

Preprints are preliminary reports that have not undergone peer review. They should not be considered conclusive, used to inform clinical practice, or referenced by the media as validated information.

Enhancing the Performance of Downlink NOMA Relaying Networks by RF Energy Harvesting and Data Buffering at Relay

Nguyen Nhu Thang Dai hoc Ky thuat Le Quy Don

Tran Manh Hoang Dai hoc Ky thuat Le Quy Don

Ba Cao Nguyen Dai hoc Ky thuat Le Quy Don

Phuong T. Tran (🛛 tranthanhphuong@tdtu.edu.vn)

Ton Duc Thang University https://orcid.org/0000-0002-1448-8882

Research

Keywords: NOMA, energy harvesting, successive interference cancellation, power allocation, buffer-aided

Posted Date: December 3rd, 2020

DOI: https://doi.org/10.21203/rs.3.rs-117143/v1

License: (a) This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

RESEARCH

Enhancing the performance of downlink NOMA relaying networks by RF energy harvesting and data buffering at relay

Nguyen Nhu Thang¹, Tran⁹ Manh Hoang¹, Ba Cao Nguyen¹ and Phuong T. Tran^{2*}

*Correspondence: tranthanhphuong@tdtu.edu.vn ²Wireless Communications Research Group, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University., Ho Chi Minh City, Vietnam Full list of author information is available at the end of the article

Abstract

2

10

11

12

13

14

16

17

18

19

20

21

23

24

25

26

27

28

29

30

12 Recently, non-orthogonal multiple access (NOMA) has been considered as a promising candidate for next-generation mobile communications because it can 13 significantly improve the spectral efficiency of wireless networks. In this paper, we 14 investigate a novel solution to enhance the reliability and the supply stability of a 15 15 downlink NOMA relaying networks, in which we integrate two techniques: (i) 16 simultaneous wireless information and power transfer, i.e. the relay node can 17 harvest the energy from source signals and use this energy to help forward information from source node to two user nodes; and (ii) data buffer aid at relay 18 node, i.e. the data packets received from the source can be stored in a buffer and 19 then be re-transmitted to the destination nodes only when the channel condition 20 is good. The performance of the proposed system is analyzed rigorously to derive 21 the system outage probability and the average packet delay. Furthermore, a 22 22 power allocation optimization problem to minimize the outage probability is formulated and solution to this problem is also provided in this paper. Monte 23 Carlo simulations are conducted to verify the analytical results, which confirms 24 that with the data buffer at the relay, the overall outage probability (OOP) has 25 been reduced significantly. 26 Keywords: NOMA; energy harvesting; successive interference cancellation; 27 power allocation; buffer-aided 28 29 30 31 ³¹Introduction

2

6

7

8

9

10

11

 32 The non-orthogonal multiple-access (NOMA) is considered as a promising mul-32 33 tiuser communication technique for the fifth-generation (5G) mobile network since 33

¹it can achieve superior spectral efficiency [1]. Unlike the orthogonal-multiple-access¹ $^{2}(OMA)$, NOMA users can share the same radio resources, including time and band- 2 ³width. The key idea for this advantage is to employ the power domain or codes³ ⁴domain, where different users are distinguished by their power levels or different⁴ ⁵code[2]. Recent researcher have shown that NOMA can be applied to not only⁵ ⁶point-to-point but also relay networks [3]. While the application of NOMA to the⁶ ⁷point-to-point networks were well investigated, there are still increasing needs for⁷ ⁸the case of cooperative relaying networks [4, 5]. The work in [4] studied the conven-⁸ ⁹tional cooperative NOMA system with buffer-aided relaying. Under the assumption⁹ ¹⁰that the relay node possesses a buffer. Herein the authors considered an adaptive¹⁰ ¹¹transmission scheme in which different working modes are employed in different¹¹ ¹²time slots. The authors of [5] proposed a dual-hop cooperative relaying scheme us-¹² ¹³ing NOMA, where two source nodes communicate with each other simultaneously¹³ ¹⁴via a common relay on the same frequency band. In this scheme, after receiving¹⁴ ¹⁵symbols transmitted in parallel by both sources with different power levels, the¹⁵ ¹⁶relay forwards the superposition coded composite signal using NOMA to two des-¹⁶ ¹⁷tinations. However, in this work power control for uplink multiple access was not¹⁷ 18 ¹⁸considered.

¹⁹ In addition, harvesting energy from the ambient environment has become a¹⁹ ²⁰promising solution for energy-constrained electronic devices, which are convention-²⁰ ²¹ally supported by limited power sources such as battery [6, 7, 8, 9]. In some special²¹ ²²applications, charging the battery is too expensive or even impossible, e.g. sensor²² ²³network works under toxic environment and body area network. Moreover, some²³ ²⁴natural energy sources such as solar and wind, and radio frequency (RF) can be²⁴ ²⁵also utilized as effective sources for energy harvesting (EH). Compared with other²⁵ ²⁶kinds of energy sources, the RF energy harvesting [10], also known as wireless en-²⁶ ²⁷ergy transfer, has some advantages. Since the RF energy harvesting is an active²⁷ ²⁸energy supply method, it can provide more reliable energy flow to guarantee the²⁸ ²⁹quality of service.

³⁰ Therefore, utilizing RF-EH technique together with NOMA scheme helps prolong³⁰ ³¹ the lifetime and improves the spectral utilization efficiency of the energy-constrained³¹ ³² multi-user wireless relaying networks. The NOMA systems combining with RF en-³³ ergy harvesting is investigated in [11, 12, 13, 14]. A simultaneous wireless informa-

¹tion and power transfer (SWIPT) of NOMA networks were considered in [11], where¹ ²base station serves two types of users, namely, relay user and far user. The outage² ³performance and spectral efficiency of the NOMA-EH relaying networks with an-³ ⁴tenna selection were investigated in [13], where the power splitting (PS) protocol is⁴ ⁵applied at the relay to harvest the energy. In [13], the performance of NOMA sys-⁵ ⁶tem is also compared with OMA system. The authors of [14] investigated a NOMA⁶ ⁷system in which NOMA users near to the source act as the EH relays to assist the⁷ ⁸far NOMA users in forwarding the information. In these works, the authors con-⁸ ⁹sidered the users reception signals in two different time slots, however, the service⁹ ¹⁰was simultaneously provided to users in the NOMA system. The impact of power¹⁰ ¹¹allocation in the cooperative NOMA network with SWIPT was investigated in [3].¹¹ ¹²In this work, Yang et. al. proposed two types of NOMA power allocation policies, ¹² ¹³namely NOMA with fixed power allocation (F-NOMA) and cognitive radio inspired¹³ ¹⁴NOMA (CR-NOMA). The results of these above-mentioned works shown that the¹⁴ ¹⁵performance of NOMA outperform OMA scheme. However, the diversity gain was¹⁵ 16 ¹⁶not improved.

¹⁷ An energy buffer-aided EH relay was applied in cooperative communication sys-¹⁷
¹⁸tem to improve sytem performance in [15], but in this work the authors didn't¹⁸
¹⁹consider buffer-aided data. On the other hand, the work in [16] proposed a hybrid¹⁹
²⁰NOMA/OMA system with buffer-aided relay selection. As a result, two buffer-aided²⁰
²¹opportunistic relay selection algorithms were proposed. The aim of that work is to²¹
²²improve the outage performance and sum-rate of the system.

²³ The authors in [17] proposed a priority-based max-link relay selection for data ²⁴ buffer-aided decode-and-forward DF cooperative networks. In this work, the authors
 ²⁵ derived analytical expressions of outage probability and bit error rate to evaluate
 ²⁶ the system performance. In addition to NOMA downlink system investigation, the
 ²⁷ hybrid NOMA/OMA uplink system with the help of a buffer-aided relay was also
 ²⁸ considered in [18].

²⁹ So far, all previous works related to cooperative communication protocols and ²⁹ ³⁰NOMA technique in literature have proposed the superposition signal coding at ³⁰ ³¹ the source. Meanwhile, the relay node, which has a fixed power, only decodes and ³² forwards signals to destinations. However, due to the random nature of wireless ³³ channel, the amount of energy harvested at the relay is usually very small and vari-³³

32

20

¹able. Hence, the power allocation at the relay can reduce the feedback energy and¹ 2 guarantee the performance fairness for all users. To the best of our knowledge, com- 2 ³bining SWIPT with NOMA relaying system where the buffer-aided relay technique³ ⁴ is employed at the relay has not been investigated in literature and the derivation⁴ ⁵ of the overall outage probability expression of this system has not been carried out.⁵ ⁶either. Motivated by these facts, in this paper, we proposed a different cooperative⁶ ⁷decode-and-forward relaying scheme where a source transmits information packets⁷ ⁸to the relay, while relay broadcasts the modulation superposition signals to two⁸ ⁹users. However, R employs time switching based EH prior to the communication⁹ ¹⁰ with destinations. Based on the channel gain from the relay node to the destination¹⁰ ¹¹node, the relay performs fixed and optimal power allocation for two users. Further-¹¹ ¹²more, NOMA technology is investigated for the cooperative transmission in term¹² 13 ¹³of two scenarios, i.e. with and without buffer aid at the relay node. 14 14 The main contributions of this paper are summarized as below: 15 15 16 16 • We proposed a novel downlink NOMA relay system applying SWIPT, where 17 designated relay node is either equipped with buffer or not. To harvest energy, 18 the relay uses time switching protocol. The performance of the system is 19 improved, and additionally the spectral utilization efficiency and the lifetime

21 21 • The optimal power allocation at the relay node to minimum outage probability 22 is also considered in this paper. Since the harvested energy is very small, the $^{\rm 22}$ reallocation of the harvested energy after converting from the RF signals of 23 23 24 24 the source is important for saving cost.

of wireless networks will be enhanced.

25 25 • Markov chain model and state-transition matrix is used to describe the ran-26 dom process at the buffer-aided relay. On the other hand, with buffer-aided 27 27 relay the diversity gain is improved significantly.

28 28 • The system performance is demonstrated by the outage probability and the 29 sum end-to-end ergodic capacity over Rayleigh fading channel. We derive the 30 30 closed-form expression to evaluate the rate of symbols and outage performance 31 31 of NOMA-SWIPT system. 32

The analytical results are validated by simulation. From the derived closed-33 33 form expressions, practical networks can be investigated in the in future.

26

Our proposed system can be applied in surveillance sensor networks for disaster¹ ²detection or Internet of Things (IoT), where installing fixed power lines or frequenty² ³replacing the batteries for a large number of nodes is not convenient. Besides, its³ ⁴advantages such as low energy cost, reducing greenhouse effect, and prolonging⁴ ⁵timelife are useful for future mobile networks.

⁶ The remaining of the paper is organized as follows. Section "System model"⁶ ⁷presents the NOMA-SWIPT system model and channel model. The analysis of⁷ ⁸outage probability with and without buffer aid at the relay node is given in Sec-⁸ ⁹tions "Outage probability without buffer-aided relay" and "Analysis of the out-⁹ ¹⁰age probability with buffer-aided relay", respectively. The average packet delay is¹⁰ ¹¹demonstrated in Section "Average packet delay of the buffer-aided relay system".¹¹ ¹²Numerical results, which verify our analysis, are presented in Section "Numerical¹² ¹³results". Finally, the conclusion is given in Section "Conclusion".

