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Abstract

The majority prognostic scores proposed for early assessment of coronavirus disease 19 (COVID-19)
patients are bounded by methodological flaws. Our group recently developed a new risk score - ABC,SPH -
using traditional statistical methods (least absolute shrinkage and selection operator logistic regression -
LASSO). In this article, we provide a thorough comparative study between modern machine learning (ML)
methods and state-of-the-art statistical methods, represented by ABC,SPH, in the task of predicting in-
hospital mortality in COVID-19 patients using data upon hospital admission. We overcome methodological
and technological issues found in previous similar studies, while exploring a large sample (5,032 patients).
Additionally, we take advantage of a large and diverse set of methods and investigate the effectiveness of
applying meta-learning, more specifically Stacking, in order to combine the methods' strengths and
overcome their limitations. In our experiments, our Stacking solutions improved over previous state-of-the-
art by more than 26% in predicting death, achieving 87.1% of AUROC and MacroF1 of 73.9%. We also
investigated issues related to the interpretability and reliability of the predictions produced by the most
effective ML methods. Finally, we discuss the adequacy of AUROC as an evaluation metric for highly
imbalanced and skewed datasets commonly found in health-related problems.

Introduction

The number of patients with coronavirus disease 2019 (COVID-19), as well as the related deaths, have
increased exponentially during the COVID-19 pandemic. Although over 7.6 billion doses of COVID-19
vaccines have been administered, variants are still emerging, and COVID-19 seems to be an issue
governments worldwide will need to keep grappling with (1,2).

Given the current scenario, there is an urgent need for an early disease stratification tool upon hospital
admission, to allow the early identification of risk of death in patients with COVID-19, assisting in the
management of disease and optimizing resource allocation, hopefully assisting to save lives during the
pandemic. Although several scores have been proposed for the early assessment of COVID-19 patients at
hospital admission, the majority of them are bounded by methodological flaws and technological
limitations, meaning that reliable prognostic prediction models are scarce (3-5).

A state-of-the-art method for this prediction task has recently been proposed by our group with the
development of a new risk score - ABC,-SPH - using traditional statistical methods (least absolute
shrinkage and selection operator - LASSO regression), which exploits a rich set of information, including
patient's demographics, comorbidities, vital signs and laboratory parameters at the time of presentation,
for assessing prognosis in COVID-19 patients. The model has shown high discriminatory value (AUROC
0.844,95% C1 0.829 to 0.859), confirmed in the Brazilian (0.859 [95% CI 0.833 to 0.885]) and Spanish
(0.899 [95% CI 0.864 to 0.934]) validation cohorts, and with better discrimination ability than other existing
scores (4).

In this context, artificial intelligence (Al), and more specifically machine learning (ML), techniques have
been explored in various fields for dealing with the pandemic, such as detecting outbreaks, diagnosis,
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interpretation of imaging exams, vaccines development and prognosis prediction (6,7), but comprehensive
comparative studies to investigate whether ML techniques have superior performance to statistical
methods are still scarce.

Indeed, in several other contexts (8) ML techniques have demonstrated superior effectiveness (i.e,,
accuracy) when compared to traditional statistical methods (e.g., logistic regression), due for instance,
their capability of dealing with collinearity and redundancy, as well the ability to find non-linear correlations
among the variables. However, current studies in the mortality prediction for COVID-19 using ML
techniques are limited, regarding either methodological or technological aspects.

In this scenario, the contributions of this article are fivefold. First, we provide a thorough comparative study
among state-of-the-art ML methods, including modern techniques, such as transformer and convolutional
neural networks, boosting algorithms, support vector machines (SVM), k-nearest neighbors, as well as
state-of-the-art statistical methods, represented by ABC,-SPH, in the task of determining in-hospital

mortality in COVID-19 patients, using data upon hospital admission.

Second, given the profusion and diversity of the compared methods, we investigate the effectiveness of
meta-learning ensemble strategies, most notably Stacking (9), that combine the methods’ outputs
(probabilities), in order to exploit the ML methods’ strengths and overcome their limitations.

