
Page 1/19

Satellite-Based Precipitation Estimates Validation
Using Surface Stations in the Central Region of the
State of São Paulo, From 1981 to 2019
Bruno César dos Santos 
(

bruno-unifal@hotmail.com
)

Universidade de São Paulo
 https://orcid.org/0000-0001-8218-6803
Rafael Grecco Sanches 

University of São Paulo
Talyson de Melo Bolleli 

University of São Paulo
Paulo Henrique de Souza 

Federal University of Alfenas
Vandoir Bourscheidt 

Federal University of Sao Carlos

Research Article

Keywords: Precipitation, Missing data, CHIRPS, Statistical analysis

Posted Date: January 10th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1153248/v1

License:


This work is licensed under a Creative Commons Attribution 4.0 International
License.
 
Read Full License

https://doi.org/10.21203/rs.3.rs-1153248/v1
mailto:bruno-unifal@hotmail.com
https://orcid.org/0000-0001-8218-6803
https://doi.org/10.21203/rs.3.rs-1153248/v1
https://creativecommons.org/licenses/by/4.0/


Page 2/19

Abstract
With the advance of remote sensing technologies, meteorological satellites have become an alternative in
the process of monitoring and measuring meteorological variables, both spatially and temporally. The
present study brings some additional elements to the validation of satellite-based precipitation estimates
by evaluating the CHIRPS (Climate Hazards Group Infra-Red Precipitation with Station) monthly product
for the central region of the state of São Paulo, Brazil, in the period 1981-2019. Initially, the general
relationship between satellite estimates and surface rainfall data is assessed using the linear adjustment
and error analysis in both temporal and spatial perspectives, followed by a trend analysis using Laplace
test. The monthly map analysis showed a better performance of CHIRPS during the dry period (April to
August) than for the wet period (October to March). Finally, monthly trends showed, in general, the same
pattern of variability in rainfall over 38 years and a prevalence toward the reduction of rainfall. In
summary, CHIRPS product seems a reasonable alternative for regions that lack historical rainfall
information.

1 Introduction
Rainfall variability has been a constant topic in scientific climate research, in view of its importance on
local and regional scale, and due to the extent of rainfall fluctuations impact on the most diverse regions
of the planet (Abreu et al. 2017; Ambrizzi et al. 2014; Cunha et al. 2014; Filho et al. 2019; Madsen et al.
2014; Sanches et al. 2020; Serrano et al. 1999; Teixeira and Satyamurty 2011; Zandonadi et al. 2016 ; Zilli
et al. 2017).

In this sense, the need to find long historical series of precipitation usually becomes a major obstacle for
carrying out studies on this matter (Madsen et al. 2014; Mekis; Vincent 2011; Piccarreta et al. 2004). It is
common to find gaps in surface data, which limit the quality of statistical analysis that may help to
understand the climatic behavior of a given region, such as the case of rainfall trends (Blain, 2013;
Carvalho et al. 2004; Nasseri et al. 2013; Sanches 2019; Teixeira; Satyamurty 2011; and Zandonadi et al.
2016).

Missing data in historical series are often caused by limitations in the resources used to measure or
transcribe the collected information. Conventional equipment requires daily manual readings, which can
sometimes lead to errors or lack of information over long time periods (Gimenez and Nery 2017; Coutinho
et al. 2018). To overcome these limitations, it is customary to use different statistical methods, aiming to
improve the quality and assist in filling data gaps, which are recurrent in historical series of climatic data
(Parmar et al. 2017; Rasouli et al. 2012; Ridwan et al. 2020; and Sachindra et al. 2018). However, in many
cases, these methods involve complex tools or require other historical series in the fault-filling process.

On the other hand, with the advance of remote sensing technologies, meteorological satellites have
become an alternative in the process of monitoring and measuring meteorological variables, both
spatially and temporally, allowing a better understanding of the atmospheric dynamics. Several
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meteorological satellites present extensive time series datasets that allow users to carry out long term
studies (Salio et al. 2015; Aires et al. 2016; Dembélé & Zwart 2016; Castelhano et al. 2017, Pereira et al.
2018; Silva et al. 2019; Calvalcante et al. 2020), especially in studies of extreme events like droughts and
floods.