¹⁴ For the convenience, we provide in Table 1 the notations along with their descrip-¹⁴ 15 ¹⁵tions used in this paper.

Notation	Description
\Pr	Probability
$F_X(x)$	Cumulative distribution function (CDF)
$f_X(x)$	Probability density function (PDF)
$\mathcal{CN}(\mu,\sigma^2)$	A circularly symmetric complex Gaussian RV x with mean μ and variance σ^2
$\mathbb{E}\left\{\cdot ight\}$	The statistical expectation operator
$\Gamma(\cdot)$	Gamma function [27]
$\mathcal{K}_{n}\left(\cdot ight)$	The second kind of Bessel function order $n[27]$
$E_n(z)$	Exponential integral function $n[27]$
$G_{na}^{mn}(x _{b}^{a_{r}})$	Meijer's G-Function [27, 9.3]

²⁵Methods

²⁶System model ²⁷The system model of a NOMA downlink relaying network investigated in this paper ²⁸ is shown in Fig 1. According to this model, a source (S) wants to send its messages 29 to two destinations (D_1) and (D_2) simultaneously with the help of relay node, (R), ³⁰ which is capable of energy harvesting. It is assumed that S, D_1 , and D_2 have fixed power supply while relay node have no extra embedded energy supply, hence, R^{31} 31 32 needs to harvest energy from S. In addition, the relay node is assumed to have an unlimited-size information buffer to store the received messages [19]. We assume

20

¹that the direct link between the source and destination is not available due to far¹ ²distance or deep shadow fading in the channel. All nodes are equipped with a single² ³antenna and operate in a half-duplex mode^[1].

The channels between two arbitrary nodes are subject to block and flat Rayleigh⁴ ⁵fading. This means that the channel coefficients are constant during each data block⁵ $^{6}\mathrm{transmission}$ interval T but vary from one block to another.

7 In the case that the relay uses a buffer for data processing, we assume that it ⁸has perfect channel state information (CSI) of the links S \rightarrow R and D₁, D₂ \rightarrow R⁸ at the beginning of each time slot by using a short reference signals. Based on this 10 set of information, R can decide whether it is ready to operate in transmitting or receiving mode [20].

12 As shown in Fig. 1, the complex channel coefficient of the link between S and R 13 is denoted by $h_1 \sim \mathcal{CN}(0, \Omega_0)$. The complex channel coefficient between R and D_i , is $g_i \sim \mathcal{CN}(0,\Omega_i)$, where $i = \{1,2\}$ and $\Omega_1 = \mathbb{E}\{|g_1|^2\}, \Omega_2 = \mathbb{E}\{|g_2|^2\}$. The additive white Gaussian noise (AWGN) at R, D₁ and D₂ is respectively denoted by $w_{\mathcal{A}} \sim$ 16 16 $\mathcal{CN}(0, N_0)$, where $\mathcal{A} \in \{R, D_1, D_2\}$. Without loss of generality, we assume that the 17 users' channel gains are sorted in the descending order as follows: $|g_1|^2 > |g_2|^2$. 18 18

Data buffer at relay

20 In order to process the data the relay is equipped with a buffer for storing the signals received from the source. For time switching (TS) scheme the relay also 22 22 has an energy storage device to store the harvested energy^[2]. R first harvests the 23 23 energy from the RF signal transmitted by S and then performs signal reception and 24 24 transmission using the harvestet and transmit strategy [21].

25 25 The system operates according to the time-division duplex (TDD) mode where 26 26 each transmission period is divided into equal time slots of length $\tau(1-\alpha)$. At each 27 time slot, the relay or source node is selected to transmit data depending on the 28 28 status of the relay buffers and the available links that can provide the successful 29 transmission or reception of one packet. 30 30

^[1]This model can employ two antennas for the relay node and operate in a full-31 ₃₂duplex mode. 32

^[2]The storing of harvested energy in TS scheme is referred as charging-then-33 communicate. In contrast, PS scheme is referred as charging-and-communicate.

Page 7 of 28

If S is selected, it will generate a transmission frame of size $2r_0\tau$ bits, intended for¹ ²two destination nodes D_1 and D_2 , to send to the relay node, where r_0 is the target² ³transmission rate of the system. Each frame contains two segments, the first one is³ ⁴used for transmission symbols to D_1 and the second one is used for transmission⁴ ⁵symbols to D₂. The relay buffer has $L \ge 2$ storage units, each can store $2r_0\tau(1-\alpha)^5$ ⁶bits. The relay node decodes the received frame and stores it into the storage device.⁶ ⁷Each storage device is split into two parts of the same length, which are used to 8 ⁸store the information symbols intended for D_1 and D_2 , respectively. 9 9

¹⁰Signal model

10

14

16

30

 $^{11}\mathrm{In}$ each time slot, if the source is selected to transmit with unicast communication, ¹² it combines two signals x_1 and x_2 into a transmission packet. Then, the received 13 ¹³ signal at the relay is given by

¹⁵
$$y_{\rm B} = h_1 \sqrt{P_{\rm S}} x_{\rm S} + w_{\rm B}.$$
 (1)¹⁵

20

30

¹⁷The signal-to-noise ratio (SNR) of the source-to-relay link is given by [19] 17 18 18 $D_{\rm m}|h_{\rm s}|^2$

19
$$\gamma_{\rm R} = \frac{F_{\rm S}|h_1|^2}{N_0}$$
 (2)19

The time switching (TS) architecture for harvesting energy is applied as [22].21 21 $_{22}$ Refer to [22] for more detailed explanation^[3]. 22

²³ Herein, T denote the block duration of an entire communication period in which²³ ²⁴the information is transmitted from S to D_i . For each period T, the first amount²⁴ ²⁵of time, αT , is used for EH at R, while the remaining amount of time, $(1-\alpha)T$, ²⁵ ²⁶is used for transmitting and receiving the information, where α denotes the EH²⁶ ²⁷time fraction in one transmission block and $0 \leq \alpha \leq 1$. Therefore, the amount of ²⁷ ²⁸harvested energy at the relay for the case of linear model in the *i*th time slot is²⁸ ²⁹given by [24, 25] 29

$$_{31} \qquad E_h = \alpha T \eta P_{\rm S} |h_1|^2, \tag{3}_{31}$$

³²[3]The proposed analytical approach can be applied to the power spitting EH model ³³[23]

16

¹where η denotes the energy conversion efficiency whose value ranges from 0 to 1,¹ ²depending on the harvesting electric circuitry.²

³ Remark 1: In practice, the energy harvester will output a constant power because³ ⁴of the circuit design for EH-RF. The key of such a non-linear model is that it can⁴ ⁵capture the joint effect of the non-linear phenomena caused by hardware constraints⁵ ⁶including circuit sensitivity limitations and current leakage. The main cause of non-⁶ ⁷linear energy harvesting models can be mentioned by the relationship between the⁷ ⁸input RF power and the output direct current of energy harvester. The cause to⁸ ⁹make the nonlinear function can be explained by circuit devices such as diodes and⁹ ¹⁰transistors in the energy harvester structure. Denote $P_{\rm th}$ as the saturation power¹⁰ ¹¹threshold of harvester, thus the transmit power of the relay node in proposed model¹¹ ¹²of manuscript is given by

14
$$P_{\rm B} = \begin{cases} \frac{2\alpha\eta}{1-\alpha} P_{\rm S} |h_1|^2, \ P_{\rm S} |h_1|^2 \le P_{\rm th} \\ . \end{cases}$$
 14

15
$$\left| \frac{2\alpha\eta}{1-\alpha} P_{\rm th}, P_{\rm S} |h_1|^2 > P_{\rm th}. \right|$$
 15

13

¹⁷ We assume that all the amount of power harvested is consumed by the relay ¹⁸ for forwarding signals to all users D_i , the processing power for the transmitting/¹⁸ ¹⁹ receiving circuitry at the relay is generally negligible compared to the power used ²⁰ for signal transmission and perhaps venial. So, from (3), the transmission power of ²¹ the relay is given as ²²

$$P_{\rm R} = \frac{E_h}{(1-\alpha)T/2} = \frac{2\alpha\eta P_{\rm S}|h_1|^2}{(1-\alpha)}.$$
(4)²²

In a specific time slot, if R is selected, it transmits a modulation superimposition₂₅ ₂₆information symbol $x_{\rm R} = \sqrt{a_1 P_{\rm R}} x_1 + \sqrt{(1-a_1)P_{\rm R}} x_2$ stored in the buffer through₂₆ ₂₇multicast communication, where x_1 and x_2 denote the information symbols intended₂₇ ₂₈for D₁ and D₂, respectively. a_1 is the power allocation coefficient for D₁. At the end₂₈ ₂₉of a time slot, the received signal at the destinations is given by ₂₉

³² When $|g_1|^2 > |g_2|^2$, according to the NOMA principle, the relay allocates more ³³ power for D₂, in order to balance the fairness of the system performance. Due to

14

15

19

¹the broadcast nature of the wireless environment, we have the instantaneous signal-¹ ²to-interference-and-noise ratio (SINR) of the $R \rightarrow D_2$ link given by ³ ⁴ $\gamma_{D_2}^{x_2} = \frac{(1-a_1)P_R|g_2|^2}{a_1P_R|g_2|^2 + N_0},$ ⁵

where the information symbol x_1 is treated as the interference at D₂. At D₁, the goal ⁶/₆ is to decode information symbol x_1 of themselves. By applying the SIC principle^[4], ⁷/₇ D₁ can remove the detected information symbol x_2 from the set of received signals. ⁸ From (5), the instantaneous SNR and SINR of the R \rightarrow D₁ link is expressed as

$$\gamma_{D_{1}}^{x_{2} \to x_{1}} = \frac{(1-a_{1})P_{R}|g_{1}|^{2}}{a_{1}P_{R}|g_{1}|^{2} + N_{0}},$$
(7)

12

13
$$\gamma_{\rm D_1}^{x_1} = \frac{a_1 P_{\rm R} |g_1|^2}{N_0}.$$
 (8)13

14

¹⁵Outage probability without buffer-aided relay

 $_{16}$ In this section, we investigate the outage performance of the SWIPT NOMA down- $_{16}$ $_{17}$ link relaying in two cases, i.e., the overall outage probability and the outage prob- $_{17}$ $_{18}$ ability for each destination.

¹⁹ Overall outage probability

20 20 The overall outage probability (OOP) of the system is defined as the probability that 21 neither the source-to-relay link nor the relay-to-both destinations links is unavailable 22 for transmission to achieve the target predefined transmission rate. For simplicity, 23 23 we assume that the target transmission rates from the source to the relay and the 24 24 relay to the destinations are the same and equal to r_0 . Hence, the instantaneous 25 25 end-to-end capacity is $\frac{1-\alpha}{2}\log_2(1+\gamma_{e2e}) < r_0$, and the outage event happens, the 26 26 factor of $\frac{1-\alpha}{2}$ is due to the two consecutive time slots for communication between 27 27 the source and the destination. Outage probability is equivalent to the probability 28 28 that output SNR, γ_{e2e} , falls below a certain threshold, $\gamma_{th} = 2^{\frac{2r_0}{1-\alpha}} - 1$. 29 29

The following theorem provides the exact closed-form expression of the overall outage probability and the approximation of the outage probability of the SWIPT-NOMA downlink relaying system.