Third, we study the reliability of the predictions of the most effective methods by correlating the probability
of the outcome and the effectiveness (accuracy) of the methods. Few studies have investigated this
important aspect of the predictions, which has practical impact in the applicability of the methods. Fourth,
we investigated how interpretable (or explainable) are the predictions produced by the most effective
methods, using modern interpretability tools.

Related Work

This study also included a narrative review on existing prediction models for COVID-19 mortality. A
literature search of Medline and MedRxiv was conducted in August 2021, with no language or date

n o

restrictions. The search terms “COVID-19", “SARS-CoV-2" were used, combined with “mortality”,

“prognosis”, “risk factors”, “hospitalizations” or “score”. Text screening retained 76 studies included in the
S1 Table.

The existing literature largely focuses on American and Chinese inhospital patients (53.94%). In fact,
models validated in one country cannot be extrapolated to the population as a whole, since there is
heterogeneity among countries in different characteristics such as populations features (including
genetics, race, ethnicity, prevalence of comorbidities), socioeconomic factors, and the healthcare systems
themselves (access, hospitals patient load, practice and available resources) (10).

Another remarkable point is the sample size. Larger population studies are needed to allow certain metrics
of model performance to be estimated with more accurate and reliable results. In contrast, smaller samples
reduce the ability to identify risk factors and increase the likelihood of overfitting (11). Among the analyzed
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models, 17.10% were developed and validated in a sample of 500-1000 patients, and 35.52% had less than
500 patients. Only 47.36% of the studies used a sample with more than 1000 patients.

Most of the studies (60.52%) used traditional statistical methods, including multivariate logistic regression,
LASSO and Cox regression analysis. Artificial intelligence techniques were used in 39.47% of studies,
among them stands out machine learning, including random forest (RF), XGBoost and SVM. Only 11.8% of
works exploit modern neural network methods.

Overall, the majority of developed models are limited by methodological bias, such as absence of external
validation (testing) in 51.31%, so the assessment of accuracy in those studies may be overestimated, and
only 23.68% reported having followed the methodological recommendations from Transparent Reporting
of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) (11).

The model performance was evaluated in most studies by area under the receiver operating curve
(AUROC). The mean AUROC for training ranged from 0.64-0.96 for traditional statistical methods, and from
0.74-0.96 for models using Al techniques. While more common in healthcare-related literature, the AUROC
values can be misleading, especially when there is significant class imbalance (12). To properly assess the
performance of different models, it is of utmost importance to use other metrics that consider imbalance
issues, such as macro-average F1-score (macro-F1), used in only 13.33% studies.

Finally, few studies deeply analyzed the impact of the variables in the final model or on the final model
outcome. Most studies did not investigate how reliable the made predictions are in terms of the correlation
between the probability of the prediction and the accuracy. This analysis has implications on the practical
use of this technology. An accurate but unreliable method has its practical applicability diminished. We
explicitly tackle these issues in our study.

Materials And Methods

This is a substudy of the Brazilian COVID-19 Registry, a multi-hospital cohort study previously described
(13). Adult patients with laboratory-confirmed COVID-19, admitted consecutively in any of the 36
participating hospitals, from March 1 to September 30, 2020 were enrolled. Individuals were not included if
they were transferred between hospitals and data from the first or last hospitals was not available, as well
those who were admitted for other reasons and developed COVID-19 symptoms during their stay (4).

Trained hospital staff or interns collected clinical and laboratory data from the medical records (S2 Table)
(4,11). Laboratory exams were performed at the discretion of the treating physician. A prespecified case
report form was used, applying Research Electronic Data Capture (REDCap) tools (14). Error checking code
was developed in R, to identify data entry errors, as previously described (4), and the results were sent to
each center for checking and correction, before further data analysis.

Data analysis
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The development, validation and reporting of the models followed guidance from the TRIPOD guideline
and the Prediction model Risk of Bias Assessment Tool (PROBAST) (11,15).

