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Abstract

Introduction: Although factors initiating the inflammatory response to monosodium urate crystals have
been identified, the role of the gut microbiota and their metabolites on gout remain unknown. This study
aimed to investigate changes in both gut microbiota and short chain fatty acids (SCFAs) according to
inflammatory states of gout in the same patients.

Methods: This study enrolled 20 patients with gout in the acute state who had active joints and were
followed-up until the recovery state with no active joints. Blood and fecal samples were simultaneously
collected within 3 days for each disease state. The stool microbiome was analyzed using 16S rRNA
sequencing, and serum SCFAs were measured by gas chromatography-mass spectrometry. Differences in
gut microbiome and serum SCFAs were compared between the acute and recovery states.

Results: Beta diversity of the microbiome was significantly different between the acute and recovery
states in terms of weighted UniFrac distance. In the recovery state, Prevotellaceae (p = 0.006) and the
genus Prevotella (p = 0.009) were significantly enriched, whereas Enterobacteriaceae (p = 0.019) and its
derivative genus Shigella (p = 0.023) were significantly decreased compared to the acute state. Similarly,
the levels of acetate was dramatically increased in the recovery state compared to the acute state (p <
0.010). Levels of propionate and butyrate tended to increase but without statistical significance.

Conclusion: Substantial alterations of bacterial composition with promotion of SCFA formation
(especially acetate) were found after treatment in patients with gouty arthritis.

Introduction

Gout is a common disease of inflammatory arthritis which results from the inflammatory response to
monosodium urate (MSU) crystals in the joints [1]. A secondary stimulus is required to develop acute
gouty arthritis in individuals with hyperuricemia, which affects the deposition of MSU crystals in the
joints [2]. Although factors modulating the acute inflammatory response to MSU crystals are better
known, the effect of diet, gut microbiota, and metabolites on gout remains to be elucidated [3].

Short chain fatty acids (SCFAs), which are produced by gut microbiota that metabolize complex plant
polysaccharides, have an important role in regulating immune cell function and the inflammatory
response [4]. Acetate, one such SCFA, promotes resolution of the inflammatory response to MSU crystals
by inducing neutrophil apoptosis [5]. A drug with an anti-inflammatory response on gouty arthritis could
possibly exert its therapeutic effect by the affecting gut microbiota and enhancing SCFA production

in mice induced by MSU crystals [6]. These studies suggest that the gut microbiota and SCFAs are
involved in modulating the inflammatory response to MSU crystal-induced arthritis; these warrant further
research for the possible therapeutic effects in patients with gouty arthritis.

This study aimed to investigate the association of both gut microbiota and SCFAs with gouty arthritis. To
understand the role of bacterial dysbiosis and SCFAs in its pathogenic mechanism, we analyzed the
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changes in gut microbiota and SCFAs across the inflammatory states of gout in the same patients.

Methods

Patients and study design

This study enrolled 20 patients with active joints in the acute state and were followed-up until

the recovery state with no active joints at Kyungpook National University Hospital (KNUH) from August
2020 to May 2021. This study consisted of two different disease states, the acute state and recovery
state, in the same patients. Blood and fecal samples were simultaneously collected within 3 days at each
disease state in all patients. All samples were immediately stored at -80°C until analysis. Gout

was diagnosed by a rheumatologist (S.J.L.) based on the American College of Rheumatology/European
League Against Rheumatism criteria of 2015 [7]. The exclusion criteria were patients who were younger
than 18 years old and those who were not followed-up until in recovery state after initial enrolment. The
protocol was approved by the Institutional Review Board and the Ethics Committee at KNUH. The study
was conducted in full accordance with the principles of the declaration of Helsinki.

Polymerase chain reaction (PCR) amplification of the bacterial 16S rRNA

DNA was extracted from feces using a DNeasy PowerSoil Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. The extracted DNA was quantified using Quant-IT PicoGreen (Invitrogen).
The sequencing libraries are prepared according to the Illumina 16S Metagenomic Sequencing Library
protocols to amplify the V3 and V4 region. The input gDNA (2 ng) was PCR-amplified with 5x reaction
buffer, T mM of dNTP mix, 500 nM each of the universal F/R PCR primer, and Herculase Il fusion DNA
polymerase (Agilent Technologies, Santa Clara, CA). The cycle condition for the 1st PCR was 3 min at
95°C for heat activation, and 25 cycles of 30 s at 95°C, 30 s at 55°C, and 30 s at 72°C, followed by a 5-
min final extension at 72°C. The universal primer pair with lllumina adapter overhang sequences used for
the first amplifications were as follows: V3-F: 5-
GTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3', V4-R: 5-
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3'. The 1st PCR product
was purified with AMPure beads (Agencourt Bioscience, Beverly, MA). Following purification, 2 ul

