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Abstract
Basal renal function is a predictor of response to diuretic therapy and marker of poor prognosis.
Simultaneous changes in renal function, sodium, potassium values and their interdependence are key
parameters in addition to volemia for the assessment of cardiorenal balance. In our paper, an analysis of
volemia, electrolytes, and renal function in heart failure was performed using an algorithm based on the
ANFIS (Adoptive Neural Fuzzy Inference System), an intelligent approach to renal and heart function
monitoring. The study included 90 subjects who were divided into two groups: clinical (n-80) and control
(n-10). The base is composed of parameters B-type natriuretic peptide (NT-proBNP), sodium (Na),
potassium (K), ejection fraction (EF), EPI creatinine-cystatin C formula and ANFIS expert system
combined in neural network and fuzzy logic network. The results showed that the overall trend of data
veri�cation in the network with NT-proBNP, Na and K that we formed is approximately 15%, with which
subjects can be classi�ed according to the severity of hypervolemia, electrolyte disturbance and renal
function. NT-proBNP (pg/mL) had the most in�uence on the EPI creatinine-cystatin C formula. Serum
sodium (Na) has the most in�uence on the ejection fraction (EF).

1. Introduction
Renal dysfunction is a common �nding in patients with primary and secondary heart disease, and the
most common reason for repeated hospitalizations is cardiac decompensation and hypervolemia. It is
also known that the therapy used to correct congestion and to improve the pumping function of the heart
also affects kidney function [1, 2]. Therefore, an approach for careful monitoring of renal function and
electrolyte levels in addition to assessing volemia status has been included in the guidelines for good
clinical practice for the treatment of patients with heart failure. However, the therapy suggested in
guidebooks is often underdosed or underused due to side effects. The most common side effects of
drugs used in the treatment of cardiac decompensation are renal dysfunction and electrolyte disturbance
[3, 4, 5].

The basic parameters for monitoring patients with heart failure are markers of renal function and markers
of water-electrolyte balance [6, 7].

Sodium (Na+), as an extracellular electrolyte and osmotically active molecule, plays an important role in
regulating the water balance. Disorders in serum sodium values are common and are an independent
predictor of recurrent hospitalizations due to cardiac decompensation and death after discharge from
hospital treatment [8].

Potassium (K+) is an intracellular cation whose role is re�ected in the electrical stimulation of muscle and
nerve cells. For cells to function normally, it is necessary that there is a difference between extracellular
and intracellular potassium levels. Disorders of serum potassium are common in patients with heart
failure. In patients with normal GFR values, serum potassium disturbances occur as part of renin
angiotenin aldosterone axis disorder. The disorder is re�ected in an imbalance between the sensitivity of
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tubular cells to aldosterone and the activation of the neurohumoral axis. High mortality has been reported
in patients with heart failure who have lower serum potassium values than in those with high serum
potassium values [9, 10, 11].

Assessment of renal function is very important for the assessment of outcomes in patients with primary
and secondary heart disease and numerous comorbidities. Deterioration of renal function (worsering
renal function-WRF) is associated with frequent repeated hospitalizations, prolonged hospital treatment,
and high mortality [12].

In clinical practice, serum creatinine is used daily as a marker to assess the strength of glomerular
�ltration using various formulas. Creatinine is fully �ltered in the glomeruli and minimally secreted in the
proximal tubules. For this reason, for now, in practice, creatine is the best marker of glomerular �ltration,
with relatively constant plasma concentrations. It does not show reliability as a marker of the early stages
of acute kidney damage because it signi�cantly depends on the volume state and the intensity of
catabolic processes. Glomerular �ltration is also assessed using cystatin C in the EPI creatinine-cystatine
C formula (Chronic Kidney Disease Epidemiology Collaboration). Cystatin C (CyC) is a marker of not
onlyfunctional but also structural damage to the kidneys. Cystatin C in patients with essential
hypertension can be a marker of subclinical, functional and structural damage of the heart, as well as a
marker of early renal vascular damage. Therefore, cystatin C may be a marker of a subclinical phase of
cardiorenal disease [13, 14].