At that time, 36 Brazilian hospitals participated in the cohort, located in 17 cities, from five Brazilian states
(4). A total of 5032 patients were admitted between March 1, 2020 and September 31, 2020, and the full
group was used to perform a 10-fold cross validation procedure, which was repeated 3 times (at a total of
30 performance measurements for each of the classifiers presented in our study). The overall study
population included 45.9% women, with a mean age of 60+ 17 years, 27.17% needed mechanical
ventilation and 20.15% died.

In order to properly assess the performance of different models, we chose to use three different metrics,
each assessed through the aforementioned 10-fold cross validation procedure, for each classifier. Our
evaluation metrics include both micro-average and macro-average F1-score (micro-F1 and macro-F1), and
the AUROC. The F1 score is the harmonic mean between precision and recall scores, for each class (i.e. one
score to estimate how well the model can predict which patients will die, and one to estimate the same
regarding which patients will not die). The "average" part, described as either "micro" or "macro", refers to
how these results are aggregated. In "macro’ averaging, all classes are taken as equally important, while in
"micro" averaging, class imbalance is not accounted for in the final result and all individual predictions are
considered equally important (16).

As for the specific models compared in our study, we trained two modern neural network benchmarks - the
FNet transformer, with and without virtual adversarial training, which is a regularization technique —and a
deep convolutional Resnet. We also experimented with a support vector machine classifier, a boosting
model (microsoft research’s Light Gradient Boosting Machine), and the K-nearest neighbors algorithm, as
well as a stacking of these methods.

We compare these ML alternatives to traditional statistical methods, including a Generalized Additive
Model (GAM), which has rarely been used in this scenario before, and LASSO regression, the current state-
of-the-art. GAM was used before in ABC,-SPH, but only to select variables for the lasso regression, which
yielded an inferior result when compared to LASSO regression, whereas in our work, we directly tune GAM
to the classification task, thus obtaining better results, as we shall see.

The choice of neural networks to include in our study was motivated by current state-of-the-art methods,
even though, in general, neural networks tend to perform better in situations where massive amounts of
data are available (17,18). Usually, the ability to compare distant input positions in the query vectors is
related to the neural network’s depth. Transformer architectures, as introduced by Vaswani et al (2017),
gained rapid success due to their capacity of doing so in a constant number of operations, achieving state-
of-the-art results in many tasks (19). That is the reason we chose a FNet Transformer classifier. For
comparison purposes, we also included a Resnet model, which held similar success for image
classification, due to the capacity of building very deep networks. Due to the relative drop in performance
of neural networks when fewer data samples are present in training, we also included a training variant
where we perform virtual adversarial training, as introduced in Miyato et al (2017), in which the model’s
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decision boundary is smoothed in the most anisotropic direction through a gradient-based approximation
(20).

Additionally, we included a standard support vector machine classifier, which learns a separation
hyperplane between classes, while maximising the separation margin, and a K-nearest neighbors classifier,
which yields predictions based on spatial similarities between training samples and new query points.
Motivated by the results shown in Shwartz et al (2021) (21), we included a boosting algorithm (LightGBM),
which is usually an effective model in tabular data, as concluded in Ke et al (2017) (22). As the final
classifier, we included a meta-learning ensemble-based Stacking model, which learns to combine the
prediction outputs of all previous classifiers in order to improve classification effectiveness. We compare
these methods to Generalised Additive Models (GAM) and LASSO regression, the latter being the current
state-of-the-art model for this task, as demonstrated in our previous work.

We ran all classification tests using a 10 fold cross validation procedure, after which we calculated
confidence intervals for each result, and confirmed statistical significance by applying a Wilcoxon signed-
rank test with 95% confidence.

For the parametrization of our models, we used the values presented in Table 1, where the values in
brackets are evaluated in the validation set of the cross validation process. For deep network models we
use the early stop to optimize the model, which optimizes the weights until the model has no significant
improvement in the validation set.
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Table 1
Parameterization of methods.