of the first PCR product was PCR-amplified for final library construction containing the index

using the Nextera XT Indexed Primer. The cycle conditions for the second PCR were same as that in

first PCR condition, except it was only run for 10 cycles. The PCR product was purified with AMPure
beads. The final purified product is then quantified using gPCR according to the gPCR Quantification
Protocol Guide (KAPA Library Quantification kits for lllumina Sequencing platforms) and qualified using
the TapeStation D1000 ScreenTape (Agilent Technologies, Waldbronn, Germany). The paired-end (2x300
bp) sequencing was performed by the Macrogen using the MiSeq™ platform (lllumina, San Diego, USA).

SCFAs extraction and analysis using gas chromatography-mass spectrometry
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To SCFAs, 100 pl of serum sample was mixed with 400 pl of 0.5% phosphoric acid solution and 500 pl of
butanol. Then, 5.8 pl of 5,800 ppm 4-methyl valeric acid was added as an internal standard. The mixture
was homogenized and centrifuged (10 min, 13,000 rpm). The supernatant containing SCFAs was
collected and stored until the further analysis. Acetate, propionate, and butyrate (Sigma-Aldrich) were
used for standard. The SCFAs were analyzed using gas chromatography-mass spectrometry (GC-MS)
(Agilent 7820A, USA) and equipped with a DB-Wax column (50 m * 200 um * 0.2 pm; Agilent
Technologies). The GC oven condition was set to 90°C, increased to 150°C at 15°C/min, increased to
250°C at 5°C/min, then held for 0.25 min. Helium was used as a carrier gas at a constant flow rate of 1.5
mL/min. The GC-MS chromatograms were acquired using a scan mode of m/z 33-250 at a fragment
voltage of 70 eV. Peaks were identified in the GC-MS chromatograms through a library search (NIST ver.
11) of their mass spectra.

Processing of sequences and bioinformatics analysis

After sequencing of MiSeq raw data, a FASTQ file for each sample was created. The adapter sequence
was removed using the Fastp program [8] and error correction was performed on the region where the two
reads overlapped. The paired-end data for each sample was assembled into a single sequence using
FLASH (v1.2.11) [9]. The resulting sequence was passed into CD-HIT-out [10], an operational taxonomic
unit (OTU) analysis program based on CD-HIT-EST, to remove low-quality sequences, ambiguous
sequences and chimera sequences, and clustering sequences with more than 97% sequence similarity to
form a species-level OTU. The representative sequence of each OTU was performed by BLASTN (v.2.4.0)
on the reference DB (NCBI 16S Microbial) [11], and the taxonomic assignment was performed with the
organism information of the subject having the highest similarity. A variety of microbial community
comparisons were performed using QIIME (v1.9) [12]. In order to check the species diversity and
uniformity of the microbial community in the sample, alpha diversity information was confirmed

through the Rarefaction curve, Chao1 value, and Shannon index. Based on the weighted UniFrac distance,
beta diversity between samples (information on diversity among samples in the comparison group) was
obtained, and the relationship between samples was visualized through principal coordinate analysis
(PCoA) and Heatmap. Linear discriminant Effect Size (LEfSe) analysis was performed

to identify bacteria that were significantly different; the degree of difference was expressed as a linear
discriminant analysis (LDA) score with a = 0.05 and LDA score threshold-2. At this time, 0.5% or more of
the genus level in at least 1 group was analyzed.

Statistical analysis

Categorical variables are presented as their numerical value and percentage; these were analyzed using
Pearson’s chi-squared test or Fisher’s exact test. Continuous variables are presented as mean + standard
deviation ranges and were analyzed using the Student's t test or the Mann—Whitney U test. Paired data
were analyzed using the paired t-test. Pearson’s correlation coefficient was used to determine correlations
between continuous variables. All results with p < 0.05 were considered statistically significant. Statistical
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analyses were performed using the SPSS software version 20.0 (IBM Corp., Armonk, NY, USA). The
GraphPad Prism 9.0 software (GraphPad Inc., San Diego, CA, USA) was used to produce graphs.

Results

Characteristics of the enrolled gout patients

The fecal and serum samples were analyzed to assess differences in the gut microbiota and SCFAs
between acute and recovery states in the same patients with gouty arthritis (n = 20).