³²^[4]In this paper, we assume that the system is equipped with ideal successive inter-³³ference cancellation (SIC) technique [26]. ³³

14

26

¹**Theorem 1** The overall outage probability of the system when the relay $knows^{1}$

²both
$$g_1$$
 and g_2 is given by
³
⁴ OOP = $1 - \frac{1}{\Omega_1} \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \left(\frac{\Psi_{\min}}{\Omega_2}\right)^k$
³
⁴

$$\sum_{\substack{k=0\\ 7}}^{5} \times \left[\frac{(-1)^{k}}{(k-1)!} \left(\frac{1}{\Omega_{1}} \right)^{k-1} \operatorname{Ei}\left(\frac{-\gamma_{\mathrm{th}}}{\Omega_{1}P_{\mathrm{S}}} \right) + \frac{\exp\left(\frac{-\gamma_{\mathrm{th}}}{\Omega_{1}P_{\mathrm{S}}} \right)}{\left(\frac{\gamma_{\mathrm{th}}}{P_{\mathrm{S}}} \right)^{k-1}} \sum_{j=0}^{k-2} \frac{(-1)^{j} \left(\frac{\gamma_{\mathrm{th}}}{\Omega_{1}P_{\mathrm{S}}} \right)^{j}}{\prod_{\ell=0}^{j} (k-1-\ell)} \right], \quad (9)^{\ell}$$

8 where Ei(x) denotes the exponential integral function [27], $\phi = \frac{2\alpha\eta}{1-\alpha}$, $\Psi_{\min} =$ $\min_{10} \left\{ \frac{\gamma_{\rm th}}{a_1 \phi P_{\rm S}}, \frac{\gamma_{\rm th}}{\phi P_{\rm S}(1-a_1(1+\gamma_{\rm th}))} \right\}, \text{ and the condition } a_1 < \frac{1}{1+\gamma_{\rm th}} \text{ holds}.$ 10

¹² OOP
$$\approx 1 - \exp\left(-\frac{\gamma_{\rm th}}{\Omega_1 P_{\rm S}}\right) - \sqrt{\frac{4\Psi_{\rm min}}{\Omega_1 \Omega_2}} \mathcal{K}_1\left(\sqrt{\frac{4\Psi_{\rm min}}{\Omega_1 \Omega_2}}\right),$$
 (10)¹²
¹³

¹⁴where $\mathcal{K}_1(\cdot)$ is the first-order modified Bessel function of the second kind.

15 15 *Proof* Please refer to Appendix A. When the condition $a_1 < \frac{1}{1+\gamma_{\rm th}}$ holds, which 16 16 means the overall outage probability does not occur, we need to allocate more power 17 17 to D_2 . With assumption that SIC information symbol x_2 at the D_1 is perfect, if 18 18 the relay knows the channel responses g_1 and g_2 , it can adjust the power allocation 19 19 coefficient a_1 to balance the outage probability of the relay-to-destinations links. 20 20 It should be noted that if $|g_1|^2 > |g_2|^2$, we have 21 21

$$\frac{22}{a_1 P_{\rm R}|g_1|^2 + N_0} = \frac{(1 - a_1)P_{\rm R}|g_2|^2}{a_1 P_{\rm R}|g_2|^2 + N_0}.$$
(11)²²
23
(11)²²
23

This remark is very important for analyzing the outage probability expressions in_{24} 25^{the next part.} 25

²⁶Outage probability at the destination

²⁷In this section, we derive a closed-form expression of the outage probability at each ²⁸ destination. When one destination is in outage, the other can detect its correspond-²⁸ 29 ing information symbol. The system may switch to the conventional OMA system. ³⁰However, in this case, the system performance will be degraded because the total 31 31 power of the relay have been fixed division for D_1 and D_2 . 32 32

Theorem 2 provides closed-form expressions of outage probabilities at D_1 and D_2 , 33 33 respectively.

2 ^{2}and (13) below 3 3 $OP_{D_1} = 1 - \frac{1}{\Omega_1} \sum_{t=0}^{\infty} \frac{(-1)^t}{t!} \left(\frac{\mathcal{Q}_{\max}}{\Omega_2}\right)^t$ 4 4 5 $\times \left| \frac{(-1)^t}{(t-1)!} \left(\frac{1}{\Omega_1} \right)^{t-1} \operatorname{Ei} \left(\frac{-\xi_1}{\Omega_1 P_{\mathrm{S}}} \right) + \frac{\exp \left(\frac{-\xi_1}{\Omega_1 P_{\mathrm{S}}} \right)^{t-2}}{\left(\frac{\xi_1}{P_{\mathrm{S}}} \right)^{t-1}} \sum_{k=0}^{t-2} \frac{(-1)^k \left(\frac{1}{\Omega_1} \right)^k \left(\frac{\xi_1}{P_{\mathrm{S}}} \right)^k}{\prod_{k=0}^{k} (t-1-\ell)} \right|, \ 6$ 6 7 8 $(12)^{8}$ 9 9 10 10 $OP_{D_2} = 1 - \frac{1}{\Omega_1} \sum_{m=0}^{\infty} \frac{(-1)^m}{m!} \left(\frac{b}{\Omega_2}\right)^m$ 11 11 12 $= \left| \frac{(-1)^m}{(m-1)!} \left(\frac{1}{\Omega_1} \right)^{m-1} \operatorname{Ei} \left(\frac{-\xi_2}{\Omega_1 P_{\mathrm{S}}} \right) + \frac{\exp\left(\frac{-\xi_2}{\Omega_1 P_{\mathrm{S}}} \right)}{\left(\frac{\xi_2}{P_{\mathrm{S}}} \right)^{m-1}} \sum_{q=0}^{m-2} \frac{(-1)^q \left(\frac{1}{\Omega_1} \right)^q \left(\frac{\xi_2}{P_{\mathrm{S}}} \right)^q}{\prod (m-1-v)} \right|^{12} \right|^{12}$ 13 14 15 $(13)_{15}$ 16 Where $Q_{\max} = \max\left\{\frac{\xi_1}{a_1\phi P_{\rm S}}, \frac{\xi_1}{\phi P_{\rm S}(1-a_1(1+\xi_1))}\right\}, \ b = \frac{\xi_2}{\phi P_{\rm S}(1-a_1(1+\xi_2))}, \ \xi_1 = 2^{\frac{2r_1}{1-\alpha}} - 1, \frac{\epsilon_2}{1-\alpha}$ $\xi_2 = 2^{\frac{2r_2}{1-\alpha}} - 1$, and the condition $a_1 \leq \frac{1}{1+\xi_i}$, $i \in \{1,2\}$ holds. r_1 and r_2 are the target transmission rates at D_1 and D_2 , respectively. 19 19 20 *Proof* To obtain the outage probability expression of D₁ and D₂, we first analyze 21 the instantaneous SINR and SNR of D_1 and D_2 . It should be noted that in order 22 22 to prove this theorem we assume that $|g_1|^2 > |g_2|^2$. Please refer to Appendix B. 23 23 24 ²⁴Optimal power allocation to minimize the outage probability ²⁵In this section, we study the power allocation problem to minimize the outage²⁵ 26 ²⁶probability of the EH-NOMA system. 27 27 ²⁸**Theorem 3** The optimal power allocation coefficient a_1^* to minimize the outage₂₈ 29 probability in the EH-NOMA system is given by 29 30 30 $a_1^* = \frac{1}{2 + \gamma_{\text{th}}}.$ (14)31 32 *Proof* To obtain the minimum OOP and minimum OP_{D1} in (9) and (12) we formu-32 33 late the outage probability minimization problems P1 and P2 as follows:

¹**Theorem 2** The outage probability at D_1 and D_2 are given respectively in $(12)^1$

33

7

8

9

⁴ s.t.
$$0 \le a_1 \le 1$$
, (15)⁴
5 1 5

$$a_1 < \frac{1}{1 + \gamma_{\text{th}}}.$$
(16)

7and

9

$$P_2: \min_{a_1} OP_{D_1},$$

10 s.t.
$$0 \le a_1 \le 1$$
, (17)¹⁰

$$\begin{array}{ccc}
^{11} & a_1 < \frac{1}{1+\xi_1}. \\
^{12} & & 12
\end{array}$$

¹³ The condition $a_1 < \frac{1}{1+\gamma_{\rm th}}$ indicates that the outage event does not occur,¹³ ¹⁴i.e., the outage probability is less than one. The problems P1 and P2 are¹⁴ ¹⁵equivalent to maximizing $\Psi_{\rm min} = \min\left\{\frac{\gamma_{\rm th}}{a_1\phi P_{\rm S}}, \frac{\gamma_{\rm th}}{\phi P_{\rm S}(1-a_1(1+\gamma_{\rm th}))}\right\}$ and $\mathcal{Q}_{\rm max} = {}_{15}$ ¹⁶max $\left\{\frac{\xi_1}{a_1\phi P_{\rm S}}, \frac{\xi_1}{\phi P_{\rm S}(1-a_1(1+\xi_1))}\right\}$. In addition, we assume that $\gamma_{\rm th} = \xi_1$, which means¹⁶ ¹⁷that the data rate of D₁ is equal to the system data rate.

¹⁸
₁₉ P1 : max
$$\left\{ \min\left(\frac{1}{a_1}, \frac{1}{1 - a_1(1 + \gamma_{\text{th}})}\right) \right\}$$
, ¹⁸
₁₉

20 s.t.
$$0 \le a_1 \le 1$$
, (19)20

²¹
$$a_1 < \frac{1}{1 + \gamma_{\rm th}}.$$
 (20)²¹

²³
₂₄ P2: max
$$\left\{ \max\left(\frac{1}{a_1}, \frac{1}{1 - a_1(1 + \gamma_{\text{th}})}\right) \right\},$$
²³
₂₄

²⁵ s.t.
$$0 \le a_1 \le 1$$
, (21)²⁵

$$a_1 < \frac{1}{1 + \gamma_{\rm th}}.$$
(22)²⁶
(22)²⁷
(22)²⁶

28We consider two cases of the objective functions P1 and P2 under the following28 29conditions: 29

³¹
₃₂
$$a_1^* = \left(\frac{1}{a_1} \le \frac{1}{1 - a_1(1 + \gamma_{\text{th}})}\right) \cup \left(\frac{1}{a_1} \ge \frac{1}{1 - a_1(1 + \gamma_{\text{th}})}\right).$$
 (23)³¹
₃₂

 33 These problems can be solved similarly as those in [28, 4.1].

33

22

6

¹ After some mathematical manipulations, we obtain the optimal power allocation¹ ²coefficient a_1^* as shown in Theorem (3). It should be noticed that the power allo-² ³cation for D₁ is considered, subject to the condition that the outage probability of³ ⁴D₂ certaintly occurs^[5].

