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Abstract: The compressed sensing (CS) technique has been utilized to reconstruct 

Cone-beam computed tomography (CBCT) images via limited projection from under-

sampled measurements. However, the condition of limited projection is an ill-posed 

problem. Since the CBCT image itself doesn’t have sparse features, the total variation 

(TV) transform has been widely adopted in CBCT reconstruction. This method, which 

penalizes the weight of each voxel at a constant rate regardless of different spatial 

gradient, may not recover qualified CBCT images from ill-posed projection data. This 

work presents a new strategy to deal with the deficits stated above by utilizing non-

uniform weighting penalization in CBCT reconstruction. The proposed new strategy 

combines TV and gradient total variation (GTV) for reconstruction in a hybrid 

weighting penalization way, where the total variation is penalized by the gradient total 

variation in advance. The proposed penalty not only retains the benefits of TV, including 

artifact and noise suppression, but also maintains the structures in regions with gradual 

gradient intensity transition more effectively. This study tested the proposed method by 

under-sampled projections of 2 objects and 2 experiments (2 digital phantom). We 

assessed its performance against the OS-SART method, FDK method, conventional TV 
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method and TV+GTV method in the tissue contrast, reconstruction accuracy, and 

imaging resolution by comparing the root mean squared error (RMSE), the correlation 

coefficient (CC), the structural similarity (SSIM), and profiles intensity of the 

reconstructed images. The proposed method produced the reconstructed image with the 

lowest RMSEs and the highest CCs and SSIMs for each experiment. 

Keywords: computed tomography; compressed sensing (CS); CBCT; iterative 

reconstruction; total variation; gradient total variation 

 

1. Introduction 

Cone-beam computed tomography (CBCT) is widely utilized in tumor 

visualization and localization which is critical for clinical image guided radiation 

therapy [1], since it is closely related to tumor control and radiation toxicity. However, 

the cumulative imaging dose of repeated CBCT scans is clinically significant and 

superfluous ionization radiation exposure can increase the venture of secondary cancer 

induction [2,3]. Lowering the dose itself not only decreases the amount of x-ray 

exposure but also reduces the image quality [4,5]. Therefore, more and more researches 

focus on decreasing the venture of exposed radiation while keeping qualified CBCT 

image. 

Generally, the dose from CBCT scans can be reduced by two ways: one way is to 

lower the X-ray tube current per projection view and another way is to decrease the 

number of projection data. Unfortunately, reducing one of the factors or both not only 

reduces the amount of patient dose but also reduce the CBCT image quality. For 



example, when using the conventional analytical methods, such as FDK algorithm [6], 

reducing the number of x-ray projections will cause serious streaking artifacts and 

lowering exposure level (mAs) per projection will amplify the noise level. To deal with 

the drawback of the analytical methods, iterative algorithms such as the ART [7], SART 

[8], and OS-SART [9] have been developed. Although the reconstructed image quality 

has been improved, it is still very challenging for low-dose CBCT reconstruction. 

The compressed sensing (CS) algorithms [10,11] have been developed for low-

dose CBCT reconstruction under the assumption that the solution is sparse. As the 

clinical CBCT image is made up of numerous non-zero elements, which means CBCT 

image would not be sparse by itself, therefore, a variety of transforms were utilized to 

make image sparse, such as wavelet transform, curvelet transform, and total variation 

(TV) transform. For instance, statistical iterative reconstruction (SIR) methods [12,13] 

based on the TV [14], the Huber [15], the isotropic quadratic [16], was widely used to 

low-dose CBCT image reconstruction. Generally, the TV-based methods have been 

widely utilized to CBCT reconstruction for low-dose projections data. Adaptive-

steepest-descent (ASD) projection-onto-convex-sets (POCS), based on TV, was 

designed to reconstruct CBCT image from under-sampled projections data [17]. As a 

matter of fact, TV’s variants have been investigated in the last several decades, them 

were originally utilized to remove out noise and artifacts as a regularization function 

[14,18-30]. For example, the penalized weighted least-squares (PWLS) based on TV 

was developed for noise-suppressed and edge-preserved [18,31]. 