Baseline characteristics of the enrolled patients are summarized according to different disease states in
Table 1. The mean follow-up duration between acute and recovery states was 64.50 + 25.66 days, and
majority of patients were male (95.0%). There were significant differences between both groups

in terms of uric acid, erythrocyte sedimentation rates, and C-reactive protein levels. All patients took
colchicine and 80% took urate lowering agents during the acute state (Table 1).

Gut microbiota altered substantially in patients in the acute state

Patients in the recovery state had reduced bacterial read count after treatment (Fig. 1A). The gut
microbiota of recovery state patients in terms of alpha diversity (observed OTU and Shannon index)

was not significantly different from that of acute state patients (Fig. 1B). Bacterial composition in PCoA
was not also significantly different between the two states, but there was much greater beta diversity in
terms of weighted UniFrac distance in the acute state compared to the recovery state (Fig. 2A,

B). Dysbiosis during the acute state may cause more diverse distribution of gut microbiota. When relative
abundances of the bacterial composition between the two states were analyzed at the family level,
Enterobacteriaceae, Bacteroidaceae, Tannerellaceae, and Enterococcaceae tended to decrease,

whereas Prevotellaceae, Lachnospiraceae, Oscillospiraceae, and Lactobacillaceae tended to increase
after treatment (Fig. 1C, Fig. 2C, D).

Paired T-test was performed to further investigate the differences in bacterial composition between both
states. Compared to the acute state, the relative abundance of Bacteroidetes was increased in

the recovery state, while that of Proteobacteria was decreased at the phylum level. The other dominant
phyla such as Firmicutes and Actinobacteria were not significantly different between both states (Fig. 3A,
B). Interestingly, Prevotellaceae (p = 0.006) and the genus Prevotella (p = 0.009) of Bacteroidetes

were both significantly enriched in the recovery state, whereas Bacteroidaceae and the genus Bacteroides
were not significantly different between both states. Among Proteobacteria, Enterobacteriaceae, and its
derivative genus Shigella were significantly decreased in the recovery state (p = 0.019 and p = 0.023,
respectively). Although the derivatives of Firmicutes (i.e., Lachnospiraceae, Oscillospiraceae) were

not significantly different between both states, the genera Faecalibacterium and

Roseburia, which belong to Clostridiales, were significantly increased in the recovery state (Fig. 1D, Fig. 4).

Changes in serum SCFAs levels after treatment in patients with gout
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Many commensal gut microbiotas reportedly have anti-inflammatory effects through the production of
SCFAs [4]. To explore the relationship between SCFA levels and inflammatory states of gout, the serum
levels of SCFAs were compared between the acute and recovery states. As shown in Fig Te, acetate levels
in the recovery state were dramatically increased compared to the acute state (p < 0.010). Propionate and
butyrate levels tended to increase, but these were not significant.

Discussion

The present study demonstrated two main results using serum SCFAs and faecal microbiota according
to different inflammatory states (acute vs. recovery state) in the same patients with gouty arthritis. First,
gut microbiotas were significantly altered, with an increased Prevotellaceae and decreased
Enterobacteriaceae during the recovery state of gouty arthritis. Second, production of SCFAs, especially
acetate, was significantly decreased in the acute state but increased in the recovery state. Our

results suggest that the recovery of inflammation in gouty arthritis may involve changes in the
composition of gut microbiota and enhanced production of SCFAs.

Enterobacteriaceae were increased by more than 20% in the acute state of gout, indicating an increase
during the inflammatory state because Enterobacteriaceae in feces of normal adults is usually around 5%
[13]. Enterobacteriaceae induce interleukin (IL)-8 and IL-1B secretion and cause colitis with increasing
intestinal inflammation [14]. Furthermore, the increased Enterobacteriaceae, which contains opportunistic
pathogens such as Salmonella, Shigella, Klebsiella, and E.coli, could result in reduced or

perturbed SCFA production which may initiate the host inflammatory response [15, 16].

An analysis of gut microbiota composition in the general population revealed three predominant
variants (i.e., enterotypes), specifically Bacteroides, Prevotella, and Ruminococcus. Because
Ruminococcus occupies gut microbiota in low levels, the enterotype clustering was

primarily composed of the genera Bacteroides and Prevotella[17, 18]. The Bacteroides enterotype was
associated with animal protein and saturated fatty diets. In the Prevotella enterotype, healthy subjects
exhibited improved glucose metabolism after consumption of kernel-based bread, and this was
associated with carbohydrates and high-fiber diets [18, 19]. In our study, the relative abundances of
Prevotellaceae and the other family of Bacteroidetes showed an inverse correlation. Interestingly, the ratio
of the genera Prevotella and Bacteroides was less than 0.5 in the acute state, but significantly

increased to more than 0.5 in the recovery state (Fig. 5). This indicates that stable switching between the
two enterotypes occurred after treatment of acute gouty arthritis in the same patients.