Method
SVM

RF
KNN
LASSO

LIGHT_GBM

CNN
FNet
FNet + VAT
GAM

Stacking

List of model names: CNN = convolutional neural network, FNet = fourier transformation neural
network, FNet + VAT = fourier transformation neural network with virtual adversarial training, GAM =
generalized additive models, KNN = K-nearest neighbors, LASSO = lasso regression, LIGHT_GBM = light
gradient boosting machines, RF = random forest, SVM = support vector machines, STACKING = a

Parametrization

C:[1073,107%,107", 10°, 10", 107]

Kernel: [linear, rbf, poly, sigmoid]

class_weight: [None, 'balanced]]

N-estimators: [10, 50, 100, 200, 500, 1000, 2000]
Neighbors: [2, 4, 8, 16, 32]

Alpha: [1073,1072,1077, 100, 107, 109
N-estimators: [10, 50, 100, 200, 500, 1000, 2000]
learning_rate: [1073,1072,1071,307]

colsample_by_tree: [0.5, 1.0]

Early Stop
Early Stop
Early Stop

No tunning

Meta-Classifier: Logistic Regression, Alpha: [10?]

stacking classifier, which combines all others.

Ethics approval and consent to participate

The study protocol was approved by the Brazilian National Commission for Research Ethics (CAAE
30350820.5.1001.0008). Individual informed consent was waived due to the severity of the situation and
the use of deidentified data, based on medical chart review only. All methods were carried out in

accordance with relevant guidelines and regulations.
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Results And Discussion

Classification results for the prediction of death are shown in Table 1. Neural network models (CNN -
convolutional neural networks - and FNet - Fourrier transform neural network - / FNet + VAT - Fourrier
transform neural network + virtual adversarial training) produced the worst results, while boosting
(LightGBM' - Light Gradient Boosting Machine), Stacking and one traditional statistical model
('Generalized Additive Models - GAM') produced the best overall results, when considering micro-F1, macro-
F1 and AUROC.

The less effective results of the Neural network are somewhat expected as the size of the dataset is not
that huge, with fewer than 10,000 samples. Typically, we expect neural networks of large capacity (millions
to billions of parameters) to excel in tasks where very large datasets are available (millions to billions of
training instances), which is very rare in health-related problems. In such large-scale datasets, neural
networks can capture very complex relationships. However, in smaller sample sizes, they show a
remarkable tendency to overfit, hence obtaining poor results in terms of validation error (17,18).

Thus, tree-based ensemble models such as random and boosting forests tend to be more robust to small
sample sizes and to overfitting, which is exactly the behavior we observed in our experiments (23). SVM
and K-nearest neighbors (KNN), which are simpler models, with fewer parameters, also tend to perform
reasonably well on smaller datasets being better than the neural network models.

We should stress that the statistical models LASSO regression and GAM showed very competitive results.
Unexpectedly, GAM was the runner up method considering all metrics, being even better than LASSO and
some traditional ML methods such as SVM and KNN. In our work, we directly tuned GAM to the
classification task, using the cross-validation procedure, which yielded superior performance. GAM and
LightGBM are statistically tied regarding all evaluation metrics considering a Wilcoxon signed-rank test
with 95% confidence.

In any case, the best single overall model, with statistical significance, under all considered metrics, was
the Stacking model, which is a combination of the output of all other individual models, which, in turn,
allows us to better discriminate between patients with higher clinical risk at admission time. When
considering micro and macro-F1, F1 for death and AUROC at the task of predicting death, Stacking was
significantly (statistically) better than all other models. The largest gains were in F1 to predict death with
gains of up more than 26% over LASSO, the previous state-of-the-art. The Stacking technique improves the
F1-score results for the class of interest (death) by 7% over RF, by 5% for LightGBM and by 6% for GAM,
which were the three individual best models in this metric. The combination of models based on different
classification premises, potentially made stacking more robust. If a single classifier makes a wrong
prediction, the others can still make corrections, increasing the robustness of the final stacking model.
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Table 2. Micro-F1, macro-F1 and AUROC results for the prediction of COVID-19 in-hospital death.