This study has shown that TV-based method was more robust than conventional 



filtered-backprojection (FBP) method in low-dose CBCT reconstruction [27]. The 

selection of TV minimization parameters has been investigated with visualization and 

quantitative assessments [24]. Even though TV removes the overall noise effectively, it 

attempts to penalize gradient uniformly across the entire CBCT image, which would 

result in anatomical edge structures inevitably over-smoothed. Therefore, edge-

preserving total variation (EPTV) was designed to identify the edges and penalty them 

with lower weight [32]. In order to improve limitations of TV method, more and more 

TV-based methods were proposed. A reweighted anisotropic TV method was designed 

to solve the limited-angle CT image reconstruction [33]. A simultaneous deblurring and 

iterative reconstruction method based on TV was indicated that CBCT image un-

sharpness was caused by several factors [20]. Meanwhile, this work combined the TV 

minimization and the ordered-subsets accelerated with a power factor into low-dose 

CBCT reconstruction [21]. Despite reducing the imaging dose, low-dose CBCT has not 

gained widespread application in the clinical. Therefore, reducing the dose while 

achieving high-quality images for radiotherapy is still urgently demanded in the 

clinical. 

In order to avoid edge structures over-smoothed, edge-preserved methods based 

on TV have been developed. Edge guided total variation minimization (EGTVM) was 

used to reconstruct CT image from under-sampled projections data [34]. Adaptive-

weighted total variation (AwTV)-POCS was utilized to preserve edges, which assumes 

that the edges have anisotropic property [35]. For the sake of edges information 

preserved, adaptive-weighted TV was used in the steepest descent part by adaptive-



weighted projection-controlled steepest descent (AwPCSD) method [36]. Furthermore, 

an optimization algorithm based on TV and alternating direction method (ADM) was 

designed for sparse reconstruction [37]. A method based on TV and gradient total 

variation (GTV) was proposed for low-dose CBCT reconstruction [38]. Because TV 

penalizes weight to voxel at the same rate regardless of different spatial gradient, it may 

not recover qualified CBCT images from ill-posed projection data, a non-local operator 

was proposed by [39]. Non-local TV imposes non-uniform weight on a more global 

area centered on each voxel [40-42]. With those TV-based methods proposed, the 

imaging dose was reduced. However, qualified image is still urgently demanded in the 

clinical low-dose CBCT application. 

In recent years, high-order differential operators were usually used to penalize 

image, aiming to suppress over-smoothing effects for various inverse problems in 

image processing [43-45]. High-order penalties can essentially preserve the over-

sharpening of areas with smooth intensity transitions because of their piecewise-

vanishing property [46,47], which can achieve piecewise-linear solutions that better fit 

smooth intensity changes. The total generalized variation (TGV) model with symmetric 

tensors developed by Bredies [48], which involved and balanced image second-order 

derivatives. The high-order penalties were proposed by Chen [46], which was used to 

image restoration for image processing. Furthermore, the high-order TV penalties were 

redesigned by Hu for image restoration [49]. Based on the high-order TV minimization, 

CT reconstruction algorithm has been proposed [50]. However, high-order penalties 

can effectively reduce the piecewise-constant effect, but might also introduce additional 



edge blurry. Besides those methods, other methods are further investigated for low-dose 

CBCT reconstruction, such as the dictionary learning [51], and Hessian Schatten 

penalties [52,53]. In addition, based on the deep learning methods [54,55] are also used 

for the CBCT reconstruction, and good results have been achieved. However, the edge 

of image still could not be preserved accurately via sparse projections reconstruction 

and would cause the wrong judgement in the clinical. 

Due to the drawback of TV regularization term, which penalizes the edges 

uniformly, it would result in the edge structures over-smoothed. This work presents a 

new strategy to deal with the deficits stated above by utilizing non-uniform weighting 

penalization in CBCT reconstruction. The proposed new strategy combines TV and 

GTV for reconstruction in a hybrid weighting penalization way, where the total 

variation is penalized by the gradient total variation in advance. The proposed penalty 

not only retains the benefits of TV, including artifact and noise suppression, but also 

maintains the structures in regions with gradual gradient intensity transition more 

effectively. This study tested the proposed method by under-sampled projections of 2 

objects and 2 experiments (2 digital phantom). We assessed its performance against the 

OS-SART method, FDK method, conventional TV method and TV+GTV method in 

the tissue contrast, reconstruction accuracy, and imaging resolution by comparing the 

root mean squared error (RMSE), the correlation coefficient (CC), the structural 

similarity (SSIM), and profiles intensity of the reconstructed images. The proposed 

method produced the reconstructed image with the lowest RMSEs and the highest CCs 

and SSIMs for each experiment. 