Previous studies also demonstrated that the genus Bacteroides was enriched in patients with gouty
arthritis, and that genera Escherichia and Shigella of the Enterobacteriaceae was more abundant in those
with tophi compared to the general population [20, 21]. The genus Bacteroides was associated with
monocyte-derived cytokines (i.e., IL1-8 and IL-6) and maintained epithelial barrier integrity by regulating
intraepithelial lymphocytes (from which IL-6 is derived), suggesting that it could mediate a homeostatic
role for the host immune system in the intestine [22, 23]. Therefore, the increase in
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Prevotellaceae alongside the relatively decreased Bacteroidaceae may be related to the recovery of acute
gout arthritis.

MSU crystals alone do not promote the inflammatory response of gouty arthritis; these require additional
trigger factors which provide co-signals for the activation of macrophages. Particularly, free

fatty acids and SCFAs from dietary intake could engage Toll-like receptor 2 and G-protein coupled
receptor (GPR) 43 on macrophages, respectively, leading to the regulation of inflammation [2, 24]. Similar
to our results, dietary fiber, which promotes the expansion of Prevotella, has been shown to

increase production of SCFAs. These SCFAs bind to the metabolite sensing-receptor GPR43

on the macrophage, which protected against diabetic nephropathy in mice [25]. Furthermore,

supplement with acetate (a type of SCFA), has been found to induce faster resolution of inflammation in
an experimental model of gouty arthritis, although it did not affect the onset of gout [5].

Because short-term diet changes are known to have little effects on enterotype clustering [14], the
phenomenon in our study of switching to an enterotype which enhances SCFA production could be
attributed to treatment with anti-inflammatory and urate lowering agents. Further studies are needed to
investigate whether long-term diets and manipulation of specific bacteria would affect gut microbiota
composition and the production of SCFAs, possibly preventing flares of gouty arthritis.

Conclusion

In conclusion, specific alterations of bacterial composition with the promotion of SCFA formation,
especially acetate, were found after treatment in patients with gouty arthritis. Further exploration of an
axis involving the gut and joints and its mechanism may provide novel strategies in the treatment of
gouty arthritis through manipulating gut microbiota and dietary intake.

Abbreviations

MSU: monosodium urate; SCFAs: short chain fatty acids; PCoA: principal coordinate analysis; LEfSe:
Linear discriminant Effect Size; LDA: linear discriminant analysis; IL: interleukin; GPR: G-protein coupled
receptor.
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Table

Table 1. Characteristics of study participants with gouty arthritis according to disease states.

Characteristics
Age
Sex, male (%)
Follow-up duration, days
Uric acid
eGFR
ESR (mm/h)
CRP (mg/dl)
Treatment agents, n (%)
Colchicine
NSAID
Corticosteroid
Intraarticular injection
Urate lowering agents
Febuxostat
Allopurinol

Benzbromarone

Acute state
63.90 + 14.90
19 (95.0)

N/A

6.77 £ 1.96
71.90+19.98
4994 +3436 T
5.13+6.90

20 (100.0)
7 (35.0)
4 (20.0)
9 (45.0)

14 (70.0)
1(5.0)
1(5.0)

Recovery state
63.90 + 14.90
19 (95.0)

64.50 + 25.66
5.32+1.74*
71.10 £ 16.83
19.88 +19.50 t
0.35+0.54

P-value
N/A
N/A
N/A
0.010
0.556
0.001
<0.001

Data are expressed as
means + SD for continuous
variables or numbers and
percentages for categorical
variables. eGFR: estimated
glomerular filtration rates;
ESR: erythrocyte
sedimentation rate; CRP: C-
reactive proteins; NSAID:
non-steroidal anti-
inflammatory drugs; N/A:
not applicable. *: n = 19; *:
n=17.

Figures
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(A). Paired comparisons of representative taxa at the phylum level (B). *: P < 0.05; **: P < 0.01 (paired t-
test).
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Figure 4

Changes in bacterial taxa at the genus level between the acute state and recovery state. *: P < 0.05; **: P <

0.01 (paired t test).

Page 14/15



P=0.05

c o o =
~ o w o
1 1 1 ]

Prevotella/
Prevotella+bacteroides
o
%)
1

o
o

Figure 5

Changes in the ratio of Prevotella and Bacteroides between the acute state and recovery state.
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