Hypervolemia is usually manifested by the appearance of peripheral edema, accumulation of �uid in the
abdomen and an increase in intra-abdominal pressure after an increase in pressure in the right atrium
and a decrease in the functional reserve of the glomeruli. The consequent decrease in the functional
reserve of the glomerulus occurs due to the activation of the atrial renal re�ex during the increase in
circulatory volume and the increased �lling pressure of the atria. In chronic conditions of hypervolemia,
the natriuresis control mechanism regulated by atrial natriuretic peptide and arginine vasoperesin is
ineffective and leads to a paradoxical reduction in diuresis. In this case, the reduced intensity of
glomerular �ltration and diuresis is a consequence of reduced blood �ow through the kidney, which
occurs due to vasoconstriction of the afferent arteriole after increased sodium absorption in the proximal
tubules [15, 16].

Natriuretic peptides are biomarkers that have been suggested by guidebooks to aid in the noninvasive
diagnosis of hypervolemia and heart failure. The determination of the B-type natriuretic peptide (BNP)
concentration and its precursor have the greatest signi�cance in the diagnosis of heart failure and are
independent predictors of mortality in these patients. Chronic heart failure involves resistance to released
NT-proBNP, as well as de�cits in the active form of BNP. NT-proBNP is also elevated in patients who
develop acute kidney injury (AKI) due to acute heart failure, since the end-diastolic stretching of
cardiomyocytes leads to its production. Elevated levels of NT-proBNP are commonly found in patients
with heart failure and reduced glomerular �ltration [17, 18].
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The aim of our paper was to analyze volemia, electrolytes, and renal function in heart failure, using an
algorithm based on the ANFIS (Adoptive Neural Fuzzy Inference System), an intelligent approach to renal
and heart function monitoring.

2. Methodology

2.1. Measuring data
The study group included 90 subjects older than 18 years of both sexes. Of the total number of analyzed
respondents, 10 were healthy respondents of both sexes. The clinical group of remaining n-80 subjects
with heart and kidney damage had n-52 men (57.77%), and n-38 women (42.22%).

The study was conducted at the Department of Nephrology of the Clinical Center in Niš, Department of
Cardiology of Universuty Clinical Center in Niš, Institute of Biochemistry of the Faculty of Medicine in Niš
and the Center for Medical Biochemistry of the University Clinical Center in Niš over a 9 month period. Our
study protocol was approved by the Ethic Committee of The Faculty of Medicine Nis, University of Nis (
approval number 01-6481-9). All patients have signed the written informed consent. The study has been
performed in accordance with the Decleration of Helsinki.

This was a prospective cross-sectional study comparing subjects with associated renal and heart failure
or with the existence of a “de novo” or previously diagnosed, clinically manifested cardiovascular disease
and with the existence of acute kidney injury or the presence of chronic kidney disease at different stages
of evolution. All patients who had malignant disease of any etiology, acute and chronic in�ammatory
diseases of other organ systems and clinical manifestations of thyroid disease were excluded from the
study. Blood samples for routine hematological analysis and biochemical analysis after centrifugation
for 15 minutes at 1000 rpm and 5 ml of serum were analyzed by a standard method with commercially
available tests. Na +, K + electrolyte values were measured on a Roche 9181® analyzer with reference
values for Na + 135-150mmol/L, and for K + 3.5-5.5 mmol/L. Plasma BNP concentration was determined
by enzymatic immunoassay quantitative chemiluminescent microparticle immunoassay CMIA
technology on an Abbott Laboratories® apparatus. Antiserum-NT-proBNP micropatriculas were added to
the plasma sample, and the reaction was determined as the ratio of the amount of NT-proBNP to the
relative light units of RLUs “relative light units”. NT-proBNP concentration is expressed in pg/ml. The limit
value for NT-proBNP is 300 pg/ml was used as a reference in patients with glomerular �ltration rate less
than 15 ml/min/1.73m2 calculated using CKD-EPI cystatin C formula. A reference NT-proBNP cutoff value
of less than 100 pg/m was used in patients with glomerular �ltration rate if EPIcistC > 90 ml/min/1.73
m2. Serum cystatin C (CysC) was determined in plasma using a commercial ELISA kit. Determination of
serum cystatin C-based JGF was performed using a reference formula using a calculator [19].
Echocardiographic examinations were performed using a Toshiba Powervision 6000 Tochiba Co® device
with a multifrequency phase array transducer 2.0-4.5 MHz transthoracic approach in compliance with all
recommendations of good clinical practice [20]. This review determined EF% as a functional parameter
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using the Teicholz formula in M mode or Simpson's rule in volumetric calculation where normal EF values
are greater than 50%, cutoff normal values between 40% and 49%, and low values less than 40% [21].