In this way, CHIRPS (Climate Hazards Group Infra-Red Precipitation with Station) product present more
than three decades of rainfall information with a spatial resolution of about 5 km, combined in daily,
monthly, quarterly, and annual intervals (Funk et al. 2015). This product has been widely validated and
may be considered as an alternative of great potential for analyzing rainfall time series for regions that
do not have data from surface stations, or even as a resource to fill in data gaps.

In light of this, the present study aims to evaluate the monthly precipitation estimates from CHIRPS
product at the Southeastern Brazil, by comparing the satellite-based estimates against data from surface
stations, seeking to verify the potential of this dataset as an alternative solution for filling gaps or as a
solution for studies of rainfall variability. The following sections describe the procedures adopted in the
present study.

2 Material And Methods

2.1 Study area
The study area is located in Southeastern Brazil, in the center-east of the state of São Paulo, with an area
of 9,151.7 km², and comprising a total of 16 municipalities (Fig. 1).

According to Monteiro's (1973) climate classification, these municipalities fall into tropical regional
climates with dry (April to September) and humid (October to March) seasons, with a predominance of
type A2/Vb (Serra de São Carlos). Furthermore, according to Kopen’s classification, the area is classified
as Cwb, i.e., Subtropical highland climate with dry winters (Alvares et al. 2013). This represents an
important characteristic of the rainfall distribution, mainly related to the regional atmospheric circulation
pattern (Moruzzi and Oliveirac 2009; Zilli et al. 2017; Sanches et al. 2018; Sanches 2019; Santos et al.
2017; 2018 and 2020), which eventually lead to exceptional episodes in the region.

In geomorphological terms, the area is in the transition between two morphostructures, the Western
Plateau, formed in a large area of smooth relief composed of hills, low hills and mountains, with an
average altitude of approximately 900m; and the Peripheral Depression, which largely consists of hillock
and smooth terrain features, in addition to isolated hills and mountains with levels up to approximately
600m (Ross; Moroz 1997; Pinheiro and Queiroz Neto 2014). Details of the terrain can be seen in the
transects shown in Figure 1.

Thus, the complex terrain features located in the north and south of the area have a fundamental role in
the regional circulation, especially when it is influenced by different weather types that may contribute to
the rain formation or intensification along the seasons (Santos et al. 2018).
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2.2 Database
Thirty-one pluviometric stations were used in the study, with daily data, from historical series of 38 years
(1979-2019) and that have the minimum possible failures. For access to rain data, the following sources
were consulted: the online hidroweb platform, which belongs to the National Water Agency (ANA); the
website of the Department of Water and Electricity (DAEE); and the Integrated Center for Agro-
meteorological Information (CIIAGRO), belonging to the Secretariat of Agriculture and Supply.

In addition to the surface stations, monthly data from the satellite-based product called CHIRPS (Climate
Hazards Group Infra-Red Precipitation with Station), were also used for the period between 1981 and
2019. As previously stated, this dataset consist of precipitation estimates from 1981 to the present day,
with quasi-global coverage (between 50 ° N to 50 ° S), with a spatial resolution of 0.05 ° (Funk et al.
2015). The estimation process goes through a series of steps that help in the quality control of the data,
so that CHIRPS users can find it useful. The validation process involves three main stages, as shown in
Fig. 2. The first stage, called CHPclim, uses information from normal stations, satellite stations, elevation
of the terrain, latitude, and longitude as a source of processing. The second stage uses satellite data
collected by means of cold cloud duration (CCD) precipitation estimates, dividing with the average and
resulting in percentage values of precipitation. The values resulting from these two steps are multiplied,
thus generating the product called CHIRP. The last step is the use of data observed by the surface
stations, going through statistical procedures (IDW and% Bias Correction) and multiplying their values
with those of the CHIRP and, thus, validating the precipitation data for the platform called CHIRPS.

