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Abstract
The objective of this research is to evaluate the potential of detecting or degrading 2,3,7,8 Tetrachlorodibenzodioxin (TCDD) in soil using a
native plant growing in a contaminated site by gene expression of Cytochrome P450 monooxygenases (P450s) method. A signi�cant
difference in the root length (range of value: 580.2 mm to 799.2 mm) and enzyme activity (range of value: 31.2 to 82.3 nmolmin -1 g -1
total protein) of such indigenous plant was found in 10 µg/L TCDD treatment when compared to other treatments. Thirteen- and twenty-
fold levels of gene expression in CYP71C1 and CYP79A61 of the plant growing in the contaminated site were found after 10 µg/L TCDD
treatment. Such indigenous plant is sensitive to the detection of such persistent organic pollutant in the �eld site and involves gene
expression change facilitated by a plant-microbe symbiotic association.

Introduction
Cytochrome P450 monooxygenases (P450s) are an abundant anti-toxicant compound present in various organisms including
microorganisms, plants and animals (Behrendorff, 2021). Many scientists discovered P450s isozymes can capable of binding oxidative
compounds. Cytochrome P450s is a family of enzymes found mainly in the liver of mammalian vertebrates or in the gut of lower-class
animals and plant’s body. The induction of Cytochrome P450 monooxygenases has been established as a biomarker of sublethal
exposure to dioxins (Nebert and Dalton, 2006).

Frear et al., (1969) �rstly discovered that the involvement of P450s was found in detoxi�cation of 3 phenyl-1-methylureas (herbicides) in
cotton seedlings due to the secretion of b5 cytochrome and NADPH-cytochrome (reductase). Therefore, it was proposed an indicator of
applying herbicide in the contaminated site. Although induction of cytochrome gene was used as a biomarker of exposure to dioxin-like
compounds in different organisms (Rattner et al., 1989; McLemore et al., 1990; Stegeman and Hahn, 1994; Bucheli and Font, 1995; Letcher
et al., 1996; Ibrahim et al., 2020), reports on the study of P450s in plant was rare. A few examples included Arachis hypogaea (Liu et al.,
2014), Medicago truncatula(Carelli et al., 2011), Arabidopsis (Kushiro et al., 2004) however these plants are less advantageous to detect
speci�c toxicant possibly present in the site. This is because according toGadzala-Kopciuch et al., (2004), the criteria of being a
bioindicator used in the �eld site should high accumulating capacity, stable population, wide range of toxicant tolerance, simple
identi�cation, and sampling, abundance and wide distinction in nature. Li and Wei (2020) illustrated the family of P450 gene in maize and
wheat however knowledge gap about CYPs quantitation in the plant grown in the contaminated land after exposure to 2,3,7,8 TCDD is
uncleared.

According to the previous studies, 2,3,7,8 TCDD were released into the environment through incineration, electrical generation in factory
and motor vehicle exhaust. Such pollutant was commonly found in different countries such as Estonia (0.001-0.002 µg/kg) (Roots et al.,
2004), Swiss (0.011 µg/kg) (Schmid et al., 2005), Japan (0.043 µg/kg) (Sakurai et al., 2000), Korea (3.72 µg/kg) (Im et al., 2002), Hong
Kong (109 µg/kg) (HKEPD, 2002). Exposure of dioxin to human may lead to acute and chronic health effect including dermal toxicity,
immunotoxicity, endocrine disruption, carcinogenicity and reproductive disruption. Therefore, plant may contribute to detect and degrade
organic pollutant directly [i.e. plant cycle may utilize nutrient together with pollutant (Roots et al., 2004)] and indirectly [i.e. altered
microbial populations within the rhizosphere zone within the root (Read et al., 2008)].