⁶Analysis of the outage probability with buffer-aided relay

⁷In this section, we investigate the outage probability of the system where the buffer⁷ ⁸aid is employed at the relay node. For convenience, we assume that the source node⁸ ⁹always has data to transmit. We also consider the number of transmitted symbols⁹ ¹⁰as the number of transmitted packets. The relay chooses a node to transmit (source¹⁰ ¹¹or relay) in a given time slot. To perform this, the information of the outage states¹¹ ¹²of the links $S \to R$ and $R \to D$ is required. Therefore, the system uses one bit for¹² ¹³the feedback information from the destination to the relay. This information helps¹³ 14 R known if the link R \rightarrow D is in outage or not. One bit which feedbacks from the 14 ¹⁵relay to source is used to control the source in the transmit or silent mode. The¹⁵ ¹⁶ source transmits the packets to the relay. Then, the relay decodes the packets and ¹⁶ ¹⁷stores the decoded packets in its buffer. After that, the relay transmits the packets¹⁷ ¹⁸to the destination node. If the source is selected to transmit but the link $S \rightarrow R$ is¹⁸ ¹⁹in outage, the source remains silent and the outage occurs. Similarly, if the relay¹⁹ ²⁰ is selected to transmit but the link $R \rightarrow D$ is in outage, the relay remains silent²⁰ ²¹and the outage occurs. Therefore, the system performance will be improved with²¹ ²²the help of a buffer-aided relay. Unlike the case of without a buffer-aided relay,²² 23 in this case the outage event is defined as the probability that the relay does not 23 ²⁴receive and transmit. In other words, the relay remains silent. To describe the state²⁴ ²⁵transition of the buffer-aided relay, we denote the outage events of $S \rightarrow R$ link and ²⁵ $^{26}\text{R} \rightarrow \text{D}$ link by \mathcal{O}_{SR} and \mathcal{O}_{RD} , respectively. When the links are not in outage, the 26 ²⁷probabilities are: $1 - \mathcal{O}_{SR} = \bar{\mathcal{O}}_{SR}$ and $1 - \mathcal{O}_{RD} = \bar{\mathcal{O}}_{RD}$, respectively. In addition,²⁷ ²⁸the relay decision scheme is described as in Table 2. In Table 2, 'SR' denotes the²⁸ ²⁹link from the source to the relay nodes, "RD" refers to the link from the relay to²⁹ ³⁰the destination nodes; 'l' and 'L' respectively represents the packets stored in the³⁰

³¹ $\overline{{}^{[5]}}$ Moreover, if the relay knows the channel gains g_1 and g_2 and the total power factor ³² $a_1 + a_2$ is equal to one, we can allocate power for D₁ and D₂ by adapting to channel ³³gains, i.e. $a_1 = |g_2|^2/(|g_1|^2 + |g_2|^2)$, to ensure the fairness of the outage performance. ³³ $a_1 + a_2 = |g_2|^2/(|g_1|^2 + |g_2|^2)$

Case	\mathbf{SR}	RD	l	Relay	The outage
A	0	0		Silent	$\mathcal{O}_{\mathrm{SR}}\mathcal{O}_{\mathrm{RD}}$
В	0		l = 0	Silent	$\mathcal{O}_{\mathrm{SR}}$
С		0	l = L	Silent	$\mathcal{O}_{\mathrm{RD}}$
D	1	0	l < L	Receive	$\bar{\mathcal{O}}_{\mathrm{SR}}\mathcal{O}_{\mathrm{RD}}$
E	0	1	l > 0	Transmit	$\mathcal{O}_{\mathrm{SR}} ar{\mathcal{O}}_{\mathrm{RD}}$
F	1	1	$l \geqslant 2$	Transmit	$\bar{\mathcal{O}}_{\mathrm{SR}} \bar{\mathcal{O}}_{\mathrm{RD}}$
G	1	1	$l\leqslant 1$	Receive	$\bar{\mathcal{O}}_{\mathrm{SR}} \bar{\mathcal{O}}_{\mathrm{RD}}$

Table 2 The Relay Decision Scheme

¹⁰buffer and the buffer size at the relay node. 'Relay' denotes the decision of the relay¹⁰ ¹¹node (silent, receive or transmit), ' \mathcal{OP} ' is the outage probability of the considered¹¹ ¹²system. It is noted that in Table 2, the outage and non-outage links are indicated¹² ¹³by '0' and '1', respectively. ¹³

To calculate the \mathcal{OP} of the system, from the Table 2, we build the Markov chain.¹⁴ ¹⁵We start at the initial state l = 0 (i.e. when the buffer is empty). If the link SR¹⁵ ¹⁶ is in outage which means the source does not transmit, then, the buffer will be empty. In other words, the buffer state moves from l = 0 to l = 0 with probability¹⁷ 17 18 of $\mathcal{O}_{\rm SR}$ (Case B in Table 2). When the link SR is not in outage, we consider two cases. The first case is when the link RD is in outage (Case D). Consequently, the relay receives the signal, making the buffer state moves from l = 0 to l = 1 with 21 probability of $(1 - \mathcal{O}_{SR})\mathcal{O}_{RD}$. The second case is when the link RD is not in outage (Case G). The relay receives the signal, making the buffer state moves from $l = 0^{22}$ ²³ to l = 1 with probability of $(1 - \mathcal{O}_{SR})(1 - \mathcal{O}_{RD})$. Combining these two cases, the ²⁴ buffer state moves from l = 0 to l = 1 with probability of $1 - \mathcal{O}_{SR}$. Similarly, we can obtain the probability of moving to the next state. From here, we have the ²⁶Markov chain showing the state transitions as depicted in Fig. 2. When the buffer is empty (l = 0), it stays empty with probability of \mathcal{O}_{SR} (case B) and receives a packet with probability of $1 - \mathcal{O}_{SR}$ (case D, G). When the buffer has one packet 29 $\mathcal{O}(l=1)$, it stays in the current state with probability of $\mathcal{O}_{\mathrm{SR}}\mathcal{O}_{\mathrm{RD}}$ if the relay does not receive and transmit (case A). If the relay receives one packet, it moves to the 30 new state (l = 2) with probability of $1 - \mathcal{O}_{SR}$ (case D, G) and is back to the initial³¹ state (l = 0) with probability of $\mathcal{O}_{SR}(1 - \mathcal{O}_{RD})$ (case E). When the buffer has l^{32} packets $(2 \leq l \leq L-1)$, it stays in this state with probability of $\mathcal{O}_{SR}\mathcal{O}_{RD}$ (case A),

9 10 7

¹receives one packet with probability of $(1 - \mathcal{O}_{SR})\mathcal{O}_{RD}$ (case D), and transmits one¹ ²packet with probability of $1 - \mathcal{O}_{RD}$ (case E, F). If the buffer is full, which means² ³that it has *L* packets, it remains the same state with probability of \mathcal{O}_{RD} (case C)³ ⁴and transmits one packet with probability of $1 - \mathcal{O}_{RD}$ (case E, F). ⁵ From Table 2 and the presented Markov chain, the outage probability of the⁵

⁵ From Table 2 and the presented Markov chain, the outage probability of the ⁵ ⁶system is calculated as

8
$$\mathcal{OP} = \mathcal{O}_{SR} \Pr\{l = 0\} + \mathcal{O}_{RD} \Pr\{l = L\}$$
 8

+
$$\mathcal{O}_{\rm SR}\mathcal{O}_{\rm RD}(1 - \Pr\{l = 0\} - \Pr\{l = L\}),$$
 (24)⁹

11 where $\Pr\{l = 0\}$ and $\Pr\{l = L\}$ are the probabilities of the events that the buffer11 12 is empty and full, respectively. To derive the \mathcal{OP} of the system in (24), we define a12 13 state transition matrix \mathbf{A} with size of $(L+1) \times (L+1)$ of the Markov chain, where 13 14 \mathbf{A}_{ij} denotes the element of the *i*th row and *j*th column of the matrix \mathbf{A} . It should 14 15 be reminded that \mathbf{A}_{ij} refers to the probability of moving from state *i* at time *t* to 15 16 state *j* at time t + 1, i.e., 16

$$\mathbf{A}_{ij} = \Pr\{l_{t+1} = j | l_t = i\}.$$
(25)₁₈

For the case of
$$L = 5$$
, matrix **A** is expressed as follows

We should note that matrix **A** is not symmetric because the states are not sym_{26} $_{27}$ metric and the number of links to other states is not the same, leading to the_{27} $_{28}$ transition probabilities are not the same. Then, the stationary distribution π of the $_{29}$ Markov chain is expressed as

³⁰
$$\pi = (\mathbf{A} - \mathbf{I} + \mathbf{B})^{-1} \mathbf{b},$$
 (27)
³¹
31

³²where **I** is an identity matrix, **B** is an $(L + 1) \times (L + 1)$ matrix with all elements ³³equal to 1, and $\mathbf{b} = (\begin{array}{ccc} 1 & 1 & \dots & 1 \end{array})^T$.

17

21

24

25

26

31

¹**Theorem 4** With the buffer-aided relaying, the outage probability of the system¹ 2 $^{2}becomes$

³
₄
$$\mathcal{OP} = \sum_{i=1}^{L+1} \pi_i \mathbf{A}_{ii}.$$
 (28)₄

5 5 To determine the state transit matrix \mathbf{A} , we need to derive \mathcal{O}_{SR} and \mathcal{O}_{RD} . We 6 assume that the minimum data transmission rate from $S \rightarrow R$ is r_0 , then the outage probability of $S \to R$ link is defined as follows 8

⁹
$$\mathcal{O}_{\mathrm{SR}} = \Pr\left(\frac{1-\alpha}{2}\log_2(1+\gamma_{\mathrm{R}}) < r_0\right) = 1 - \exp\left(-\frac{\gamma_{\mathrm{th}}}{\Omega_{\mathrm{SR}}P_{\mathrm{S}}}\right).$$
 (29)⁹
¹⁰

¹¹ According to the SIC principle, if D_1 is able to remove x_2 from its received signal,¹¹ 12the outage probability of the link from the relay to the destinations nodes is given12 13by 13

14

¹⁴
₁₅
$$\mathcal{O}_{\rm RD} = \Pr\left(\frac{1-\alpha}{2}\log_2\left(1+\max\left\{\gamma_{\rm D_1}^{x_1},\gamma_{\rm D_2}^{x_2}\right\}\right) < r_0\right).$$
 (30)

¹⁷
¹⁸
$$\mathcal{O}_{\mathrm{RD}} = 1 - \sqrt{\frac{4\mathcal{A}}{\Omega_{\mathrm{SR}}}} K_1 \left(\sqrt{\frac{4\mathcal{A}}{\Omega_{\mathrm{SR}}}}\right) - \sqrt{\frac{4\mathcal{B}}{\Omega_{\mathrm{SR}}}} K_1 \left(\sqrt{\frac{4\mathcal{B}}{\Omega_{\mathrm{SR}}}}\right)$$
¹⁸

$$+\sqrt{\frac{4(\mathcal{A}+\mathcal{B})}{\Omega_{\rm SR}}}K_1\left(\sqrt{\frac{4(\mathcal{A}+\mathcal{B})}{\Omega_{\rm SR}}}\right),\qquad(31)_{20}$$