The use of CHIRPS has been validated in several studies through its comparison with ground stations,
seeking to demonstrate the quality of its information, serving as an alternative database in different
regions of the world and also within the Brazilian territory (Nogueira; Moreira; Volpato 2018; Costa et al.
2019; Santos; Cunha; Ribeiro-Neto 2019; Silva et al 2019; Pereira et al. 2018; Castelhano; Pinheiro;
Roseghini 2017; Moctar Dembélé and Sander 2016; Bai et al. 2018; Tote et al. 2015; Aksu and Akgül 2020;
Alejo et al. 2021; Ghozat et al. 2021).

3 Procedures And Data Analysis
From the data obtained, we initially sought to assess the relationship between satellite estimates and
rainfall data from surface stations, similarly to the studies mentioned above.

For this purpose, monthly data were collected from both sources (surface and orbital). For CHIRPS, the
values of the grid points (pixels) equivalent or closer to each station were selected. With these data, we
proceeded with the verification and cross-validation against ground station using different statistical
methods, certifying the equivalence between the data in the period of 38 years (1981-2019).

To evaluate the use of orbital data (CHIRPS) as an alternative to fill in the gaps in historical series, as well
as for areas that absent precipitation information, a comparative analysis was carried out using all
surface stations (without failures) and the values estimated by the satellite. Then, monthly averages of
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the different statistics were taken and spatialized into 12 monthly maps using the inverse distance
weighting technique (Farias et al. 2017), to get a better view of the results in the study area and the
influence that the landscape determines on rainfall records, as well as to evaluate the impact of seasonal
variations on the estimates. Finally, a rainfall trend analysis was made on a monthly base for the two
datasets. The calculations and systematization of the data through tables and graphs were performed
using Microsoft Office Excel 2007. The statistical techniques used for all these analyses are described in
detail below.

3.1 Mean Error (ME)
ME is used to determine the absolute difference between the value observed at the surface station and
the value estimated by the satellite, and may be computed as:

ME =
1
n ∑ n

t=0(
^
yt −

−
ŷ t) Equation (1)

Where:

n: number of samples in the time series

t: time interval (month)

ŷt :  estimated value by the satellite in each month
−
ŷ :  value observed at the surface station in each month

The ME represents the oscillation in the error of one dataset in relation to another by means of the
amplitude of the differences between them, without taking into account the underestimation or
overestimation of the error (Montgomery et al. 2008). The ideal value is that close to zero, indicating a
better agreement between the datasets (Hallak and Filho 2011).

3.2 Root Mean Square Error (RMSE)
The RMSE is the average measure of estimated errors, with the smallest errors / best adjustments found
as closer to zero this value is. It can be calculated as follows:

RMSE =
1
n ∑ n

t=1[
^
yt −

−
ŷ t]² Equation (2)

Where:

n: number of samples in the time series

t: time interval (months)
^
yt: value observed at the surface station in each month

√
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−
ŷ : value estimated by the satellite in each month

The RMSE determines the variability in the error of two time series. For this, the errors obtained from the
square of the difference between the value observed in the pluviometric stations and the data estimated
by the satellite are added (Montgomery et al. 2008). According to Hallak and Filho (2011), this statistical
criterion is normally used to express the accuracy of the numerical results, with the advantage that this
parameter presents error values in the same dimension as the analyzed variable.

3.3 Determination coefficient
The R² is a measure of statistical adjustment that aims to estimate the values of Y as a function of the
value of X, and is given by:

 Equation (3)

Where:

n: number of samples in the time series

t: time interval (months)

yt: value observed at the surface station in each month
−
y : average of the observed values
^
yt: value observed by the satellite in each month
−
ŷ : estimated mean values

The R² evaluates how CHIRPS data fits with the data observed in the pluviometric stations using a linear
model. In other words, it indicates the proportion of the variation in CHIRPS satellite estimates that can be
explained by the total variation in the observed data (Montgomery et al. 2008). Morettin and Bussab
(2010) complement that this criterion varies between 0 and 1, so that the higher the value of linear R², the
better the quality of adjustment of the precipitation estimates from CHIRPS to the values observed in the
meteorological stations.

3.4 Laplace trend test
The method known as the 'Laplace Test' (Laplace trend factor) is applied to the data set to observe trends
in the annual precipitation.