There are growing evidence of the presence of P450 in some cultivated plantssuch as plant used in Chinese medicine(Ashour et al., 2017),
transgenic plant (Kumar et al., 2012), cash crop (Li and Wei, 2020) but less reported was found in an indigenous plant grown in the
contaminated site. The function of CYP in plant can enhance detoxi�cation by lowering activation energy of herbicide metabolism
(Morant et al., 2003; Komives and Gullner, 2005). However, the knowledge in gene quantitation for detecting and detoxifying pollutants
and other toxicants is limited. Besides, Stylianou et al., (2020) discovered that indigenous plant grows naturally on the contaminated site
and exhibited unique physiological characteristics in the site. Therefore, it was hypothesized that the possibility of P450 in native plant
can act as a bioindicator in the contaminated land by increasing its gene expression levels induced by the presence of of persistent
organic pollutant. Besides, the molecular mechanisms involving the regulation and expression of pollutant-sensation gene in plant
especially cytochrome genes are largely unknown. Henceforth, the objective of this research is to evaluate the potential of detecting or
degrading 2,3,7,8 TCDD in soil using native plantas a bioindicator grown in the contaminated site.

Materials And Method
Part 1: Preliminary investigation of 2,3,7,8-Tetrachlorodibenzodioxin (TCDD) toxicity to maize by seed germination test

Seed of maize (Zea mays) was sampled in four different farmlands(Figure 1) nearby the CheoyLee Shipyard (formerly) where severe
dioxin contamination found in soil (109 µg/kg TCDD, according to the HKEPD report, 2002). The GPS reading of four locations were: A.
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N22.310930 S114.055140; B. N22.312869 S114.031848; C. N22.31456 S 114.031861 and D. N22.318069 S114.053653. Non-indigenous
seed of maize was purchased on the same farmland. The seedswere sterilized with 0.1% bleaching solution for 20 min, then washed with
tap water before use. The methodology used in the study was referred to USEPA (1996).

In order to test maximum range of TCDD used in the experiment, a preliminary test was done by putting seeds into various concentration
of TCDD (0.1,1,10,20,50 µg/L). Zero percentage of seed generation was observed at 20 µg/L and a concentration series of TCDD
(0.001,0.01,0.1,1,10 µg/L)were applied to the germination glass bottles. 30 seeds were applied to each treatment. Further irrigations were
applied to the bottles by Roison solution (Roison, 1969). There were �ve replicates for each group. Roison solution were used as control
treatment. All bottles were placed in room temperature and kept in dark for germination. After 10 days, the root of seedlings was cut by
sterile blazer. The length of root in all treatments were recorded. There were 2 types of seed x 6 concentrations x 5 replicates x 4 locations,
yielding a total of 240 individual set up arranged under a randomized position in an incubator.

Part 2 Characterization of cytochrome enzyme activity in the plant

All root samples were homogenized to a �ne powder after lyophilization. The dried powder was re�uxed with 1L of deionized water for
four hours. The extractant were evaporated and further lyophilized to ensure dryness. The solution for assay was referred to the method in
Ashour et al., (2017) and the samples were prepared by dissolving the extractant to 1% dimethyl sul�de to give �nal concentration of 100
µg/ml. The extractant was mixed with 5mM luciferin-6-benzyl ether and incubated at 25ºC for 10 minutes. Then, the activation of enzyme
activity was achieved by mixing reduced nicotinamide adenine dinucleotide, glucose-6-phosphate, magnesium chloride, glucose-6-
phosphate dehydrogenase in 1M phosphate buffer and incubated the solution for 30 minutes. The solution was mixed with luciferin
detecting agent and measured the absorbance within one minute in 535nm by UV-visible spectrophotometer.

In each location, all data was tested by one-way analysis of variance (ANOVA) and t-test (<0.05) to compare signi�cant difference
between TCDD concentration and root length and root length of indigenous and non-indigenous maize in the same treatment, respectively.
A signi�cant difference of root length of indigenous plant was found by comparing with non-indigenous plant only in the treatments of 10
µg/L of TCDD. Therefore, RNA extraction was then performed accordingly.

Part 3: Maize CYP protein content and qualitative analysis of gene expression

The total RNAs of root tips were extracted by RNeasy Plant Mini kit (Qiagen, US). Root tips were homogenized in liquid nitrogen using
sterile RNase-free pestle and mortar. Powder of root tips was decanted into an RNase-free, liquid nitrogen cooled 1.5ml microcentrifuge
tube. The RNA extraction procedure was according to the manufacturers (Qiagen, US) instruction. All glassware and plastic ware was
treated with diethyl pyrocarbonate (DEPC) and autoclaved to make sure RNase-free. The experiment for cytochrome P450 mRNA
quantitation was referred to Yengi et al., (2003).