MICRO-F1 MACRO-F1 F1 (DEATH) F1 (NO AUROC
DEATH)
mean Cl mean Cl mean Cl mean Cl mean Cl
KNN 0.807 0.002 0.492 0.007 0.091 0.014 0.892 0.001 0.781 0.010

FNet + VAT 0.810 0.013 0.677 0.020 0.470 0.038 0.884 0.009 0.772 0.019

FNet 0.814 0.008 0.686 0.017 0.486 0.030 0.887 0.005 0.789 0.015
CNN 0.815 0.013 0.693 0.016 0.500 0.026 0.886 0.009 0.796 0.016
SVM 0.839 0.010 0.691 0.031 0.478 0.058 0904 0.005 0.833 0.012
LASSO 0.842 0.009 0.677 0.024 0.446 0.044 0908 0.005 0.859 0.006

LIGHT_GBM 0.846 0.008 0.723 0.016 0.538 0.028 0908 0.005 0.865 0.008
GAM 0.847 0.006 0.720 0.014 0.532 0.026 0908 0.003 0.855 0.012
RF 0.850 0.005 0.717 0.013 0.524 0.024 0911 0.003 0.863 0.007
STACKING 0.855 0.007 0.739 0.018 0.564 0.032 0913 0.004 0.871 0.007

List of model names, from top to bottom (ordered by MicF1): CNN = convolutional neural network, FNet =
fourier transformation neural network, FNet + VAT = fourier transformation neural network with virtual
adversarial training, GAM = generalized additive models, KNN = K-nearest neighbors, LASSO = lasso
regression, LIGHT_GBM = light gradient boosting machines, RF = random forest, SVM = support vector
machines, STACKING = a stacking classifier, which combines all others.

The ROC curves for all evaluated models are shown in Fig 1. From this Figure, we can see the separation of
two distinct groups: one group of models with inferior results, composed of neural network models and K-
nearest neighbors, and another group of models with superior (indistinguishable) results, consisting of
SVM, RF, LightGBM, GAM and the Stacking.

Despite similarities in the curves and at AUROC values, these classifiers can yield quite different results
when compared with micro-F1 and macro-F1, or class-specific F1 scores, which shows that (1) AUROC
score is not an adequate metric for evaluating and comparing models, especially in face of high
imbalance/skewness and that (2) even though some models, like Stacking and GAM have very similar
AUROC scores, their capacity to discriminate relevant outcomes like death is quite different (0.532 F1 score
for GAM and 0.564 for Stacking, a significant difference of 6%).

Interestingly, using such curves, we can sensibly calibrate the trade-off between sensitivity and specificity,
further customizing the way such models can be used. In particular, when applying Stacking, our model
can be tailored to the early identification of high-risk patients, with good discrimination capacity.

Explainability
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Explainability is an essential aspect of the task if ML methods are to be trusted and actually used by
practitioners. Various prognostic factors have been proposed in the stratification of COVID-19 patients,
based on their risk of death, that includes clinical, laboratory and radiological variables. Among these risk
factors, stand out advanced age, multiple comorbidities on admission (such as hypertension, diabetes
mellitus, cardiovascular diseases and others), abnormal levels of C-reactive protein (CRP), lymphocytes,
neutrophils, D-dimer, blood urea nitrogen (BUN) and lactate dehydrogenase (LDH).

A very interesting feature of some ML models, in particular decision trees, RF and boosting forests, is the
explainability of these models. This is still a very active research area, but modern advances in tools and
visualization alternatives allow us to represent which features are most important to the model and at
which polarities and intervals. In this context and as previously cited, the best model in our tests was the
Stacking, that is a meta-model, in which inputs are the outputs of other classifiers. Since we aim to explain
a classifier that works on the level of the features themselves (instead of a meta-level of other classifier
outputs), we will provide explanations for the second best model, LightGBM. Furthermore, tree-based
boosting and bagging algorithms rank as some of the most explainable machine learning models, and
also lead many benchmarks, particularly for tabular data where data samples are not that large. Their
unique combination of explainability, reliability and performance, added to the fact that stacking is a meta-
classifier are why we will exploit the boosting model (which, in our case, outperformed the bagging model -
random forests/RF), to analyse the correlations among variables.