24

 $_{22} \text{where } \mathcal{A} = \frac{\gamma_{\text{th}}}{\Omega_{\text{RD}_1} a_1 \phi P_{\text{S}}} \text{ and } \mathcal{B} = \frac{\gamma_{\text{th}}}{\Omega_{\text{RD}_2} \phi P_{\text{S}}(1 - a_1(1 + \gamma_{\text{th}}))}.$ 22 For the detailed derivations of \mathcal{O}_{RD} , please refer to Appendix C. 23 23

Average packet delay of the buffer-aided relay system 25 In this section, the average packet delay of the system is considered. This delay 26

includes the average packet delay at the source and the relay. 27 27 The average packet delay at the source is determined as 28 28

²⁹
$$D_{\rm S} = \frac{1 + \mathcal{OP}}{1 - \mathcal{OP}}.$$
 (32)²⁹
30 30

$$\mathcal{D}_{R} = \frac{2}{1 - \mathcal{OP}} \sum_{i=2}^{L+1} \pi_{i}(i-1).$$
(33)

¹ Ther	refore, the average packet delay of the system is given by	1
2		2
3	$\mathcal{D} = \mathcal{D}_{\mathrm{S}} + \mathcal{D}_{\mathrm{R}}.$	(34) ³
4		4

⁵Results and Discussion

⁶In this section, detailed numerical results are provided to illustrate the impact of ⁷power allocation on the performance of SWIPT-NOMA system in terms of the OP⁷ ⁸and the EC. For comparison, we also provide the performance of the SWIPT-OMA⁸ ⁹system with the same parameters. Configurations and parameters of the system are⁹ ¹⁰explained as follows. D₁ is closer to the relay nodes than D₂. Hence, we need to¹⁰ ¹¹allocate more power to D₂ than D₁ to ensure the user fairness. The optimal power¹¹ ¹²allocation coefficient is derived in Theorem 3. The power allocation coefficient for D₁¹² ¹³is fixed at $a_1 = 0.3$ and that for D₂ is $1 - a_1$. The energy harvesting fraction $\alpha = 0.3^{13}$ ¹⁴and the energy conversion efficiency $\eta = 0.8$. The system data rate $r_1 = 1$ while¹⁴ ¹⁵ $r_2 = r_0 = 0.5[b/s/Hz]$. The obtained numerical results show that the optimal power¹⁵ ¹⁶allocation can increase the system performance and the NOMA scheme significantly¹⁶ ¹⁷improves the spectrum utilization.

Fig. 4 illustrates the overall outage probability in terms of the average SNR in $dB^{\rm 18}$ ¹⁹ for two cases, i.e., with and without buffer-aided data at the relay node. As observed ²⁰ from Fig. 4, the overall outage probability of the system (including the outage events 21 of both D_1 and D_2) in the case of optimal power allocation outperforms the case of 21 ²² fixed power allocation. From Fig 4, we can see that the benefit of the optimal power 23 allocation in terms of the overall OP compared with the fixed power allocation is ²⁴ not significant. This is because we have choose the fixed power allocation $a_1 = 0.3$,²⁴ which is the approximate of the optimal power allocation a_1^* (when $\alpha = 0.3$ and 25 25 r = 0.5 returns $a_1^* = 0.2709$). In order to achieve the fairness of the overall system performance, the transmitter needs to allocate power according to the channel gains ²⁸ of $R \to D_1$ and $R \to D_2$. Furthermore, the approximation results calculated from (10) are very close to the exact results obtained from (9), especially at high SNR²⁹ 29 regime. Therefore, we can use (10) to calculate the OOP of the system easily. We 30 can also see in Fig. 4 that the diversity order of the system with buffer aid is equal 31 32 to 2. Meanwhile, for the case of without buffer-aided relaying, the diversity order of the system is equal to 1. Hence, employing data buffer at the relay leads to the

¹reduction of OP, but it trades off with the packet delay. We can also see that the¹ 2 ²analytical results agree well with the simulation results.

³ Fig. 5 plots the overall OP and the OP of D_1 and D_2 , respectively. The optimal³ 4 power allocation coefficient as presented in Theorem 3 is used for both cases with 4 ⁵ and without buffer aided data at the relay node. We can see that the outage per-⁵ ⁶formance of D_1 is better than D_2 . This is because the distance from the relay to ⁶ $^{7}D_{2}$ is longer than that from the relay to D_{1} [29] $^{[6]}$ The overall OP is calculated 7 ⁸as the probability of the events that both D_1 and D_2 cannot decode their symbols⁸ ⁹successfully. The simulation and analytical results are in exellent match, validating⁹ ¹⁰the correctness of the closed-form expressions of (9), (12) and (13). From Fig. 5, we¹⁰ ¹¹can observe that the joint outage events of D_1 and D_2 are less than each individual¹¹ ¹²outage event of D_1 and D_2 . This is suitable in practice where the probability that ¹² ¹³both D_1 and D_2 are in outage is always less than the probability that D_1 or D_2 is¹³ ¹⁴in outage.

The OP_{D_1} and OP_{D_2} are shown in Fig. 6 and Fig. 7, respectively. The power¹⁵ 15 ¹⁶ allocation coefficient is fixed at $a_1 = 0.3$ when investigating the outage performance¹⁶ ¹⁷ of both OP_{D_1} and OP_{D_2} . Moreover, we also conduct the optimal power allocation¹⁷ ¹⁸ for the relay as described in the Theorem 3. Again, we can see that the analytical¹⁸ ¹⁹ results are in excellent agreement with the simulation results. From these figures¹⁹ 20 we can see that the NOMA system with the optimal power allocation has better 20 ²¹outage performance than the OMA system. In the case of fixed power allocation, the²¹ ²²outage performance of D_1 is better than the OMA system, but outage performance²² 23 of D₂ is worse than the OMA system. However, the NOMA system provides better 23 ²⁴ spectral efficiency because two users are served simultaneously. Different from Fig 4,²⁴ ²⁵the gap of the curves plotted in Fig 6 and Fig 7 is more significant for the two cases²⁵ ²⁶ with fixed and optimal power allocation. The reason is that the probability of the ²⁶ ²⁷ event that both D_1 and D_2 are in outage is less than the probability of each event²⁷ ²⁸that D_1 or D_2 is in outage. 28

Fig. 8 depicts the effect of the power allocation coefficient on the OP. It should 29 29 30 be noted that we only define the coefficient for D₂ while the coefficient for D₁ is 30

 $^{^{31}}_{\overline{[6]}}$ The signal power of far-field RF transmission is reduced according to the mu- 32 tual distance between receiver and transmitter, specifically, $_{20dB}$ per decade of the 32 ³³distance. 33

¹derived from the condition $a_2 = 1 - a_1$. As shown in Fig. 8, different data rates r_2^{-1} ²exhibit different minimum values of the OP. In this figure we can see that when the² ³rate transmission r_2 is reduced, the power allocation coefficient for D₂ decreases to³ ⁴get better system performance for the fairness of the outage performance of D₁ and⁴ ⁵D₂.

⁶ The system ergodic capacity is shown in Fig. 9. According to the NOMA theory, ⁷ the ergodic capacity of the system is the summation of the ergodic capacity of ⁸ all users. Let β and $(1 - \beta)$ [Hz] denote the bandwidth assigned for D₁ and the ⁹ remaining bandwidth assigned for D₂, where $(0 \le \beta \le 1)$. Using [30, eq. (7.4)], the ¹⁰ sum capacity of the OMA system is given by ¹¹

¹³
$$C_{OMA} = \frac{1-\alpha}{2}\beta \log_2\left(1 + \min\left\{\frac{P_{\rm S}|h_1|^2}{\beta}, \frac{P_{\rm R}|g_1|^2}{\beta}\right\}\right)$$
¹³

¹⁵
$$+ \frac{(1-\alpha)(1-\beta)}{2} \log_2 \left(1 + \min\left\{ \frac{P_{\rm S}|h_1|^2}{1-\beta}, \frac{P_{\rm R}|g_2|^2}{1-\beta} \right\} \right).$$
 (35)¹⁵

¹⁷ From Fig. 9, we can see that the ergodic capacity of the NOMA system is better¹⁷ ¹⁸than the OMA system. Additionally, the ergodic capacity of D₁ in our proposed¹⁸ ¹⁹system is better than that in the OMA system. However, the ergodic capacity of D₂¹⁹ ²⁰is not higher than OMA system due to the poor channel condition from the relay to²⁰ ²¹the D₂. Therefore, the advantage of the NOMA system is to improve the capacity²¹ ²²significantly. We also see that the analytical results are very close to the simulation²² ²³results because we use an approximation of the CDF of X_2 as given in (56). ²⁴

²⁵Conclusion

²⁶ In this paper, we proposed a NOMA cooperative relaying network with and with-²⁷ out data buffer-aided relay. In addition, the relay node harvests the energy from the²⁷ source using the time-switching mechanism. We focus on deriving the OP and er-²⁸ godic capacity of the system over Rayleigh fading channels. Moreover, we proposed²⁹ a power allocation scheme at the relay node which aims to reduce the feedback cost.³⁰ Numerical results of the OP and capacity showed that the proposed NOMA down-³¹ link relaying system significantly outperformed the OMA system. The data buffer³² aid employed at the relay helps improve the performance of the system. However,³³

18

27

28

¹the proposed system trades off with the permissible packet delay. All closed-form¹ 2 ²expressions derived in this paper were verified by the Monte-Carlo simulations.

3 The impact of fixed and optimal power allocation on the performance of EH-³ ⁴NOMA downlink relaying network was also investigated. In this model, all nodes⁴ ⁵ are equipped with a single antenna. However, it can be developed for multiple⁵ ⁶antenna systems. 6

7 Our proposed relaying network can achieve two goals: (i) the energy efficiency is ⁸ improved by the harvested energy from the ambient RF environment. This idea can ⁹be applied to sensor nodes in wireless body area networks for healthcare and other medical applications, (ii) the spectrum utilizing efficiency is superior to that of the 10 10 ¹¹OMA system. It is a promising application which can enhance the performance of $^{12}{\rm the}~5{\rm G}$ networks and the wireless sensor and healthcare networks. 12 13 13

¹⁴Appendix A

15 15 The goal of this appendix is to provide the overall OP of the SWIPT-NOMA system 16 16 over Rayleigh fading channels. 17 17 The overall OP of the system can be expressed as

 $(36)^{19}$ 19 $OOP = \underbrace{\Pr\left(\gamma_{R} \leq \gamma_{th}\right)}_{OP_{1}} + \underbrace{\Pr\left(\gamma_{R} > \gamma_{th}, \max\left(\gamma_{D_{1}}^{x_{1}}, \gamma_{D_{2}}^{x_{2}}, \gamma_{D_{1}}^{x_{2} \to x_{1}}\right) \leq \gamma_{th}\right)}_{OP_{2}}.$ 20 20

21 21 From (2), we obtain the closed-form expression of the first term of (36) as 22 22

$$OP_1 = \Pr\left(|h_1|^2 \le \frac{\gamma_{\rm th}}{P_{\rm S}}\right) = 1 - \exp\left(-\frac{\gamma_{\rm th}}{\Omega_1 P_{\rm S}}\right). \tag{37}$$

25 25 To obtain the closed-form expression of the second term of (36), we rewrite the 26 26 second term of (36) as follows 27