Maize CYP79A61 [assession no.: AY072300 (gene); AY072296 (mRNA)], CYP71C1 [assession no.:X81827 (mRNA); X81828 (gene)] and
internal control 18S ribosomal RNA (assession no.:AF168884) primers have been published previously (Persans et al, 2001; Irmisch et al.,
2015). The primer for CYP79A61 and CYP71C1 were designed with modi�cations by using Primer 3 software and Blastn software (web-
based). The primer sequences for CYP79A61 were 5’-TCCCAGGCTATTGGTTCTTG-3’; 5’-CCCAGCAAGTCGTCGTTATT-3’. The primer
sequences for CYP71C1 were 5’-AACGAGCTGCTGTCCGAGTA-3’; 5’-GCTGCTTCGAACATGTTCACA-3’. The primer sequences for 18S
ribosomal RNA were 5’-AGACGAACAACTGCGAAAGC-3’; 5’-GCCAGCGGGGTCCTATTAGT-3’. Each reaction contained 0.1µg/uL cDNA of root
tips, 1x platinium PCR supermix (invitrogen), 0.5uM each speci�c primers, PCR-�ltered water, make up to total volume 25uL. The
ampli�cation condition was 94 ºC for 5 min., followed by 35 cycles of 94 ºC for 30sec., 55 ºC for 30 sec and 72 ºC for 30sec. There is a
�nal extension step of 72 ºC for 10min. GeneAmp 9700 PCR machine (Applied Biosystem, US) was used. The ampli�ed product was
analysed by 2% agarose gel (18S rRNA PCR) or 6% polyacrylamide gel (CYP71C1 and CYP79A61 PCRs) and visualized under UV.

Part 4: Semi-quantitation of CYP gene expression

Selected positive DNA fragment in both CYP71C1 and CYP79A61 with high band intensity was performed real time quantitative PCR in a
Bio-Rad iQ5 System (Bio-Rad Company, CA, USA). Each reaction mixture contained a 1x �nal concentration of iQ SYBR Green supermix
(Bio-rad), containing 0.2mM of each dNTP (dATP, dCTP, dGTP, and dTTP), 50mM KCl, 20mM Tris-HCl, pH 8.4, iTaq DNA polymerase
(25U/ml), 3mM MgCl2, SYBR Green I, 10nM �uoresein, and stabilizers; 0.5uM of each speci�c (CYP71C1, CYP79A61 and 18S rRNA)
forward and reverse primers. 2ul of each cDNA (equivalent to 150ng of reverse transcribed RNA) was used in each PCR and experiments
were carried out in triplicates to ensure reproducibility. PCR conditions were as follows: The ampli�cation condition was 94 ºC 5 min.,
followed by 60 cycles of 94 ºC for 30sec., 55 ºC for 30 sec and 72 ºC for 30sec. Melting curve analysis were conducted at end point of
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each ampli�cation step. Each quantitative PCR assay contained unknown samples, no template controls (reaction mix with no cDNA), and
serially diluted concentrations of normal control cDNA , which act as a calibrator (range; 100ng to 1.56ng, by a 2-fold dilution), from which
a relative standard curve was generated for relative quantitation of target cDNA in unknown samples. All data were normalized against
18S rRNA.

All data were presented as mean ± standard deviation. The expression level of CYP71C1 and CYP79A61 mRNA of root tips growing in
different concentrations of dioxins were tested byone-way analysis of variance (ANOVA) followed by Dunnett test.

Results And Discussion
Regardless of the indigenous seeds in all locations, signi�cant difference in the root length was found when comparing to the 10µg/L
treatment to other concentrations (i.e. Location A: 799.2±6.61mm; Location B: 657.3±10.25mm; Location C 598.7±13.10; Location D:
580.2±8.92mm) (Figure 2) indicating that plant is sensitive to detect TCDD in the contaminated land and the �ndings was in line to
Campanella and Claudia (2002). It may be subjected to the maize can uptake, translocate, and tolerate high concentration of organic
pollutant intake from outside to its body(Zhang et al., 2017). However, the relationship between root length and TCDD concentration might
be complicated since the deposition of burning waste in the site has ceased for many years.