2. Materials and Methods 

2.1. TV-based reconstruction methods 

Then the general mathematical reconstruction model can be expressed as follows: 𝑢∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑢 ‖𝐴𝑢 − 𝜑‖22 + 𝜂 ⋅ ‖𝛻𝑢‖𝑇𝑉  𝑠. 𝑡.  𝑢 ≥ 0              (1) 

Where ‖𝐴𝑢 − 𝜑‖22  is the data fidelity term indicating the difference between the 

generate projection and observe projection data 𝜑. In the expression above, 𝐴 is an 𝑆 × 𝑍  projection system matrix, and 𝑆  and 𝑍  represent the total number of 

projections, 𝑢 is the linearized attenuation coefficient of the unknown CBCT image, 𝜑 is the image voxels representing the log-transformed sinogram projection data. 𝜂 is 

the regularization parameter controlling the balance of the data fidelity, ‖𝐴𝑢 − 𝜑‖22, 

and the regularization term ‖𝛻𝑢‖𝑇𝑉. ‖𝛻𝑢‖𝑇𝑉 is defined as follows: ‖𝛻𝑢‖𝑇𝑉 = ∑ √(𝑢𝑖+1,𝑗,𝑘 − 𝑢𝑖,𝑗,𝑘)2 + (𝑢𝑖,𝑗+1,𝑘 − 𝑢𝑖,𝑗,𝑘)2 + (𝑢𝑖,𝑗,𝑘+1 − 𝑢𝑖,𝑗,𝑘)2𝑖𝑗𝑘  (2) 

Where 𝑢𝑖+1,𝑗,𝑘 − 𝑢𝑖,𝑗,𝑘 , 𝑢𝑖,𝑗+1,𝑘 − 𝑢𝑖,𝑗,𝑘 , and 𝑢𝑖,𝑗,𝑘+1 − 𝑢𝑖,𝑗,𝑘  are three difference 

operators along the 𝑖, 𝑗, and 𝑘 directions in CBCT volume space. 

 

2.2. Gradient TV minimization 

Recently, a technique based on gradient total variation (GTV) has been utilized in 

CBCT reconstruction [38]. With more gradient prior constraints in model, the 

quantified image can be recovered from under-determined measurements. The CBCT 

image can be de estimated by solving the following optimization problem. 𝑢∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑢 ‖𝐴𝑢 − 𝜑‖22 + 𝜂 ⋅ (‖𝛻𝑢‖𝑇𝑉 + 𝛻‖𝛻𝑢‖𝑇𝑉)   𝑠. 𝑡.  𝑢 ≥ 0    (3) 

Where the minimization process consists of the data fidelity term (‖𝐴𝑢 − 𝜑‖22) and 



regularization function (‖𝛻𝑢‖𝑇𝑉 + 𝛻‖𝛻𝑢‖𝑇𝑉 ). The 𝛻‖𝛻𝑢‖𝑇𝑉  is the gradient total 

variation regularization term. It can be represented as: 𝛻‖𝛻𝑢‖𝑇𝑉 = 𝛻 ∑ √(𝑢𝑖+1,𝑗,𝑘 − 𝑢𝑖,𝑗,𝑘)2 + (𝑢𝑖,𝑗+1,𝑘 − 𝑢𝑖,𝑗,𝑘)2 + (𝑢𝑖,𝑗,𝑘+1 − 𝑢𝑖,𝑗,𝑘)2𝑖𝑗𝑘 (4) 

Where 𝛻‖∗‖𝑇𝑉 is derived form ‖∗‖𝑇𝑉, TV achieves the assumption that gradient is 

approximately sparse in CBCT image, GTV also has sparsity property. The Eq. (3) 

shows that the gradient magnitude will not be penalized by 𝛻‖𝛻𝑢‖𝑇𝑉 term. However, 

regardless of different amounts of image gradient, TV regularization term always 

penalizes the weight to voxel uniformly. Due to the noise, artifacts, and low contrast 

tissue, TV property might critically exterminate the reconstructed image quality. 

 

2.3. The proposed method 

In order to solve the problem of the TV penalty gradient uniformly, we propose an 

improvement model based on GTV for constrained TV regularization reconstruction 

algorithm. We redesign CBCT reconstruction models as follows: 𝑢∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑢 ‖𝐴𝑢 − 𝜑‖22 + 𝜂 ⋅ 𝐽𝑇𝑉(𝑢)                (5) 𝐽𝑇𝑉∗(𝑢) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑢 ‖𝛻𝑢‖𝑇𝑉 + 𝛾 ⋅ 𝛻‖𝛻𝑢‖𝑇𝑉   𝑠. 𝑡.  𝑢 ≥ 0        (6) 

Where 𝐽𝑇𝑉(𝑢)  is the penalized TV regularization term, and 𝜂  is the parameter of 𝐽𝑇𝑉(𝑢)  regularization term, ‖𝛻𝑢‖𝑇𝑉 is an object term in Eq. (6), which is penalized 

by 𝛻‖𝛻𝑢‖𝑇𝑉, and 𝛾 is the parameter of 𝛻‖𝛻𝑢‖𝑇𝑉  regularization term. 