2.2 Neuro-fuzzy method
In the previous section, we found that although it was a small group of patients, there was a signi�cant
correlation between serum electrolytes (Na+,K+) and BNP and cardiac and renal function as assessed by
EF (ejection fraction) and CKD-EPIcistC equations for GFR (glomerular �ltration rate). We ask the question
of what impact the occurrence of imbalance of these parameters has on further monitoring or
hospitalization of the patient [22, 23, 24]. To analyze the given problem, we used the adaptive neuro-fuzzy
interference system (ANFIS) network type, which is supervised learning with fuzzy logic that is similar to
Takagi and Sugeno’s approach. The process of learning a neural network with phase logic, Figure 1,
represents a complex structural learning of linking input parameters that do not have clearly de�ned
boundaries and their impact with a certain degree of state severity in linking to target values as output
parameters [25, 26].

Model Description
We used the structure of the ANFIS network, which we based on the connection of input parameters: BNP
(pg/mL), Na + (mmol/L) and K + (mmol/L) with one output parameter EF (%) or EPIcistC
(ml/min/1.73m2) in beck propagation (BP), Figure 1. By normalizing with the min-max method [27, 28,
29], we adjusted the values of all parameters (input and output) to the range of values of the base
parameters [0,1], to ensure the formation of a network of maximum precision and reliability and thus
removed the possibility of dominance of individual data due to approximation and neglect of data values
due to different orders of magnitude. Patient data were classi�ed into three groups of ANFIS database
data. These are: training data, testing data and checking data. The structure of the ANFIS network
determines the manner and time of training. The network contains �ve hidden layers with different
numbers of neurons [30, 31, 32]. The neurons in the layers are related by weighting factors 
ωi, i = 1, . . .27, which change and adjust during training in the back propagation standard mean square
error (MSE).

The input layer data (NT-proBNP, Na+ and K+) are adapted due to their range of optimal values by
distributing the trapezoidal membership function to the values of the neurons of the next layer of the
neural network. The in�uence of the trapezoidal membership function is such that the value of the input
parameter strati�es into three different areas. The NT-proBNP parameter on the

NT-proBNP1,NT-proBNP2,NT-proBNP3 , Na + on the Na+
1 ,Na+

2 ,Na+
3  and K + K+

1 ,K+
2 ,K+

3 .

The strati�ed values of individual parameters NT-proBNP, Na + and K + are assigned to the phase of the
rule (fuzzy rule) of the form:

{ } { } { }
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The third layer normalizes the input value of a single neuron of the third layer with the sum of all values

of neurons of the third layer ωl = ωl/
27
∑
m=1

ωm=1, l = 1, . . .27. The values normalized in this way are

de�ned by the output membership function (Outputmf), the sum of which determines the value of the
output Ol = ωlV l, l = 1, . . .27. In the �fth layer, the �nal value of one output parameter is determined

during training as the sum of the values of the fourth layer, 
27
∑
l=1

Ol =
27
∑
l=1

ωlV l.

The selection of the output parameter is reduced to one and represents either the EPIcisC or EF parameter.
The structure of ANFIS requires that the training time of the network is realistic during training in 1000
epochs with a tolerance error for a mean square error (MSE) of 0.0005. This speci�cally selected structure
with the parameters NT-proBNP, Na + and K + leads to the accuracy of the formed network during training,
checking on test data (testing data, checking data) and checking is quite consistent and ranges in
accuracy values of approximately 15% [33, 34].