The trend is determined based on a given value u(t) and considering a given period [0, t], by the following
equation (Kanoun; Martini; Souza 1991):
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u(t) =

∑t
i =1 ( ( i−1 n i

N(t) −
(t−1)

2

t2−1
12(N(t ) )

Equation (4)

Where:

t: represents the number of months

ni: is the variable analyzed at time i (monthly precipitation at each station or pixel)

N(t): indicates the cumulative number in relation to the analyzed variable.

4 Results And Discussion

4.1 Analysis using monthly maps
Here, the results from the statistical analysis presented in the previous section for the 31 stations were
interpolated, allowing a detailed spatial analysis of the variables under consideration.

4.1.1 Mean error (ME)
Figure 3 presents the average values of ME for each station as interpolated maps, which indicate the
spatial variations in absolute errors between observed data and CHIRPS estimated rainfall accumulation.

Along the year, ME values vary between -39mm to 43mm over the study area. The months corresponding
to the dry period (April to September) presented values closer to zero (optimal value) and slightly toward
the underestimation, with emphasis on June, July, August and September. On the other hand, the months
associated with the wet period (October to March) presented overestimation in general with the exception
of January, which presented the biggest negative errors, that is, a greater underestimation of the values in
relation to the observed values. From the spatial perspective, by comparing these maps with Figure 1, one
could infer that the largest errors (sub and overestimation) are located in regions associated with the
orographic pattern of the transition from peripheral depression to the western plateau of São Paulo and,
also, in the surrounding the Serra de Itaqueri.

4.1.2 Root mean square error (RMSE)
The maps in Fig. 4 present the interpolated RMSE monthly values. It is noted, again, that the period
between April and September (dry period), presented RMSE values closer to zero (optimum value), with
emphasis on the months of June, July and August (9 to 20mm). In the same way, the biggest errors occur
during the wet season (October to March), especially in December, January and February. In addition,
areas in the south-central part of the map presented larger errors in general, which is possibly related to
the orography of the region, as already stated for ME analysis. This is also the case of the singularity in
the map of November.

) )

√
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4.1.3 Determination coefficient (R²)
The spatialization of the monthly average values of R² is shown on the maps of Fig. 5. These maps allow
to observe the areas (or stations) with the best level of statistical adjustment between the datasets
according to a linear regression model, which can also be used to indicate high or low correlation
between them within the study area. In general, the maps indicate good adjustments or a good correlation
(R2 > 0.7), especially in May, June, July and September. In the other months of the year, some areas
showed better adjustments, with the R² values varying between 0.5 to 0.9 within the study area.

The similarity between the values, especially during the dry season in the Tropical climate, when the
participation of atmospheric systems that inhibit rain prevails in the Brazilian territory, may be related
with the reduced occurrence of warm clouds/rain, which lead to a general underestimation of rainfall
(Dinku et. al. 2018). For temperate regions, the inverse pattern is observed between summer and winter
due to the limited capability of CHIRPS in accounting for snowfall (Bai et. al. 2018). Paredes-Trejo et. al.
(2020) found the same pattern in the Northeastern Brazil, but including stations at the coastal region, for
which the authors also suggest limitations due to the warm precipitating systems as well. Thus, the
pattern found in the present study might be related with the location of the analyzed region: inside the
continent and at latitudes that influence the occurrence of precipitation more effectively during summer
than in the winter.

In the same way as for ME and RMSE, the general spatial variation suggests that the study area is
influenced by the effect of the landscape, mainly due to the presence of a mountain range in the south
portion of the area. During the rainy season, the joint performance of the atmospheric systems and the
presence of the topography provide favorable conditions for the formation of cloudiness and rain, along
its entire length. Thus, as can be seen in the south-central region of the map, the linear adjustment
showed lower R² values, especially in the months of transition from the dry to the rainy period (October,
November, December and March). The same is not true for the northernmost areas of the map, which
showed slightly higher values between these months. As discussed by Paredes-Trejo et. al. (2020) and
Dinku et. al. (2018), terrain features induce warm orographic rainfall that is occasionally misclassified as
no precipitating due to the adoption of a fixed IRP CCD threshold value in the CHIRPS product.