Solving Eq. (5) and (6) by a gradient decent method, we need to choose quantified 

regularization parameter 𝜂 and 𝛾. The step-size of 𝐽𝑇𝑉(𝑢) regularizing is controlled 

by 𝜂 , which can only be positive. The step-size of 𝛻‖𝛻𝑢‖𝑇𝑉  is controlled by 𝛾 , 



unlike 𝜂, which can be positive or negative. 

In equation (6), as the prior information, the 𝛻‖𝛻𝑢‖𝑇𝑉 is incorporated into the 

TV regularizing function. Therefore, the penalized TV term (𝐽𝑇𝑉∗(𝑢)) would not any 

more weight each voxel at the same rate, that means the edge structures information 

can be preserved. The only drawback is the time cost of each TV iterative will increase 

during the minimization process. 

In Table 1, Algorithm 1 summarizes the entire algorithmic procedure of our 

proposed process. In this section, the GTV process is carried out two times, and we set 

up the number of iterations for OS-SART loop and TV loop in Algorithm 1 to be 30. 

The developed algorithm is implemented by redesigning the ASD-POCS reconstruction 

approach. 

 

Table 1 

Algorithm 1. Pseudo-code for reconstruction 

Initialize 𝝀, 𝝀𝒓𝒆𝒅, 𝒏𝑻𝑽𝒊𝒕𝒆𝒓, 𝜼, 𝜼𝒓𝒆𝒅, 𝜸, 𝒓𝒎𝒂𝒙 

While (stopping criteria not met do) 

        𝒖 = 𝒖 + 𝝀𝑽𝑨𝑻𝑾−𝟏(𝑨𝒖 − 𝝋) (OS-SART updates) 

While (TV process) 

     While (gradient TV process) 

          𝒅𝒖𝟏 = ‖𝜵𝒖‖𝑻𝑽;  𝒅𝒖𝟐 = 𝜵‖𝜵𝒖‖𝑻𝑽 

          𝒅𝒖̂𝟏 = 𝒅𝒖𝟏‖𝒅𝒖𝟏‖; 𝒅𝒖̂𝟐 = 𝒅𝒖𝟐‖𝒅𝒖𝟐‖ 

          𝒅𝒖̂𝟏 = 𝒅𝒖̂𝟏 + 𝜸 ⋅ 𝒅𝒖̂𝟐 

     End 

          𝒖 = 𝒖 − 𝒅𝒕𝒗 ⋅ 𝒅𝒖̂𝟏 

End 

End 

Output 𝒖 
 

2.4. Image quality evaluation criteria 

In this work, to quantify of the reconstructed images, we selected the root mean 

squared error (RMSE), increase in the correlation coefficient (CC) and structural 



similarity (SSIM). As shown in (7), (8) and (9). RMSE is defined as: 

RMSE = √∑ (𝑢𝑖𝑗𝑘−𝑢𝑖𝑗𝑘)2𝑖𝑗𝑘 𝑛3                      (7) 

Where the 𝑢 is the reconstructed image, and the 𝑢̂ is the reference image. CC is 

defined as: 

CC = 𝐶𝑜𝑣(𝑢𝑖𝑗𝑘,𝑢𝑖𝑗𝑘)𝜎𝑢𝜎𝑢̂                         (8) 

In (8), the 𝜎𝑢 is the standard deviation of the reconstruction image, and 𝜎𝑢 is the 

standard deviations of the reference image. The value of CC is between -1 and 1, where 

value=1 is the total positive linear correlation, value=0 is no linear correlation and 

value=-1 is the total negative linear correlation. SSIM is defined as: 

SSIM = (2𝜙𝑢𝜙𝑢̂+𝑐1)(2𝜎𝑢𝑢̂+𝑐2)(𝜙𝑢2+𝜙𝑢̂2+𝑐1)(𝜎𝑢2+𝜎𝑢̂2+𝑐2)                 (9) 

In (9), the 𝜙𝑢 and 𝜙𝑢 are the average of the reconstruction image and reference 

image, 𝜎𝑢2  is the variance of the reconstruction image, 𝜎𝑢2  is the variance of the 

reference image. The 𝑐1 and 𝑐2 are constants guaranteed to be non-zero. 

