9.5 118.0±10.0 125.8±1.0 <0.001**

SAS score 65.8±13.3 41.3±8.1 36.0±5.5 <0.001**

SDS score 69.6±13.2 41.3±9.1 33.5±7.2 <0.001**

PCL score

CAPS total score

Intrusion

Avoidance

Hypervigilance

53.7±8.5    78.2±19.3
 24.52±7.27 28.07±8.26
25.59±6.92

28.9±5.4 <0.001***

Presented data are means ± standard deviations.

Abbreviations: PTSD, post-traumatic stress disorder; SAS, Self-Rating Anxiety Scale; SDS, Self-
Rating Depression Scale; PCL, PTSD Checklist; CAPS, Clinician- Administered PTSD Scale; HC, healthy
control; TEC, trauma-exposed control.         

*P value obtained with chi-square test.

**P value obtained with one-way analysis of variance.

***P value obtained with independent t test for continuous variables.

Table 2: Spearman correlational analysis between clinical scores and mean dwell time, number of
transitions and fractional windows
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SAS SDS PCL CAPS
Total

Intrusion Avoidance Hypervigilance

Dwell Time
State I

r 0.201 0.198 0.089 0.327 0.322 0.118 0.439

p  0.043*  0.046* 0.66 0.096 0.101 0.557 0.022*

Dwell Time
State II

r -0.173 -0.221 -0.143 -0.168 -0.176 0 -0.287

p 0.082 0.027* 0.478 0.403 0.381 0.999 0.146

Number of
Transitions

r -0.197 -0.186 -0.069 -0.344 -0.305 -0.163 -0.449

p 0.053 0.067 0.731 0.079 0.122 0.415 0.019*

Fractional
Windows

r 0.174 0.196 0.115 0.173 0.176 0.02 0.278

p 0.081 0.049* 0.567 0.388 0.379 0.923 0.16

Figures

Figure 1

Independent components (n=34) identified by group independent component analysis. DMN: Default
Mode Network; ECN: Executive Control Network; AUD: Auditory Network; SMN: Sensory Motor Network;
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SN: Salience Network; VIS: Visual Network; CM: Cerebellum; BG: Basal Ganglia

Figure 2

Results of the clustering analysis for each state. Bright colors indicated positive connections. Cool colors
indicated negative connections. On average, the three groups spent 79% of time in State I, which was
more segregated and less strongly interconnected, and 21% of time in State II, which was more strongly
interconnected and had higher connectivity strength.

Figure 3
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Two sample t-test results of group HC v. group PTSD. Bright colors indicated stronger connectivity
strength of HC compared with PTSD. Cool colors indicated weaker connectivity strength of HC compared
with PTSD.

Figure 4
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State I occurred more frequently for all three groups of participants. In addition, compared to control
group, State I occurred significantly more frequent in PTSD group (p=0.026). Meanwhile, it was observed
that there was more frequent occurrence in State I for TEC group compared to control group, but PTSD
had the most frequent occurrence in State I among the three groups.  
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