By comparing to the indigenous and non-indigenous seed sampled in the same location exposure to the same TCDD concentration, a
signi�cant difference was found in 10 ug/L of TCDD treatment only (Figure 2). In the treatment of severe TCDD contamination, due to
limited bacterial population and low carbon content, TCDD is a sole carbon source which facilitated the growth of microorganisms on the
root surface. Thus, plants are capable of degrading chlorinated organics by direct and indirect action (Campanella and Claudia, 2002).
Since the ability of detecting TCDD by organism is strongly in�uenced by environmental conditions and heredity factors,indigenous plant
species can act as a bioindicator and it has clear advantage due to natural selection and plant was consequently evolved to high
tolerance of adverse conditions and high TCDD concentration in an adverse conditions.

Besides, plant may secretealdoxime and aldoxime-derived compounds to protect plant body attacked from xenobiotic substances or
toxicants (Perez et al., 2021). Such metabolic reaction might thus forming barrier against further toxicant attack and such phenomenon is
commonly found in some higher plants such as Prunus mume (Yamaguchi et al., 2014), Camelina sativa (Zhang et al., 2020) and
Phlebodiumaureum and Pteridium aquilinum (Thodberg et al., 2020). Besides, the secondary metabolite such as defense proteins and
chemicals synthesized by altering gene expression in the defense reaction was possible in maize (Tovar-Sánchez et al., 2018). Therefore,
indigenous maize may act as a biomarker to re�ect the current situation of TCDD contamination in the �eld site inducing different levels
of gene expression exposure to toxicant. Such changes may induce mutation and shift to an adaptive population by variation through the
phenomenon of directional selection (Hoffmann and Hercus, 2000). As USEPA identi�ed TCDD is a potential human
cancerogenicsubstance (i.e. low dose intake can lead to cause acute and chronic toxicity in human body), the current �ndings supported
to detect trace amount of TCDD without using high risk, expensive, labour-intense and time consuming approach.

Table 1 describes the cytochrome enzyme activity extracted from the root of indigenous and non-indigenous maize. By comparing to the
plant in the same location treated by various TCDD concentrations, the enzyme activity was signi�cantly elevated in all 10 µg/L TCDD
concentration found in indigenous maize (i.e. Location A: 31.2±0.03 nmolmin-1 g-1 total protein; Location B: 59.6±0.33 nmolmin-1 g-1 total
protein; Location C 39.7±0.80 nmolmin-1 g-1 total protein; Location D: 82.3±1.69 nmolmin-1 g-1 total protein). High activity of indigenous
maize sampled in location D indicated that the plant was well-adapted to the TCDD-contaminated environment. In case of non-indigenous
maize, with increasing concentration, the enzyme activity of both plants varied and �uctuated irrespective of any TCDD treatments.
Interestingly, yellow-coloured bio�lm was found only in the root of plant treated with 10µg/L TCDD. It was speculated that plant-
microorganisms associated bearing pollutant-detecting/degrading role for eliminating toxicant induced by high concentration of TCDD
(Nasr, 2019).

According to Nannipieri et al., (2012), due to the variation of external conditions in the changing environment such as variation in plant
cover of soil, methods in detecting enzyme activity in plant to detect pollutants are unreliable However, the results of semiquantitative RT-
PCR measurement of gene expression exhibited that plants that express signi�cant levels of CYP71C1 and CYP79A61 during the
appropriate stages of plant development (Figure 3). Except to the seed sampled in location A, a band was found in all plant samples in
which a pair of PCR primers were designed to be speci�c for CYP71C1 and CYP79A61. The speci�c primers ampli�ed the 152bp and
145bp fragments from their respective target templates but not those from the non-target template.

Semi-quantitation of gene expression using real time PCR was further studied for the root of indigenous Z. maysexposure to 10 ug/L of
TCDD. The result exhibited gene expression of CYP71C1 and CYP79A61 increased signi�cantly, around 13 and 20 times level of the plant
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sampled in location D compared to other locations, respectively (Figure 4). Apparently, thebio�lm found in the plant’s root sampled in
location D exhibited an alternative xenobiotic degradation to microorganism may be subjected to the expression of cytochrome gene (i.e.
speci�c for organic pollutant degradation) (Musilova et al., 2016; Yousaf et al., 2011)facilitated by plant-microbe symbiotic association. In
addition, some accessory factors such as rhizosphere zone in the root altered the composition of water and dissolved oxygen
concentration may affect the genetical change and expression of microorganisms containing pollutant-degradinggenes in the colonized
rhizosphere of infected plants (Afzal et al., 2014). Such symbiotic relationship induce the changes of catabolic genes (Saibu et al., 2020),
meaning that the bio-degradation pathways or enzymes altered with the goal of performing speci�c organic pollutant degradation such as
chemoorganotrophic or chemolithotrophs heterotrophs (Ijaz et al., 2016). Therefore, the changes of gene expression of speci�c group of
microorganismsin the root of indigenous plant may trigger the e�ciency of TCDD degradation. 