 

2.5. Simulation experiments 

To evaluate the reconstruction performance of the proposed algorithm, we tested 

our proposed method on two cases (the Sheep-Logan phantom, the XCAT phantom) 

and compared it with OS-SART, FDK, TV, and TV+GTV algorithm. In the phantom 

experiments, Siddon’s ray tracing algorithm was used for the projection. The 

parameters of both phantoms acquisition are listed in the following Table 2. All the 

experiments were implemented on a personal computer (16 GB memories, 3.6 GHz 

CPU, Windows 10 64bit system environments). 



 

Table 2. Reconstruction system parameters 
PARAMETER Shepp-Logan XCAT 

THE NUMBER OF DETECTOR 

UNITS 
256*256 512*512 

DETECTOR UNIT SIZE 1*1 mm² 1.25*1.25 mm² 

DISTANCE FROM SOURCE TO 

DETECTORS 
1600 mm 1486 mm 

DISTANCE FROM SOURCE TO 

CENTER OF ROTATION 
1000 mm 1000 mm 

SIZE OF RECONSTRUCTION 

IMAGE 
256*256*256 512*512*512 

VOXEL SIZE 1*1*1mm³ 1*1*1mm³ 

 

3. Results 

3.1. The shepp-logan phantom reconstruction 

In this experiment, a digital Shepp-Logan phantom with a matrix size of 

256*256*256 voxels was utilized to test our proposed method. The scanning procedure 

is set as the standard cone beam geometry, 61 projections are acquired over 360 degrees 

along the standard circle trajectory. The projected signal at each angle contains 256*256 

measurements, and the reconstructed image has a size of 256*256*256. The iteration 

number for the reconstruction algorithms was set to 30. Methods including OS-SART, 

FDK, TV and TV+GTV are used for comparison. 

A classical reconstructed slice (128th slice) of the Shepp-Logan phantom obtained 

by different reconstruction methods is demonstrated in Figure 1, where the original 

(Figure 1(A)), the reconstructed image using OS-SART (Figure 1(B)), the analytical 

FDK reconstructed image (Figure 1(C)), the reconstructed image using TV (Figure 

1(D)), the reconstructed image using TV+GTV (Figure 1(E)) and the reconstructed 

image using proposed method (Figure 1(F)) are shown. 

OS-SART slice and FDK slice are seriously attacked by the streak artifacts. TV 



slice and TV+GTV slice can prevent the artifacts very well, however, some edge 

structures are smoothed out. While the proposed method performs well both in terms 

of artifact removal and edges protection. In general, the proposed method is much better 

than the OS-SART and FDK in terms of artifacts and noise suppression and performs 

better than the TV and TV+GTV for edge structures protection. 

In order to analyze the edge-preserving property of the experimental results, 

Figure 2 shows the voxel curves along the coronal axis at 159th row, 128th slice. 

Comparing the several methods, the proposed method curves are the most consistent 

with the phantom curves, that means more edge structures information preserved. The 

consequences of the quality evaluation are shown in the Table 3. Consistent with the 

visual quality, the proposed method achieves the best scores. 

 



 

Figure 1. A representative slice of the Shepp-Logan images reconstructed by various algorithms 
(slice 128). (A) the phantom; (B) the OS-SART; (C) the FDK; (D) the TV; (E) the TV+GTV; (F) 
the proposed. The images are displayed at window (width and level) setting of (0.220 0.189). 



 

Figure 2. Voxel curves along coronal axis at 159th row in 128th slice, reconstructed by various 
algorithms. 
 

Table 3. Performance metrics evaluated on OS-SART, FDK, TV, TV+GTV, and proposed method. 
Methods RMSE CC SSIM 

OS-SART 0.07018 0.95067 0.80812 

FDK 0.09537 0.89833 0.41409 

TV 0.03534 0.98602 0.97863 

TV+GTV 0.03715 0.98554 0.97512 

Proposed 0.03467 0.98688 0.97934 

 

For a clearer detail contrast, the edge structures (demonstrated by the yellow 

rectangular) areas are zoomed in and shown in Figure 3. OS-SART edges (Figure 3(B)) 

and FDK edges (Figure 3(C)) are attacked by the artifacts. TV (Figure 3(D)) and 

TV+GTV (Figure 3(E)) can suppress the artifacts, and edges are both slightly over-

smoothed. As shown in Figure 3(F), the result of the proposed method is clearer and 

sharpener. Consistent with the visual quality, the proposed method achieves the best 

scores in terms of performance metrics listed in Table 4. 



 

 

Figure 3. ROI’s slice of the reconstructed images. (A) the phantom; (B) the OS-SART; (C) the 
FDK; (D) the TV; (E) the TV+GTV; (F) the proposed. The images are displayed at window (width 
and level) setting of (0.200 0.250). 
 