Therefore, it is possible that low correlations / worse adjustments occur due to the algorithm adopted for
satellite data, based on the so-called “cold cloud duration” (CCD), which, in view of the recurrent presence
of (warm) cloudiness over the region, lead to a general overestimation of CHIRPS in relation to the
surface data. However, in an anomalous way, the month of January, considered the wettest month,
showed a better correlation of the data over the entire map in relation to the other months of the same
period. This may be associated with the establishment of the South Atlantic Convergence Zone (SACZ), is
characteristic at this period, implying in consecutive days of precipitation and high rainfall
accumulations.

4.1.4 Laplace trend test.
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Figure 6 summarizes the results for the trend analysis. Values above (+2) indicate increasing trends and
values below (-2) indicate decreasing trends in precipitation over time. It is possible to observe that the
variability of the trends of both data are very close in terms of the climatic rhythm, with quite similar
values for some of the stations (P5, P6, P21, P22, P23, P30 and P31) along the 38 years. On the other
hand, for the other stations the values were similar during the period from 1981 to 2000 and, later, the
differences between trends for the different series increase, maintaining, however, the climatic rhythms
the series over the years.

Those periods that presented the greatest discrepancy in the compared values, coincide with moments in
which there was a reduction in the number of stations (surface) used for the adjustment and quality
control of the data estimated by CHIRPS, throughout its time series (Funk et al. 2015; Nogueira et al.
2018). This analysis can be seen in Fig. 7, which shows the monthly density of the number of surface
stations used by CHIRPS to adjust the trend / bias, starting in January 1981 in the study region and
around it. As suggested by Funk et al (2015), the use of CHIRP product could possibly give better results
than CHIRPS for this case, since it does not consider the ground stations in the estimates.

It is noted that between 1981 and 1997 the density of stations was quite high, with approximately 70
stations used in the estimates. After 1997, the density decreased significantly, dropping to less than 6, or
even without stations in some years after 2015. The observed reduction in the number of stations,
possibly associated with data gaps in the selected stations, implies in adjustments (using the Mean Field
Bias or MFB method) based on stations farther from the investigated area, which ends up reducing the
quality of the adjustment between the data.

Thus, the gradual reduction in the number of surface observations may have affected the correction
stage of the CHIRPS product, which reflects in precipitation estimates with a moderate bias (Xavier et al.
2016; Paredes-Trejo et al. 2017). In addition, it is worth mentioning that information on terrain elevation,
climatology, geographic location and station sources are also included in the quality control process in its
historical database (Funk et al. 2015).

4.2 Spatialized trend of rainfall
The map in Fig. 8 shows the general trend of monthly rainfall for the two historical series compared
(surface stations and satellite estimates). It is noted that both data show, for most seasons, a negative
trend in monthly rainfall at the studied area. This pattern of negative trends was also observed in the
region by Sanches et al. (2020), who pointed to a reduction in rainfall for the municipality of São Carlos-
SP. In other study over a larger area (Paraná basin), Rafee et al (2021) have found general negative trends
for annual rainfall in the north portion of the watershed (which includes the region of this study), and
positive trends when moving toward the south of the area. Their results also indicate increasing trends in
extreme rainfall (more than 50mm) episodes toward the south portion of the basin.

For surface data, about 90% of rainfall stations showed a reduction in monthly rainfall and for satellite
estimates, about 74% of the used data (i.e., the pixel closest to the rainfall station) also showed a



Page 10/19

decrease in rainfall. In the case of stationary trends, these were found in 7% of the surface posts and 19%
for the CHIRPS pixels. Only 3% of the stations showed positive trends in the analyzed period, with this
value being 7% for the pixels of the satellite data.

It is important to stress that, at some points in the central region of the map the rainfall trends varies from
negative (surface) to normality to positive (satellite). These inversions might be associated either with
limitations in both products (surface stations and CHIRPS product) or even with gaps in the historical
series used for the comparison process.