18

23

24

²⁹
$$OP_2 = Pr(\gamma_R > \gamma_{th}, \gamma_{D_1}^{x_1} \le \gamma_{th}, \gamma_{D_1}^{x_2 \to x_1} < \gamma_{th}, \gamma_{D_2}^{x_2} < \gamma_{th}).$$
 (38)

30 30 30 31 There (28) and the condition in (11) is
$$x^{x_2 \to x_1} > x^{x_2}$$
 we have 31

From (58) and the condition in (11), i.e.
$$\gamma_{D_1} = \gamma_{D_2}$$
, we have
32

³³
$$OP_2 = Pr\left(\gamma_R > \gamma_{th}, \gamma_{D_1}^{x_1} \le \gamma_{th}, \gamma_{D_1}^{x_2 \to x_1} < \gamma_{th}\right).$$
 (39)³³

¹ By substituting (2), (7), and (8) into (39) and denoting $|h_1|^2 = X$, $|g_1|^2 = Y$ and ¹ 2 ${}^{2}|g_{2}|^{2} = Z$, we obtain: 3 3

4
$$OP_2 = Pr\left(X > \frac{\gamma_{\rm th}}{P_S}, XY \le \frac{\gamma_{\rm th}}{a_1\phi P_S}, XY < \frac{\gamma_{\rm th}}{\phi P_S(a_2 - a_1\gamma_{\rm th})}\right).$$
 (40)4
5

⁶ As can be seen from (40), the outage always occurs if $a_1 \ge \frac{1}{1+\gamma_{\text{th}}}$. Thus, allocating₆ ₇more power to the D₂ is required so that $1 - a_1(1 + \gamma_{\rm th}) > 0$ always holds. The₇ $_{\rm 8}$ condition $a_1 < \frac{1}{1+\gamma_{\rm th}}$ is used throughout this paper. For simplicity, we can rewrite $_{\rm 8}$ $_{9}(40)$ as 9

$$OP_{2} = \Pr\left(X > \frac{\gamma_{\text{th}}}{X}, XY < \Psi_{\text{min}}\right). \tag{41}$$

$$OP_2 = \Pr\left(X > \frac{\gamma_{\text{th}}}{P_{\text{S}}}, XY \le \Psi_{\min}\right), \qquad (41)_{11}$$

where
$$\Psi_{\min} = \min\left\{\frac{\gamma_{\text{th}}}{a_1\phi P_{\text{S}}}, \frac{\gamma_{\text{th}}}{\phi P_{\text{S}}(1-a_1(1+\gamma_{\text{th}}))}\right\}.$$
13

Based on the conditional probability [31] and the assumption that the channel $_{14}$ 14 $_{15}$ gains have exponential distributions, we have 15

¹⁶
$$OP_2 = \int_{\frac{\gamma_{\text{th}}}{P_{\text{S}}}}^{\infty} F_Y\left(\frac{\Psi_{\text{min}}}{x}\right) f_X(x) dx = \int_{\frac{\gamma_{\text{th}}}{P_{\text{S}}}}^{\infty} \left[1 - \exp\left(\frac{\Psi_{\text{min}}}{\Omega_2 x}\right)\right] f_X(x) dx, \quad (42)_{17}^{16}$$

18 18 where $F_Y(y) = 1 - \exp\left(-\frac{y}{\Omega_2}\right)$ and $f_X(x) = \frac{1}{\Omega_1} \exp\left(-\frac{x}{\Omega_1}\right)$ are the CDF of X and 19 the PDF of Y, respectively. 20

Substituting PDF of X into (42) yields 21 21

22

24 25

$$OP_{2} = \exp\left(-\frac{\gamma_{\rm th}}{\Omega_{1}P_{\rm S}}\right) - \frac{1}{\Omega_{1}} \int_{\frac{\gamma_{\rm th}}{P_{\rm S}}}^{\infty} \exp\left(-\frac{\Psi_{\rm min}}{\Omega_{2}x} - \frac{x}{\Omega_{1}}\right) dx. \tag{43}^{23}_{24}$$

²⁶ By using the Taylor series expansions of the exponential function and after some₂₆ 27 manipulations on (43) using [27, 3.351.4], we obtain the second term of (36) as 27 28 given in (44) below. 28

$$OP_2 = \exp\left(-\frac{\gamma_{\rm th}}{\Omega_1 P_{\rm S}}\right) - \frac{1}{\Omega_1} \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \left(\frac{\Psi_{\rm min}}{\Omega_2}\right)^k$$

$$30$$

$$\begin{bmatrix} 31 \\ (-1)^{k} \\ (1)^{k-1} \end{bmatrix} \begin{bmatrix} -\gamma_{\text{th}} \\ (-\gamma_{\text{th}}) \end{bmatrix} \exp\left(\frac{-\gamma_{\text{th}}}{\Omega_{1}P_{\text{S}}}\right) \sum_{n=1}^{k-2} (-1)^{j} \left(\frac{\gamma_{\text{th}}}{\Omega_{x}P_{\text{S}}}\right)^{j} \end{bmatrix}$$

$$\begin{bmatrix} 31 \\ (44)32 \\ (44)32 \end{bmatrix}$$

$$\frac{\overline{(k-1)!}}{(k-1)!} \left(\frac{\overline{\Omega_1}}{\Omega_1}\right) = E_1 \left(\frac{\overline{\Omega_1}P_S}{\Omega_1P_S}\right) + \frac{\overline{(\gamma_{th}})^{k-1}}{\left(\frac{\gamma_{th}}{P_S}\right)^{k-1}} \sum_{j=0}^{j} \frac{1}{\prod_{\ell=0}^{j} (k-1-\ell)}$$

$$33$$

12

24

29

32

¹ We obtain the OP expression of the system by combining (37) and (44). When¹ ²the transmission power is high, we have $\gamma_{\rm th} \ll P_{\rm S}$. Then, (43) can be approximated² ³as ³

⁶
$$OP_2 = 1 - \frac{1}{\Omega_1} \int_0^\infty \exp\left(-\frac{\Psi_{\min}}{\Omega_2 x} - \frac{x}{\Omega_1}\right) dx.$$
 (45)⁶

⁸ From (45), by using [27, 3.324.1], i.e. $\int_0^\infty e^{\frac{-\beta}{4x} - \gamma x} = \sqrt{\frac{\beta}{\gamma}} K_1(\sqrt{\beta\gamma})$, and after⁸ ⁹some mathematical manipulations, we have the approximation of (10) at high SNR⁹ ¹⁰regime. The proof of Theorem 1 is completed.

¹²Appendix B

5

¹³Due to the imperfect detection at the relay node, it may forward wrong decoded¹³ ¹⁴signals to D₁ and D₂ and cannot apply SIC technique on symbol x_2 at the D₁. Hence¹⁴ ¹⁵similar to [32], for any modulation scheme, the dual-hop of the links $S \to R \to D_1$ ¹⁵ ¹⁶or $S \to R \to D_2$ can be modeled as an equivalent one-hop channel whose output¹⁶ ¹⁷SINR $\mathcal{X}_i, i \in \{1, 2\}$ at high SNR regime can be tightly approximated.

¹⁸ Let denote
$$\mathcal{X}_1$$
 and \mathcal{X}_2 the SINRs obtained at D_1 and D_2 , respectively [5].
¹⁹ 19

²⁰
$$\mathcal{X}_1 = \min\left(\gamma_{\mathrm{R}}, \gamma_{\mathrm{D}_1}^{x_1}, \gamma_{\mathrm{D}_1}^{x_2 \to x_1}\right),$$
 (46)²⁰

$$\mathcal{X}_{23} \qquad \mathcal{X}_{2} = \min\left(\gamma_{\mathrm{R}}, \gamma_{\mathrm{D}_{2}}^{x_{2}}\right). \tag{47}_{23}$$

To find the OP of D_1 , from (46), we have the OP expression of D_1 as 25

OP_{D1} = 1 - Pr
$$\left(\gamma_{\rm R} > \xi_1, \gamma_{D_1}^{x_1} > \xi_1, \gamma_{D_1}^{x_2 \to x_1} > \xi_1\right)$$

(ξ_1) 27

$$= 1 - \Pr\left(X > \frac{\xi_1}{P_{\rm S}}, XY \ge \mathcal{Q}_{\rm max}\right),\tag{48}_{28}$$

32

where
$$Q_{\max} = \max\left\{\frac{\xi_1}{a_1\phi P_S}, \frac{\xi_1}{\phi P_S(1-a_1(1+\xi_1))}\right\}.$$
 30

 $_{31}$ By using the conditional probability [31], we can rewrite (48) as $_{31}$

$$\int_{\infty}^{\infty} \left[\left(O \right) \right]$$

$$OP_{D_1} = 1 - \int_{\frac{\xi_1}{P_S}} \left[1 - F_Y\left(\frac{\mathfrak{L}_{\max}}{x}\right) \right] f_X(x) dx.$$

$$(49)_{33}$$

3

4

5 6

16

18

22

1 Since the CDF and PDF of X and Y are exponential distribution functions, we¹ $^{2}\mathrm{have}$ 3 $OP_{D_1} = 1 - \frac{1}{\Omega_x} \int_{\frac{\xi_1}{P_0}}^{\infty} \exp\left(-\frac{\mathcal{Q}_{\max}}{\Omega_2 x}\right) \exp\left(-\frac{x}{\Omega_1}\right) dx.$ 4 (50)5

7 By using the Taylor series expansions of the exponential function and after some₇ $_{8}$ manipulations on (50) using [27, 3.351.4], we have the expression of the OP of D_{18} $_{9}$ as presented in (12). 9

¹⁰ Next, we calculate the OP expression at D_2 . With the given SINR at the D_2 and ¹⁰ ¹¹the notation $\mathcal{X}_2 = \min(\gamma_{\mathrm{R}}, \gamma_{D_2}^{x_2})$, we have 11

OP_{D₂} = Pr (min(
$$\gamma_{\rm R}, \gamma_{\rm D_2}^{x_2}$$
) $\leq \xi_2$) = 1 - Pr ($\gamma_{\rm R} > \xi_2, \gamma_{\rm D_2}^{x_2} > \xi_2$). (51)

18

6

¹⁹
$$OP_{D_2} = 1 - Pr\left(\frac{P_S|h_1|^2}{N_0} > \xi_2, \frac{a_2P_R|g_2|^2}{a_1P_R|g_2|^2 + N_0} > \xi_2\right)$$
¹⁹

$$= 1 - \Pr\left(X > \frac{\xi_2}{P_{\rm S}}, XZ > \frac{\xi_2}{\phi P_{\rm S}(a_2 - a_1\xi_2)}\right)$$
(52)

²³ Then, by applying similar calculations in Appendix A we can obtain the OP of²³ $^{\rm 24}{\rm D}_2$ as 24

²⁶
$$OP_{D_2} = 1 - \int_{\frac{\xi_2}{P_S}}^{\infty} \left[1 - F_Z \left(\frac{\xi_2}{x \phi P_S \left(a_2 - a_1 \xi_2 \right)} \right) \right] f_X \left(x \right) dx$$
 ²⁶
²⁷ 27

$$= 1 - \frac{1}{\Omega_1} \int_{\frac{\xi_2}{P_S}}^{\infty} \exp\left(-\frac{b}{x\Omega_2}\right) \exp\left(-\frac{x}{\Omega_2}\right) dx.$$
(53)₂₈
29 29