3. Results

Implementing the model
The learning algorithm of ANFIS leads to the formation of a model by connecting the given input and
output parameters of the respondents. The ANFIS system formed in this way encourages the use of
neural networks in the earlier stages of disruption of individual parameters and indicates the need for
faster clinical processing of individual subjects. Figure 2 indicates the dependence of one output
parameter as a function of two input parameters. The formed three-dimensional surfaces indicate the so-
called neuro fuzzy mapping that con�rms the following regularities. The area between the green lines
indicates the value of K + clinically stable subjects with certain normalized values of the parameter K + in
the range from 0.20 to 0.60 (area between the green lines), Figure 2a), d) and f). Values of Na+ in the
range of 0.44 to 1.00 (area between blue lines), Figure 2b), c) and e), and NT-proBNP in the range of 0.30
(yellow line) to 0.60 (red line), Figure 2. a), b), c) and e) EF parameter values below 0.5 (orange horizontal
line) indicate patients with a serious adverse event, while EF values above 0.5 indicate patients who are
at risk of an adverse event, Figure 2. a), b) and c). Values for EPIcistC below 0.58 (pink) indicate renal
failure of varying degrees, Figure 2d), e) and f). The dominance of some colors shows that patients with
parameters that cause the appearance of yellow colors have heart failure with preserved ejection fraction
(HFpEF), while patients who have parameters on horizontal axes that lead to blue colors have heart
failure with reduced ejection fraction (HfrEF) and require greater supervision and hospitalization, (Figure
2)[35, 36, 37, 38].
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Characteristics of respodnets
In this study, an ANFIS model based on a neural network with fuzzy logic was applied to predict renal
function and hydroelectrolyte disturbance in patients with heart damage. The usual statistical methods
did not �nd a statistically signi�cant difference in age between healthy subjects who had an average age
of 69.55 ± 32.01 years and subjects with heart and kidney damage who had an average age of 70.72 ±
9.26 years (p = 0.286). No statistically signi�cant difference was found in the values of electrolyte status
parameters shown in Table 1 in subjects with heart and kidney damage and in healthy subjects. A
statistically signi�cant increase in NT-proBNP (p <0.001) and cystatin C (p <0.001) values was found
between healthy subjects and subjects with heart and kidney damage (Mann-Whitney U test).

 
Table 1

Demographic and laboratory characteristics of respondents
Parameters Na(mmol/L) K(mmol/L) NT-pro BNP(pg/mL) CistatinC(mg/L) Age(years)

Min. value 123 2.4 10 1.73 18

Max. value 150 7.8 5000 0.21 88

Mean 137.90 4.84 1275.77 3.33 65.98

SD 4.57 0.97 1533.89 0.825 15.74

Table 2 shows the parameters of heart and kidney function in all subjects. A statistically signi�cant
difference was found in the values of EF (p <0.001) and Epi formula (p <0.001) by analysis of healthy
and diseased subjects (Mann-Whitney U test).

 
Table 2

Glomerular �ltration and functional status of the subjects' hearts
Parameters Min. value Max. value Mean SD

EF % 12 75 72.8 15.04

EPI cistatin C

(ml/min/1.73m2)

14 146 50.20 37.88

4. Discussion
To obtain more accurate results, we used AI machine learning to classify the collected data. Cardiorenal
syndrome is a complex syndrome characterized by salt and water retention and activation of various
neurohumoral mechanisms. In fact, the kidney and the heart are interconnected by regulatory
mechanisms that are important for maintaining homeostasis in the body [39]. Disorder in the function of
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these mechanisms is an introduction to the vicious circle of causes and consequences, which is
characterized by a higher probability of premature death and deterioration of kidney and heart function
[40]. Since this outcome is more common in cardiorenal syndrome than if there is isolated heart and
kidney damage, it is important to identify high risk patients as early as possible to apply preventive and
therapeutic measures [41].

Type B natriuretic peptide (BNP) is a marker of neurohumoral stimulation whose activity is associated
with inhibition of sympathetic nerve activity and the renin angiotensin system axis. NT-proBNP in healthy
individuals, even in the case of dietary salt intake, has a protective role for kidney and heart function,
while in the early stages of heart and kidney disease, it induces natriuresis and diuresis, and in advanced
stages of the disease, this neurohormone becomes ineffective in regulating hypervolemia. The
explanation lies in the fact that at the renal level, NT-proBNP at physiological concentrations acts by
increasing the strength of glomerular �ltration and directly inhibits the tubuloglomerular feedback
response, which �rst inhibits sodium resorption at the distal tubule and then at the proximal tubule,
reduces intrarenal vascular resistance but has no effect on the permeability of intrarenal blood vessels
[42]. The consequence of the physiological action of the NT-proBNPa molecule is an increase in the
volume of excreted urine and an increase in sodium excretion without affecting blood pressure and heart
rate [43]. In addition, NT-proBNP plays an important role in the prevention of chronic renal impairment in
patients with asymptomatic chronic heart failure due to its effect on intrarenal blood �ow. The
paradoxical role of NT-proBNP in patients with heart failure by decreased diuresis, natriuresis, and
increased vasoconstriction leads to deterioration of heart and kidney function and the general condition
of the patient despite a signi�cantly high concentration of the biologically inactive form of circulating
BNP [44]. In addition to the fact that the clearance of NT-pro BNP depends on several mechanisms that
have not been fully elucidated, it is certain that this protective counterregulatory neurohumoral
mechanism is ineffective in patients with heart and kidney damage [45]. The consequences are salt and
water retention, hypertension, concentric left ventricular hypertrophy and heart �brosis.