Table 4. Performance metrics evaluated on OS-SART, FDK, TV, TV+GTV, and proposed method. 
Methods RMSE CC SSIM 

OS-SART 0.01958 0.79521 0.85191 

FDK 0.02548 0.71267 0.73019 

TV 0.01420 0.92000 0.94283 

TV+GTV 0.01629 0.88444 0.92149 

Proposed 0.01256 0.93424 0.95464 

 

3.2. The XCAT phantom reconstruction 

In this section, a digital XCAT phantom with a matrix size of 512*512*512 voxels 

was used to evaluate the proposed method. The tests were conducted with 121 

uniformly under-sampled projections for the XCAT phantom. The sampling angle is 

evenly distributed in the range of (0, 2*pi), and the projected signal at each angle 

contains 512*512 measurements. The reconstructed image has a size of 512*512*512. 

The iteration number for the reconstruction algorithms was set to 30. Reconstruction 

methods of OS-SART, FDK, TV, and TV+GTV, are used for comparison. 

Reconstructed slice of the XCAT phantom obtained by several reconstruction 



methods is shown in Figure 4, where the original (Figure 4(A)), the reconstructed image 

using OS-SART (Figure 4(B)), the analytical FDK reconstructed image (Figure 4(C)), 

the reconstructed image using TV (Figure 4(D)), the reconstructed image using 

TV+GTV (Figure 4(E)) and the reconstructed image using proposed method (Figure 

4(F)) are shown. We can see that the OS-SART method (Figure 4(B)) and the FDK 

method (Figure 4(C)) are not able to reconstruct the CBCT images with few projections 

and obvious streaking artifacts are observed. In contrast, both the TV method (Figure 

4(D)) and the TV+GTV method (Figure 4(E)) can still achieve most of the edge 

structures, leading to visually much better reconstruction results. However, one 

drawback of the TV method, including the TV+GTV method, is potentially missing 

small details in the reconstructed images due to the edge structures over-smoothed. By 

comparison, the proposed method (Figure 4(F)) has a good performance in terms of 

artifacts reduction and preservation of edge structures. Generally, in terms of artifacts 

suppression, the proposed method is much better than the OS-SART and FDK. As far 

as edges information protection is concerned, the proposed method is better than the 

TV and TV+GTV. 

To visualize the difference in detail, Figure 5 presents the voxel curves along the 

coronal axis (253th row, 256th slice). The images obtained by use of the proposed 

method are reasonably accurate with only small distortions. Our proposed method 

curves are the most closet to the phantom curves, which means more edge structures 

information preserved. Table 5 lists the RMSE, CC, and SSIM measures of the image 

reconstructed by different methods, combined with visual quality, our proposed method 



achieves the best performance. 

 

 

Figure 4. The reconstructed images of the XCAT phantom by various algorithms (slice 256). (A) 
the phantom; (B) the OS-SART; (C) the FDK; (D) the TV; (E) the TV+GTV; (F) the proposed. 
These images are displayed at window (width and level) setting of (1600 850). 
 



 
Figure 5. Voxel curves along coronal axis at 253th row, 256th slice, reconstructed by various 
algorithms. 
 

Table 5. Performance metrics evaluated on OS-SART, FDK, TV, TV+GTV, and proposed method. 
Methods RMSE CC SSIM 

OS-SART 65.5733 0.98753 0.69162 

FDK 78.8458 0.98208 0.76614 

TV 51.3404 0.99235 0.93176 

TV+GTV 53.2046 0.99178 0.90478 

Proposed 49.9211 0.99277 0.97370 

 

For a clearer detail comparison, the edge structures (indicated by the red 

rectangular) area is zoomed in and shown in Figure 6. As for comparison between the 

OS-SART method, the FDK method, the TV method, the TV+GTV method, and the 

proposed method, the spinal bone details of low-contrast indicated by the red arrow in 

Figure. 6(B), (C), (D) and (E) are hardly resolved by the OS-SART method, the FDK 

method, the TV method, the TV+GTV method, while much clearer structures with 

sharper edges are observed in the image (Figure 6(F)) reconstructed by the proposed 



method. The results of the quality evaluation are shown in the Table 6, consistent with 

the visual quality, the proposed method achieves the best scores. 

 

 

Figure 6. ROI’s slice of the reconstructed images. (A) the phantom; (B) the OS-SART; (C) the 
FDK; (D) the TV; (E) the TV+GTV; (F) the proposed. There images are displayed at window (width 
and level) setting of (455 1180). 
 