³⁰By using the Taylor series expansions of the exponential function $\exp\left(-\frac{b}{x\Omega_2}\right) =$ $^{31}\sum_{t=0}^{\infty} \frac{(-1)^t}{t!} \left(\frac{b}{x\Omega_2}\right)^t$, after some manipulations of (53) using [27, 3.351.4], we obtain 31 ³² the closed-form expression of the OP of D_2 as given in (13). The proof of Theorem 32 $^{33}2$ is completed. 33

¹ Appendix C	1
² From (6) and (8), the expression of $\mathcal{O}_{\rm RD}$ is expressed as	2
3	3
$_{4} \qquad \mathcal{O}_{ ext{RD}} = \Pr\left(\max\left(\gamma_{ ext{D1}}^{x_{1}}, \gamma_{ ext{D2}}^{x_{2}} ight) < \gamma_{ ext{th}} ight)$	4
⁵ = Pr $\left(\frac{a_1 P_{\rm R} g_1 ^2}{N_0} < \gamma_{\rm th}, \frac{(1-a_1)P_{\rm R} g_2 ^2}{a_1 P_{\rm R} g_2 ^2 + 1} < \gamma_{\rm th}\right)$	5
$\begin{pmatrix} \gamma_{th} & \gamma_{th} \\ \gamma_{th} & \gamma_{th} \end{pmatrix}$	6
$= \Pr\left(XY < \frac{1}{a_1\phi P_{\rm S}}, XZ < \frac{1}{\phi P_{\rm S}(1 - a_1(1 + \gamma_{\rm th}))}\right).$	$(54)_{7}$
⁸ Based on the definition of the conditional probability, we have	8
9	9
10	10
¹¹ $\mathcal{O}_{\mathrm{RD}} = \int_0^\infty \Pr\left(Y < \frac{\mathcal{A}}{x}, Z < \frac{\mathcal{B}}{x}\right) f_X(x) dx$	11
$= \int_{0}^{12} \int_{0}^{\infty} \int_{0}^{\frac{B}{x}} \Pr\left(Y < \frac{A}{x}\right) f_{Z}(z) f_{X}(x) dx dz$	12 13
14 $= \int_0^\infty \left[1 - e^{\left(-\frac{A}{x}\right)} - e^{\left(-\frac{B}{x}\right)} + e^{\left(-\frac{A}{x} - \frac{B}{x}\right)}\right] f_X(x) dx,$	$(55)^{14}$
15	15
₁₆ where $\mathcal{A} = \frac{\gamma_{\text{th}}}{a_1 \phi P_{\text{S}}}, \ \mathcal{B} = \frac{\gamma_{\text{th}}}{\phi P_{\text{S}}(1-a_1(1+\gamma_{\text{th}}))}$. After some manipulations, we get	$(31),_{16}$
$_{17}$ completing the proof of Theorem 4.	17
¹⁸ Appendix D	18
¹⁹ This appendix aims to provide the CDF of the instantaneous SNB of the information	19 ation
symbol x_1 . The instantaneous end-to-end SNR of symbol x_1 is $X_1 = \min(\gamma^R, \gamma^R)$	$\gamma_{x_1}^{\mathrm{D}_1}$).
Thus, the CDF of X_1 is given by 22	21

²³
$$F_{X_1}(\xi_1) = \Pr\left(\min\left(\gamma^{\mathrm{R}}, \gamma_{x_1}^{\mathrm{D}_1}\right) \le \xi_1\right)$$
²³

$$= 1 - \Pr\left(P_S|h_1|^2 > \xi_1, \, a_1 \phi P_S|h_1|^2 |g_1|^2 > \xi_1\right)$$

$$26 = 1 - \frac{1}{\Omega_1} \int_{\frac{\xi_1}{P_S}}^{\infty} \exp\left(-\frac{\xi_1}{\Omega_2 a_1 \phi P_S x} - \frac{x}{\Omega_1}\right) dx$$

$$26 = 27 \qquad 27$$

$$\approx 1 - \sqrt{\frac{4\xi_1}{\Omega_1 \Omega_2 a_1 \phi P_{\rm S}}} K_1 \left(\sqrt{\frac{4\xi_1}{\Omega_1 \Omega_2 a_1 \phi P_{\rm S}}} \right). \tag{56}^{28}$$

$^{31} {\rm Acknowledgements}$

Funding

There is no funding support for this paper.