In our study, NT-proBNP was a useful biomarker for assessing the progression of cardiac and renal
dysfunction in our subjects with cardiorenal syndrome. The results of our study showed that the overall
trend of data veri�cation in the network with NT-proBNP, Na and K that we formed is approximately 15%,
with which subjects can be classi�ed according to the severity of hypervolemia, electrolyte disturbance
and renal function. Electrolyte disturbance is a common �nding in patients with heart failure and a
consequence of the use of diuretics and disorders of neurohumoral activation or a combination of these
factors. Hyponatremia is common in patients with acute cardiac decompensation due to dilution and
impaired excretion of free water or as a consequence of sodium depletion. Hyperkalemia is often the
result of the use of RAAS blockers, mineralocroticode receptor antagonists, or potassium-sparing
diuretics. Hypokalemia is also a common �nding and is a consequence of magnesium de�ciency and the
use of Henle loop diuretics [46]. However, in addition to hypokalemia, Henle's loop diuretics can lead to
hypovolemia and deterioration of renal function, which requires a reduction in the administered dose of
diuretics, which is the basic and �rst drug in people with acute cardiac decompensation [47]. There is no
standardized method in clinical practice that would prove the degree of decongesting during
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hospitalization, and often due to the lack of appropriate criteria for de�ning adequate decongesting,
patients require frequent check-ups in an outpatient setting.

Assessing the vital risk of patients and recurrence of decompensation of patients with combined heart
and kidney damage involves extensive and repeated diagnosis, many wandering in terms of determining
the causes and consequences and further treatment planning even by very experienced doctors. This
model may be superior to the traditional diagnostic approach due to its contribution to more accurate and
rapid diagnostic interpretation and better planning of further patient treatment.

The way in which high values of EPIcistC and EF indicate the risk of adverse events is shown in Figure 2.
1-f. Dependence on the parameters of NT-proBNP, Na+ and K+ patients based on ANFIS results. It has
been shown that both low values of Na+ and K+ lead to worsening of the condition and vital
endangerment of patients.

Our work aims to �ll a gap in speci�c systematized predictive tools in high-risk patients with associated
heart and kidney damage. After rigorous validation, this tool will help to predict serious adverse events
before they occur and thus improve the treatment outcome of these patients. The predictions obtained
from this model can help optimize preventive strategies and intensive monitoring for patients identi�ed
as at risk for electrolyte disturbance and hypervolemia. To identify the risk of occurrence, the model
identi�es a prognostic biomarker by random regression from the total data set.

Conclusion
Serum potassium disturbances are associated with advanced heart failure and reduced prognosis.
Cardiorenal syndrome is used for the estimation of heart failure and kidney disease. There are numerous
factors that contribute to the maintenance of disturbed values of potassium in cardiorenal syndrome.
De�nitely, it is independent of many in�uences, and the balance of serum potassium is more important
than sodium in cardiorenal syndrome. In this study, the potassium balance in cardiorenal syndrome was
analyzed by the adaptive neuro-fuzzy inference system or ANFIS. ANFIS is suitable for nonlinear systems
with highly redundant data. Although there are encouraging advances around this unsolved clinical
problem, further investigation should consider the progressive inclusion of patients with advanced renal
impairment to allow a better understanding of cardiorenal syndrome.

Study Limitation
This method dealt with the prediction of "incidents" on a small number of heterogeneous high-risk
subjects. Future research should explore the potential for a long-term risk solution.
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Figures

Figure 1

Representation of the ANFIS network used for training on BPU, Na+, K+ parameters with the aim of
obtaining EF (%) or EPI cystatin C as control parameters of cardiac and renal function.
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Figure 2

Estimation of ANFIS network of interdependence areas of parameter values: EF values as a functional
dependence a) NT-pro BNP and K +, b) BNP and Na + ic) Na + and K +, and EPIcistC as a functional
dependence d) NT-proBNP and K +, e) NT-proBNP and Na + f) Na + and K +