Finally, the existence of complex terrain features in the region may influence the rainfall values as well
(Dinku et al. 2011, Rahman et al. 2009, Toté et al. 2015; Paredes-Trejo et al. 2015) and, with this, resulting
in a different pluviometric behavior due to orographic effect (Santos et al. 2019; 2020).

5 Conclusion
In this work, different statistical methods were applied to compare the monthly precipitation estimates of
the CHIRPS product against surface measurements of 31 stations located in the central region of the
State of São Paulo. In general, the results were satisfactory. For the monthly analysis using maps, the
influence of the tropical climate seasonality, showed a better performance of the CHIRPS during the
winter/dry period (April to August), where atmospheric systems that impact on the reduction of rains
(blocking highs and polar systems) are more frequent, and there is a reduction in the warm clouds and
rain systems.

However, during the wet period (October to March) the performance of CHIRPS tends to decrease, as the
atmospheric systems (frontal and convective) acting during the summer, combined with the orographic
effects and the presence of warm rain, results in high levels of precipitation and in the overestimation of
the CHIRPS values, with a certain level of saturation (with values ​​ not exceeding 550mm). It is noteworthy
that over the year, the month of January (considered the rainiest) was the one that presented a greater
underestimation of the values ​​in relation to those observed on surface stations.

Finally, monthly trends showed, in general, the same pattern of variability in rainfall during the period
from 1981 to 2019 (38 years). In addition, there was a prevalence of the reduction in monthly rainfall for
most of the compared points, with the exception of some periods when opposite trends were found for
the data observed on the surface and those estimated by CHIRPS. This difference may be associated
with orographic effects or could be related to the reduction in the number of surface stations used in the
CHIRPS adjustment, mainly after the 2000s.

In spite of this, the CHIRPS product reveals, in general, a pluviometric rhythm very similar to the one
observed by the surface stations, being able to become an alternative database in the process of filling
gaps in historical series, or even as a solution for regions that do not have historical rainfall information.
Since there is no perfect solution to the serious flaw that many collection points have, the use of these
technologies / resources could overcome these limitations and allow a complete analysis of the time
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series, bringing an important contribution to the research and the understanding of the behavior of the
atmosphere in the various portions of the Earth's surface, especially in areas where human and financial
needs make it difficult to collect data in a continuous way.
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Figures

Figure 1

Location of the study area (in red) within the São Paulo climate classification according to Monteiro
(1973). The lines (horizontal and vertical) on the hypsometric map indicate the location of the transects
shown at the bottom. The yellow dots indicate the location of the surface stations, and the black dots
indicate the location of the satellite's pixels (CHIRPS). Source: Climate maps adapted from Alvares (2013)
and Monteiro (1973).

Figure 2
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Steps taken in estimating and validating the precipitation data for the CHIRPS product. Source: Funk et
al. (2015)

Figure 3

Monthly maps of the Mean Absolute Error (ME) varying between -39 mm (red) to 43 mm (green) in the
period 1981-2019. Values close to zero (yellow) indicate a better agreement between observed and
estimated rainfall data. Source: prepared by the authors

Figure 4

Monthly maps of the RMSE ranging from 0 mm (green) to 105 mm (red) in the period 1981-2019. The
closer to zero, the better the agreement between the data observed by the surface stations (ANA) and the
estimated data by satellite (CHIRPS). Source: prepared by the authors

Figure 5

Monthly spatialization of R² values between the data observed on the surface (ANA) and those estimated
by satellite (CHIRPS). The closer the values are to 1, the greater the coefficient of determination and when
the values are close to 0 the lower the coefficient. Source: Prepared by the authors

Figure 6

Analysis of the monthly trend of surface station data (light blue line) and estimated by CHIRPS (dark blue
line) over 38 years (1981-2019). The intervals (+2 to -2) between the two red lines indicate the stability
(normal range) of the series. Source: prepared by the authors
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Figure 7

Monthly density of the number of surface stations used by CHIRPS inside (blue) and around (red) the
study area, from 1981 to 2020. Source: Adapted from CHIRPS (2021)
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Figure 8

Monthly rainfall trend for data observed on the surface (ANA) and those estimated by satellite (CHIRPS)
in the study area. Source: prepared by the authors