Surprisingly, the root of seedlings with high gene expression were heavily infected by mycorrhizas. Under an adverse condition, the
possibility of secreting strigolactone (Mishra et al., 2017)from plant in response to the colonization of AM fungi leads to synthesize fungi
in plant root. TCDD may mimic such plant hormone to send chemical message (Olson and Morton, 2019) to plant for TCDD
accumulation. Thus, the compound induced the secretion of mycorrhizal factors such as lipochitooligosaccharidesand chitin
oligosaccharides (Rush et al., 2020) to enhance the formation of arbuscular and elevated plant immune responses and restore function
quickly in the contaminated environment. Consequently, bene�cial gene in fungi transferred to the land plants and combined into the plant
cellthrough symbiotic association.

Conclusions
There was short term, immediate and long term impact of TCDD contamination on the soil by bioaccumulation and biomagni�cation in
the food web. This is the �rst report of indigenous plant grown in the TCDD contaminated site exhibited up-regulation of gene expression
signi�cantly in response to TCDD. Thus, such indigenous plant is sensitive to detect TCDD in the �eld site facilitated by plant-microbe
symbiotic association.
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Tables
Table 1. Cytochrome enzyme activities (nmolmin-1 g-1 total protein, n=5) in the root of indigenous and non-indigenous Zea mays. Within
each column, means with the same letter are not signi�cant different according to Duncan’s Multiple Range Test (p<0.05)

TCDD
concentration
(µg/L)

Indigenous maize Non-indigenous maize

Location A Location B Location C Location D Location A Location B Location C Location D

0 3.87±0.88b 2.33±0.05c 1.23±0.02b 2.66±0.06c 2.19±0.04a 3.41±0.17a 1.75±0.43a 2.48±0.31a

0.001 4.58±0.59b 2.58±0.11c 3.79±0.02b 8.12±0.08bc 1.08±0.07a 2.46±0.06a 3.40±0.19a 1.37±0.09a

0.01 5.52±0.41b 4.23±0.05c 5.77±0.07b 9.64±0.88bc 2.76±0.04a 3.77±0.05a 2.03±0.07a 2.83±0.07a

0.1 5.99±0.27b 4.81±0.16c 5.53±0.30b 13.7±1.74b 3.65±0.02a 2.61±0.03a 3.47±0.02a 2.78±0.22a

1 6.18±0.06b 7.01±0.14bc 6.29±0.27b 14.5±1.07b 3.17±0.05a 3.85±0.07a 3.43±0.11a 2.79±0.21a

10 31.2±0.03a 59.6±0.33a 39.7±0.80a 82.3±1.69a 2.52±0.12a 3.96±0.02a 3.30±0.35a 3.18±0.17a

Figures

Figure 1

Sampling locations nearly CheoyLee Shipyard (formerly)
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Figure 2

Root elongation of indigenous and non-indigenous Z. mays in different TCDD concentrations. Lower-case and upper-case lettersindicate
signi�cant difference at p < 0.05 according to according to Duncan’s Multiple RangeTest. Signi�cant differences between indigenous and
non-indigenous plants within the same concentration estimated using t-test are indicated by asterisks.

Figure 3

Gel diagram of gel electrophoresis showing RT-PCR results of CYP71C1 (left) and CYP79A61 (right). From left to right: DNA marker (Lane
1), reagent blank control (Lane 2), no RT control (Lane 3), roots sampled in locations A to D exposed to 10 µg/L TCDD (Lanes 4-7). 
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Figure 4

Relative amounts of CYP71C1 (left) mRNA and CYP79A61 (right) mRNA after exposure to 10 µg/L TCDD in root tissue. Different letters
for different treatments indicate signi�cant difference at the level of p<0.05 in Duncan Multiple-range test.