Table 6. Performance metrics evaluated on OS-SART, FDK, TV, TV+GTV, and propose method. 
Methods RMSE CC SSIM 

OS-SART 149.8528 0.92285 0.33033 

FDK 147.8201 0.92391 0.34227 

TV 122.5512 0.94780 0.41438 

TV+GTV 129.5040 0.94137 0.38079 

Proposed 116.0192 0.95334 0.46112 

 

Another reconstructed slice (73th slice) of the XCAT phantom obtained by 

different reconstruction algorithms is demonstrated in Figure 7. OS-SART slice (Figure 

7(B)) and FDK slice (Figure 7(C)) both introduces serious artifacts. TV slice (Figure 

7(D)) and TV+GTV slice (Figure 7(E)) have a non-uniform intensity distribution in the 

edge structures, therefore, some details are over-smoothed. But the proposed method 



(Figure 7(F)) performs better in the preservation of edges structure. In order to indicate 

the difference between voxels intuitively, Figure 8 indicates the voxel curves along the 

coronal axis at 250th row, 73th slice. The proposed method curves are the most 

consistent with the phantom curves, that means more edge structures information 

achieved. The results of the quality evaluation are shown in the Table 7, the proposed 

method achieves the best scores. 

 

 

Figure 7. The reconstructed images of the XCAT phantom by various algorithms (slice 73). (A) the 
phantom; (B) the OS-SART; (C) the FDK; (D) the TV; (E) the TV+GTV; (F) the proposed. There 
images are displayed at window (width and level) setting of (1600 1000). 
 



 

Figure 8. Voxel curves along coronal axis at 250th row, 73th slice, reconstructed by various 
algorithms. 
 

Table 7. Performance metrics evaluated on OS-SART, FDK, TV, TV+GTV, and proposed method. 
Methods RMSE CC SSIM 

OS-SART 62.0185 0.98858 0.67135 

FDK 76.6666 0.98263 0.76887 

TV 46.2108 0.99365 0.90231 

TV+GTV 47.9973 0.99315 0.90228 

Proposed 44.9500 0.99399 0.92934 

 

For a visualized detail comparison, the edge structures in the yellow rectangular 

area are zoomed in and shown in Figure 9. As indicated by the green arrow, OS-SART 

edges (see Figure 9(B)) and FDK edges (see Figure 9(C)) are attacked by the noise 

effects. TV edges (see Figure 9(D)) and TV+GTV edges (see Figure 9(E)) are slightly 

over-smoothed. As shown in Figure 9(F), the proposed method edges are cleaner and 

sharpener than the others. The results of the quality evaluation are shown in the Table 



8, the proposed method achieves the best scores. 

 

 

Figure 9. ROI’s slice of the reconstructed images. (A) the phantom; (B) the OS-SART; (C) the 
FDK; (D) the TV; (E) the TV+GTV; (F) the proposed. There images are displayed at window (width 
and level) setting of (350 1000). 
 

Table 8. Performance metrics evaluated on OS-SART, FDK, TV, TV+GTV, and proposed method. 
Methods RMSE CC SSIM 

OS-SART 180.7762 0.89542 0.28971 

FDK 184.9583 0.88773 0.28603 

TV 149.8026 0.92688 0.45285 

TV+GTV 157.7530 0.91818 0.43396 

Proposed 142.1544 0.93436 0.48935 

 

The edge structures in the green rectangular area are zoomed in and shown in 

Figure 10. As indicated by the red rectangular, edge structures are preserved by the 

proposed method, while the edge structures reconstructed by OS-SART, FDK, TV and 

TV+GTV are over-smoothed and compared with the phantom some details are lost. 

As indicated by the yellow arrow, OS-SART edges (see Figure 10(B)) and FDK 

edges (see Figure 10(C)) are attacked by the noise effects. TV edges (see Figure 10(D)) 

and TV+GTV edges (see Figure 10(E)) are slightly over-smoothed. As shown in Figure 

10(F), the proposed method edges are cleaner and sharpener than the others. The results 

of the quality evaluation are shown in the Table 9. Consistent with the visual quality, 

the proposed method achieves the best scores. 

 



 

Figure 10. ROI’s slice of the reconstructed images. (A) the phantom; (B) the OS-SART; (C) the 
FDK; (D) the TV; (E) the TV+GTV; (F) the proposed. There images are displayed at window (width 
and level) setting of (350 1000). 
 

Table 9. Performance metrics evaluated on OS-SART, FDK, TV, TV+GTV, and proposed method. 
Methods RMSE CC SSIM 

OS-SART 126.5058 0.93826 0.28810 

FDK 126.2593 0.93763 0.28909 

TV 97.2718 0.96349 0.42744 

TV+GTV 105.1287 0.95702 0.40212 

Proposed 93.0442 0.96655 0.45988 

 

4. Discussion 

CBCT imaging dose can be reduced by both a small number of projections and a 

low tube current (mAs) per projection. However, the conventional reconstruction 

methods result in streaking artifacts and obvious image noise in these two imaging 

circumstances, which can be clearly observed in the reconstructed results. 