In a sense, some traditional models, such as regression models, also have a good explainability, as it is
possible to assess the coefficients of each attribute, to measure how important a feature is. These models
however do not measure up to modern tree-based algorithms in many scenarios, especially in cases with
larger datasets (24). Another key difference between these models is that, in the case of regression models,
we have to explicitly remove collinear variables, but these variables, even though they might not improve
classification performance, still yield valid model explanations.

In decision tree based algorithms, each node represents a feature. The closer to the root (i.e. the 'first' node
of each tree), the more the feature is able to differentiate the data classes. For example, in Fig 2, feature 'SF
ratio" with the value less than 233 and the feature 'lactate’ with a value less than 1.68 mmol/L results in a
subset with 5.9% of the dataset where the 'death’ outcome is more common.

These algorithms look for the values of the features that further separate the classes, while trying to
decrease the coefficient or entropy values of the class label (which are measures of purity and information)
in each partition in the decision tree — this coefficient is called the GINI Index. Such index and the entropy
score tend to isolate records that represent the most frequent class in a branch.

In Fig 3, we present SHapley Additive exPlanation (SHAP) values for our boosting model. This is a special
type of explainability technique, which allows us to not only probe which features were important to the
model, but also which polarities or intervals push predictions to each of the training classes, and
additionally, allows us to evaluate why the model predicted any single instance (25).
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For any simple model, such as regression, the model itself is a reasonable explanation of what was
learned. However, for more complex models, which in turn are capable of learning more complex solutions
(provided enough data is present at training time), we cannot use the model to explain itself, since itis a
complex solution. In these situations, shapley values build upon the idea that the explanation of a model
can itself be a model. This technique has been recently introduced, and further expands on the
explainability of machine learning models, making them even more useful, as they become more
interpretable (25).

With the help of SHAP values in Figs 3 and 4, wwe can extract interesting knowledge from our boosting
model, the best individual ML model that works with the base features. We can see for instance that the
most important feature in the prediction of death COVID-19 is age. This is coherent with previous medical
literature, and serves as an additional validation to the model. Other scores and a recent meta-analysis
have shown age as a key prognostic determinant in COVID-19 (26-29). The meta-analysis included more
than half million of COVID-19 patients from different countries, and observed that the risk increased
exponentially after the fifth decade of life. It is important to highlight that this fact could be influenced by
both the physiological aging process and, especially by the individuals functional status and reserve, what
may hinder the intrinsic capacity to fight against infections, increasing susceptibility to the infection and
severe clinical manifestations (30).

The second most important feature is the supplemental oxygen requirement, which, as per Fig 3, lower
values (blue tones) indicate higher risk. Although COVID-19 is a multisystem disease, it is well known that
lung involvement is the mainstain for assessing disease severity, and oxygen requirement upon hospital
admission has been shown to be an independent predictor for severe COVID-19 in several studies (31,32).

We also observed that lower values of platelets and higher levels of urea and C-reactive protein also
increase risk of mortality, which is in line with what was previously observed using statistical models (33).
Other studies suggest that C-reactive protein was a marker of a cytokine storm developing in patients with
COVID-19 and was associated with the disease mortality (34-36).

Interestingly, ML models can return explanations in the form of intervals, such as the behavior seen in Fig 3
for sodium and bicarbonate levels, which imply there is a "safe interval" for which risk is lower, but values
either too high or too low yield higher risk of death. This is an intrinsic limitation of regression models, and
the variable may be seen as non-significant due to the fact that it is a non-linear association.

From a clinical perspective, those results are in line with a recent study, which demonstrated that
hypernatremia and hyponatremia during COVID-19 hospitalization are associated with a higher risk of
death and respiratory failure, respectively (37). With regards to bicarbonate, low levels are related to
acidosis, and high levels are usually related to advanced chronic obstructive pulmonary disease (COPD)
with retention of carbon dioxide, both of them conditions well-known to be associated with worse
prognosis in clinical practice (38—-40). This sort of non-linearity cannot be captured by simple regression
models, since we can only measure how large coefficient values are, and correlate that to the importance of
each feature.
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In exploiting LASSO regression in our previous work (4), we had to exclude some features which had
shown to be important in the boosting model due to high collinearity. This may explain the difference in the
features included in both models, despite the fact that all features included in both had previous evidence
of association with COVID-19 prognosis.