The CS technique has been utilized to reconstruct CBCT images with limited 

projection from under-sampled measurements. But, the condition of limited projection 



is an ill-posed problem. Since the reconstructed image itself doesn’t have sparse 

property, TV transform has been widely adopted in CBCT reconstruction. The iterative 

method with TV norm as a regularization function demonstrated its effective in CBCT 

reconstruction with under-sampled projections. This TV minimization process, which 

penalizes the weight of each voxel at a same rate regardless of different spatial gradient, 

may not recover qualified CBCT images from ill-posed projection data and would result 

in edge structures over-smoothed. 

In this work, we proposed a new strategy to deal with the deficits stated above by 

utilizing non-uniform weighting penalization in CBCT reconstruction. This method 

derivation is based on the observation that large image gradients are uniformly 

penalized in the TV-based minimization. The proposed new strategy combines TV and 

GTV for reconstruction in a hybrid weighting penalization way, where the total 

variation is penalized by the gradient total variation in advance. The proposed penalty 

not only retains the benefits of TV, including artifact and noise suppression, but also 

maintains the structures in regions with gradual gradient intensity transition more 

effectively. The large gradients of images are well preserved in our proposed method 

by applying an effectively GTV process in the TV minimization. 

We have applied our proposed new operator to two different experiments (2 digital 

phantom), and compared its performance to the results from OS-SART, conventional 

FDK, conventional TV and TV+GTV methods in terms of the root mean squared error 

(RMSE), the correlation coefficient (CC), the structural similarity (SSIM). As a result, 

our proposed method, generated the highest CCs, SSIMs and lowest RMSEs in the two 



experiments. We also examined the image accuracy around edges using profiles 

intensity of the images reconstructed from different methods. Our proposed method 

outperformed the other reconstructing techniques in image accuracy and edge-

preserved. 

Although the proposed method achieves a better reconstruction quality than the 

others, it shows a slightly inferior noise suppression as compared to the conventional 

TV method, attributed to the GTV penalizes TV in the calculate of image total variation 

minimization process. Technically, compared with the other methods, the proposed 

method might increase the computational expenses due to: (1) additional iterates in the 

entire reconstruction with the concept of the GTV minimization, and (2) choosing 

optimal parameters. In fact, the extra iterates for the GTV process were confirmed to 

be not significant in our study since it converged much faster than the other methods. 

One of the crucial challenges in optimizing the model of the proposed method is 

selecting several optimal regularization parameters 𝜂 (Equation 5) and 𝛾 (Equation 

6). The selection of the parameters is very importance to the success of this proposed 

reconstruction method. 𝜂  and 𝛾  should to be carefully selected by considering the 

number of projections, and the characteristics of the anatomical features of the scanning 

object. In this study, we manually select 𝜂  and 𝛾  parameters to adjust the relative 

ratio between the data fidelity term and the regularization term to obtain the best CBCT 

image quality. It is found that the optimal value of these parameters is case dependent, 

the setting of 𝜂  or 𝛾  parameters depend on the experiences of simulation 

experiments. In future, we would study the parameter setting and try to find an 



automatic approach to guarantee a qualified selection of parameters. Note that GPU 

implementation and the parallel process of GTV minimization is currently an active 

research area. In next studies, we would work on optimizing our method to improve the 

speed further and implement GTV minimization using the GPU. 

The value of our proposed method lies in the development of an algorithm that can 

effectively reconstruct CBCT images with the help of GTV penalizes TV. The proposed 

method could be used in various applications, such as 4D CT/CBCT reconstruction, 

where projections reduction in the scanning would be important. In the further we 

would also concentrate on the mathematics analysis of the proposed method. 

5. Conclusions 

In this study, we propose a CBCT image reconstruction method based on TV and 

GTV and redesigned ASD-POCS algorithm to minimize the objective function. The 

proposed new strategy combines TV and GTV for reconstruction in a hybrid weighting 

penalization way, where the total variation is penalized by the gradient total variation 

in advance. The digital Shepp-Logan phantom and digital XCAT phantom are used to 

verify the proposed method. Validation studies showed that the proposed method can 

effectively preserve the edge structures and remove artifacts. Comparison studies 

among the OS-SART method, the FDK method, the TV method, the TV+GTV method 

and the proposed method indicated that our method performs better than the classical 

methods. 
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