Another interesting remark is shown in Fig 4, in which we can see the relative importance of each feature.
Here, again, age is the most important single feature (due to higher mean SHAP value), which is in line with
previous studies (3,26,27). However, the remaining features when combined yield higher predictive value in
this task than just age.

Reliability

Finally, we investigate issues related to the reliability of the models. Neural network models are, for
instance, known for having irregular error rates, regardless of prediction confidence. At the other end of the
spectrum, boosting and bagging models tend to have a very interesting reliability profile, with a tendency to
have lower error rates at high confidence scores, and higher error rates at lower confidence scores. This
enables tuning the trade-off between accuracy and sensitivity for some specific classifiers.

Accordingly, we show in Fig 5 the reliability profile for our best model (Stacking). In this Figure, the x-axis
shows prediction ranges for the model's confidence score, while the y-axis shows the percentage of hits or
misses for the model. Note that the model makes more correct predictions (hits, in green) when it is more
certain of the prediction (range 0.87-0.96). Thus, this classifier yields a useful reliability profile, in relation to
its confidence score. This kind of characteristic means we can tune how many patients the model will
indicate, as well as how sensitive or specific that indication can be. Such tuning can be tailored to any
healthcare service, accounting for intensive care unit beds, available professionals and so on.

Based on S1 Table, there were few prediction studies that had extensive analysis utilizing Al techniques. In
this study, Al techniques were compared to traditional statistical methods to develop a model to predict
COVID-19 mortality, considering demographic, comorbidity, clinical presentation and laboratory analysis
data. We observed that regarding the prediction of the class of interest (death), the best individual methods
was a ML one (LightGBM) closely followed by a statistical model (GAM), both being better than neural
network models, and both being surpassed by a meta-learning ensemble model - Stacking — which was the
best overall solution, considering all criteria for the posed prediction problem.

We would like to emphasize that, despite the fact that in medical research the AUROC is widely used as the
sole measure of models' discriminatory ability, our data reassures that it is an insufficient metric for
evaluating and comparing models. F1 Score is a more robust metric, especially in larger, more complex and
imbalanced datasets, which are common in health-related scenarios.

Conclusion

In this study, modern Al techniques performed better than traditional statistical methods to predict COVID-
19 mortality. The meta-learning strategy based on Stacking, surpassed the state-of-the-art LASSO
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regression method by more than 26% for prediction death. We also demonstrated that AUROC score was
an insufficient metric for evaluating and comparing models. Even though some models, like Stacking and
GAM have very similar AUROC scores, their capacity to discriminate relevant outcomes like death is quite
different (0.53 F1 score for GAM and 0.56 for Stacking, which yields a 5.6% difference). Finally, we
investigated issues related to the explainability and prediction reliability of the best ML models, concluding
that they are potentially very useful for practical purposes in real settings. Age was the main mortality risk
predictor, but urea, C-reactive protein, lactate, respiratory rate, heart rate, NRL, neutrophils, sodium and
pCO2 may also significantly influence the disease outcome.
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Comparision ROC curves for multiple algorithms
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Figure 1

Receiver Operating Characteristic (ROC) curve comparing multiple models, trained on the prediction of the
death outcome.
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Sample decision free with max_depth=2 from our dataset
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Figure 2

A sample decision tree with depth 2, trained on our dataset. At each level but the last, the first line of text in
each box shows the variable and its cut before the split.
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Figure 3

SHAP values for the LightGBM model trained on the prediction of the death outcome.
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Feature importance for the prediction of the Death outcome
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Figure 4

Mean SHAP values for each feature in the prediction of either death.
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Classifier confidence x reliability of prediction for the Stacking model
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Figure 5
Error rates for each confidence threshold in the Stacking model.
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