¹ 4	Abbreviations		1
2	5G	Fifth Generation	2
Z	AWGN	Additive White Gaussian Noise	2
3	CDF	Cumulative Distribution Function	3
	CR-NOMA	Cognitive Radio Non-Orthogonal Multiple Access	
4	CSI	Channel State Information	4
5	DF	Decode-and-Forward	5
	EH	Energy Harvesting	
6	F-NOMA	Fixed-power-allocation Non-Orthogonal Multiple Access	6
7	loΤ	Internet of Things	7
	NOMA	Non-Orthogonal Multiple Access	
8	OMA	Orthogonal Multiple Access	8
9	OOP	Overall Outage Probability	9
	OP	Outage Probability	
10	PDF	Probability Density Function	10
11	PS	Power Splitting	11
	RF	Radio Frequency	
12	RV	Random Variable	12
10	SINR	Signal-to-Interference-and-Noise Ratio	10
13	SNR	Signal-to-Noise Ratio	15
14	SWIPT	Simultaneous Wireless Information and Power Transfer	14
	TDD	Time Division Duplex	
15	TS	Time Switching	15
16 4	Availability of o	lata and materials	16
A	All necessary da	ta and materials have been presented in this paper. There are no extra data and materials to share	•
17			17
F	thics approval	and consent to participate	11
17 E 18	Ethics approval	and consent to participate	18
17 E	Ethics approval	and consent to participate	18
18 18 19	Ethics approval Not applicable. Competing inte	and consent to participate rests	18 19
18 18 19 19	Ethics approval Not applicable. Competing inte	and consent to participate rests :lare that they have no competing interests.	18 19 20
18 18 19 20	Ethics approval Not applicable. Competing inte The authors dec Consent for pul	and consent to participate rests clare that they have no competing interests.	18 19 20
19 18 19 20 21	Ethics approval Not applicable. Competing inte The authors dec Consent for pul	and consent to participate rests clare that they have no competing interests. plication	18 19 20 21
19 18 19 20 21 22	Ethics approval Not applicable. Competing inte The authors dee Consent for pul Not applicable.	and consent to participate rests :lare that they have no competing interests. plication	19 19 20 21
19 18 19 20 21 22 22 22	Ethics approval Not applicable. Competing inte The authors dea Consent for pul Not applicable. Authors' contri	and consent to participate rests :lare that they have no competing interests. plication	18 19 20 21 22
¹ ¹⁸ ¹⁹ ²⁰ ²¹ ²² ₂₃	Ethics approval Not applicable. Competing inte The authors dec Consent for pul Not applicable. Authors' contri N.T.T. created	and consent to participate rests :lare that they have no competing interests. plication butions the main ideas and formulates the problem; T.M.H. executed performance evaluation by rigorous	18 19 20 21 22 23
190 190 20 21 22 23 23 23 23 23 23 23 23 23	Ethics approval Not applicable. Competing inter The authors dee Consent for pul Not applicable. Authors' contri N.T.T. created analysis and wre	and consent to participate rests clare that they have no competing interests. clication butions the main ideas and formulates the problem; T.M.H. executed performance evaluation by rigorous ote the original draft; B.C.N. wrote simulation programs; P.T.T. worked as an advisor of the projec	18 19 20 21 22 23 t
19(18p 19(20 (21 ^N 22 ^A 23 ^N 24 ^t	Ethics approval Not applicable. Competing inter The authors dee Consent for pul Not applicable. Authors' contri N.T.T. created unalysis and wre o discuss and a	and consent to participate rests :lare that they have no competing interests. plication butions the main ideas and formulates the problem; T.M.H. executed performance evaluation by rigorous ote the original draft; B.C.N. wrote simulation programs; P.T.T. worked as an advisor of the projec dvise the main ideas, provided recommendations on performance evaluation, and edited the final	18 19 20 21 22 23 t 24
19 18 19 20 20 21 N 22 23 23 24 t 25	Ethics approval Not applicable. Competing inter The authors dea Consent for pul Not applicable. Authors' contri N.T.T. created analysis and wre o discuss and a manuscript.	and consent to participate rests :lare that they have no competing interests. plication butions the main ideas and formulates the problem; T.M.H. executed performance evaluation by rigorous ote the original draft; B.C.N. wrote simulation programs; P.T.T. worked as an advisor of the projec dvise the main ideas, provided recommendations on performance evaluation, and edited the final	18 19 20 21 22 23 t 24 25
190 190 20 21 20 21 22 23 24 t 25 ^r	Ethics approval Not applicable. Competing inter The authors dec Consent for pul Not applicable. Authors' contri N.T.T. created inalysis and wro o discuss and a nanuscript.	and consent to participate rests clare that they have no competing interests. plication butions the main ideas and formulates the problem; T.M.H. executed performance evaluation by rigorous ote the original draft; B.C.N. wrote simulation programs; P.T.T. worked as an advisor of the projec dvise the main ideas, provided recommendations on performance evaluation, and edited the final mation	18 19 20 21 22 23 t 24 25
19 18 19 20 21 22 23 23 24 25 26 26 26 26 26 26 26 26 27 26 27 27 27 27 27 27 27 27 27 27	Ethics approval Not applicable. Competing inter The authors dee Consent for pul Not applicable. Authors' contri N.T.T. created in alysis and are o discuss and a nanuscript. Authors' inform V. N. Thang re	and consent to participate rests clare that they have no competing interests. plication butions the main ideas and formulates the problem; T.M.H. executed performance evaluation by rigorous ote the original draft; B.C.N. wrote simulation programs; P.T.T. worked as an advisor of the projec dvise the main ideas, provided recommendations on performance evaluation, and edited the final nation evived the B.S. degree in Le Quy Don Technical University, in 1991, the M.S. degree and the Ph.D	18 19 20 21 22 23 t 24 25 26
190 18p 190 20 21 22 23 23 24 25 25 25 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 27 20 20 20 20 20 20 20 20 20 20	Ethics approval Not applicable. Competing inter The authors dea Consent for pul Not applicable. Authors' contri N.T.T. created unalysis and wra o discuss and a nanuscript. Authors' inform N. N. Thang re legree in Le Qu	and consent to participate rests :lare that they have no competing interests. Dication butions the main ideas and formulates the problem; T.M.H. executed performance evaluation by rigorous ote the original draft; B.C.N. wrote simulation programs; P.T.T. worked as an advisor of the projec idvise the main ideas, provided recommendations on performance evaluation, and edited the final nation ceived the B.S. degree in Le Quy Don Technical University, in 1991, the M.S. degree and the Ph.D y Don Technical University, Hanoi, Vietnam, in 1997 and 2017, respectively. His major interests and	18 19 20 21 22 23 t 24 25 26 27
17 18 19 19 20 21 23 22 23 24 25 25 25 27 26 19 27 26 19 27 20 20 21 22 23 25 25 25 25 25 25 25 25 25 25	Ethics approval Not applicable. Competing inter The authors dea Consent for pul Not applicable. Authors' contri N.T.T. created analysis and wre o discuss and a manuscript. Authors' inform N. N. Thang re legree in Le Qu antenna, wireles	and consent to participate rests :lare that they have no competing interests. plication butions the main ideas and formulates the problem; T.M.H. executed performance evaluation by rigorous ote the original draft; B.C.N. wrote simulation programs; P.T.T. worked as an advisor of the projec dvise the main ideas, provided recommendations on performance evaluation, and edited the final retion retion ceived the B.S. degree in Le Quy Don Technical University, in 1991, the M.S. degree and the Ph.D y Don Technical University, Hanoi, Vietnam, in 1997 and 2017, respectively. His major interests are s communication and cooperative communication. E-mail: nguyennhuthang@tcu.edu.vn.	18 19 20 21 22 23 t 24 25 26 27
E 18p 190 20 21 22 23 22 24 25 26 27 28 28	Ethics approval Not applicable. Competing inter The authors dea Consent for pul Not applicable. Authors' contri N.T.T. created analysis and wre o discuss and a manuscript. Authors' inform J. N. Thang re legree in Le Qu untenna, wireles T. M. Hoang w	and consent to participate rests :lare that they have no competing interests. plication butions the main ideas and formulates the problem; T.M.H. executed performance evaluation by rigorous ote the original draft; B.C.N. wrote simulation programs; P.T.T. worked as an advisor of the projec dvise the main ideas, provided recommendations on performance evaluation, and edited the final nation ceived the B.S. degree in Le Quy Don Technical University, in 1991, the M.S. degree and the Ph.D y Don Technical University, Hanoi, Vietnam, in 1997 and 2017, respectively. His major interests are s communication and cooperative communication. E-mail: nguyennhuthang@tcu.edu.vn. as born in November 07, 1977. He received the B.S. degree in Communication Command at	18 19 20 21 22 23 t 24 25 26 27 28
190 190 20 21 22 23 24 190 20 21 22 23 24 190 23 24 25 27 27 27 29 29	Ethics approval Not applicable. Competing inter The authors dee Consent for pul Not applicable. Authors' contri N.T.T. created unalysis and wre o discuss and a manuscript. Authors' inform J. N. Thang re legree in Le Qu untenna, wireles T. M. Hoang w Felecommunica	and consent to participate rests elare that they have no competing interests. plication butions the main ideas and formulates the problem; T.M.H. executed performance evaluation by rigorous ote the original draft; B.C.N. wrote simulation programs; P.T.T. worked as an advisor of the project dvise the main ideas, provided recommendations on performance evaluation, and edited the final retion retived the B.S. degree in Le Quy Don Technical University, in 1991, the M.S. degree and the Ph.D y Don Technical University, Hanoi, Vietnam, in 1997 and 2017, respectively. His major interests are s communication and cooperative communication. E-mail: nguyennhuthang@tcu.edu.vn. as born in November 07, 1977. He received the B.S. degree in Communication Command at tions University, Ministry of Defense, Vietnam, in 2002, and the B.Eng. degree in Electrical	18 19 20 21 22 23 t 24 25 26 27 28 29
190 190 20 21 20 21 22 23 23 24 25 25 20 25 20 25 20 25 20 20 20 20 20 20 20 20 20 20	Ethics approval Not applicable. Competing inter The authors dea Consent for pul Not applicable. Authors' contri N.T.T. created Inalysis and wra o discuss and a nanuscript. Authors' inform N. N. Thang re legree in Le Qu untenna, wireles C. M. Hoang w Felecommunica Engineering froi	and consent to participate rests clare that they have no competing interests. clication butions the main ideas and formulates the problem; T.M.H. executed performance evaluation by rigorous ote the original draft; B.C.N. wrote simulation programs; P.T.T. worked as an advisor of the project dvise the main ideas, provided recommendations on performance evaluation, and edited the final retion tetived the B.S. degree in Le Quy Don Technical University, in 1991, the M.S. degree and the Ph.D y Don Technical University, Hanoi, Vietnam, in 1997 and 2017, respectively. His major interests are s communication and cooperative communication. E-mail: nguyennhuthang@tcu.edu.vn. as born in November 07, 1977. He received the B.S. degree in Communication Command at tions University, Ministry of Defense, Vietnam, in 2002, and the B.Eng. degree in Electrical m Le Quy Don Technical University, Ha Noi, Vietnam, in 2006. He obtained the M.Eng. degree in	18 19 20 21 22 23 t 24 25 26 27 28 29
190 190 20 20 21 22 23 22 23 22 23 22 23 23 25 27 25 27 20 23 23 25 25 25 20 25 20 20 20 20 20 20 20 20 20 20	Ethics approval Not applicable. Competing inter The authors dea Consent for pul Not applicable. Authors' contri N.T.T. created analysis and wra o discuss and a manuscript. Authors' inform N. N. Thang re- legree in Le Qu antenna, wireles T. M. Hoang w Felecommunica Engineering from Electronics Eng	and consent to participate rests clare that they have no competing interests. clication butions the main ideas and formulates the problem; T.M.H. executed performance evaluation by rigorous ote the original draft; B.C.N. wrote simulation programs; P.T.T. worked as an advisor of the project dvise the main ideas, provided recommendations on performance evaluation, and edited the final network the B.S. degree in Le Quy Don Technical University, in 1991, the M.S. degree and the Ph.D y Don Technical University, Hanoi, Vietnam, in 1997 and 2017, respectively. His major interests are as communication and cooperative communication. E-mail: nguyennhuthang@tcu.edu.vn. as born in November 07, 1977. He received the B.S. degree in Communication Command at tions University, Ministry of Defense, Vietnam, in 2002, and the B.Eng. degree in Electrical n Le Quy Don Technical University, Ha Noi, Vietnam, in 2006. He obtained the M.Eng. degree in neering from Posts and Telecommunications, Institute of Technology, (VNPT), Vietnam, in 2013.	18 19 20 21 22 23 t 24 25 26 27 28 29 30
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ethics approval Not applicable. Competing inter The authors dea Consent for pul Not applicable. Authors' contri N.T.T. created analysis and wre o discuss and a manuscript. Authors' inform J. N. Thang re legree in Le Qu antenna, wireles T. M. Hoang w Felecommunica Engineering froi Electronics Eng He is currently	and consent to participate rests :lare that they have no competing interests. Dication butions the main ideas and formulates the problem; T.M.H. executed performance evaluation by rigorous the the original draft; B.C.N. wrote simulation programs; P.T.T. worked as an advisor of the projec dvise the main ideas, provided recommendations on performance evaluation, and edited the final netion ceived the B.S. degree in Le Quy Don Technical University, in 1991, the M.S. degree and the Ph.D y Don Technical University, Hanoi, Vietnam, in 1997 and 2017, respectively. His major interests are s communication and cooperative communication. E-mail: nguyennhuthang@tcu.edu.vn. as born in November 07, 1977. He received the B.S. degree in Communication Command at tions University, Ministry of Defense, Vietnam, in 2002, and the B.Eng. degree in Electrical n Le Quy Don Technical University, Ha Noi, Vietnam, in 2006. He obtained the M.Eng. degree in neering from Posts and Telecommunications, Institute of Technology, (VNPT), Vietnam, in 2013. pursuing the Ph.D degree at Le Quy Don Technical University, Hanoi, Vietnam. His research	18 19 20 21 22 23 24 25 24 25 26 27 28 29 30 31
19 18 19 19 20 21 22 23 22 23 24 1 25 7 26 7 27 28 1 20 21 22 23 24 1 25 7 20 21 22 23 23 24 25 7 20 21 20 21 22 23 23 24 25 7 20 21 22 23 23 24 25 7 20 23 24 25 7 20 20 21 22 23 23 24 25 7 20 25 7 20 25 7 20 25 7 20 25 7 20 25 7 20 25 7 20 25 7 20 25 7 20 25 7 20 25 7 20 25 7 20 25 7 20 25 7 20 20 20 20 20 20 20 20 20 20	Ethics approval Not applicable. Competing inter The authors dea Consent for pull Not applicable. Authors' contri N.T.T. created analysis and wro o discuss and a nanuscript. Authors' inform N. N. Thang re legree in Le Qu antenna, wireles T. M. Hoang w Felecommunica Engineering from Electronics Eng He is currently interests include	and consent to participate rests :lare that they have no competing interests. Dication butions the main ideas and formulates the problem; T.M.H. executed performance evaluation by rigorous obte the original draft; B.C.N. wrote simulation programs; P.T.T. worked as an advisor of the project dvise the main ideas, provided recommendations on performance evaluation, and edited the final retion terived the B.S. degree in Le Quy Don Technical University, in 1991, the M.S. degree and the Ph.D y Don Technical University, Hanoi, Vietnam, in 1997 and 2017, respectively. His major interests are as communication and cooperative communication. E-mail: nguyennhuthang@tcu.edu.vn. as born in November 07, 1977. He received the B.S. degree in Communication Command at tions University, Ministry of Defense, Vietnam, in 2002, and the B.Eng. degree in Electrical n Le Quy Don Technical University, Ha Noi, Vietnam, in 2006. He obtained the M.Eng. degree in neering from Posts and Telecommunications, Institute of Technology, (VNPT), Vietnam, in 2013. pursuing the Ph.D degree at Le Quy Don Technical University, Hanoi, Vietnam His research e energy harvesting, Non-Orthogonal Multiple Access, and signal processing for wireless cooperative	18 19 20 21 22 23 t 24 25 26 27 28 29 30 31
1900 1800 1900 20 2100 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 20	Ethics approval Not applicable. Competing inter The authors dea Consent for pull Not applicable. Authors' contri N.T.T. created Inalysis and wra o discuss and a nanuscript. Authors' inform N. N. Thang re legree in Le Qu Intenna, wireles F. M. Hoang w Felecommunica Engineering from Electronics Eng He is currently interests include communications	and consent to participate rests clare that they have no competing interests. clare the original draft; B.C.N. wrote simulation programs; P.T.T. worked as an advisor of the project dvise the main ideas, provided recommendations on performance evaluation, and edited the final clare the main ideas, provided recommendations on performance evaluation, and edited the final clare the B.S. degree in Le Quy Don Technical University, in 1991, the M.S. degree and the Ph.D by Don Technical University, Hanoi, Vietnam, in 1997 and 2017, respectively. His major interests are as communication and cooperative communication. E-mail: nguyennhuthang@tcu.edu.vn. as born in November 07, 1977. He received the B.S. degree in Communication Command at tions University, Ministry of Defense, Vietnam, in 2002, and the B.Eng. degree in Electrical in Le Quy Don Technical University, Ha Noi, Vietnam, in 2002. He obtained the M.Eng. degree in neering from Posts and Telecommunications, Institute of Technology, (VNPT), Vietnam, in 2013. bursuing the Ph.D degree at Le Quy Don Technical University, Hanoi, Vietnam. His research energy harvesting, Non-Orthogonal Multiple Access, and signal processing for wireless cooperative. b. E-mail: tranmanhhoang@tcu.edu.vn.	18 19 20 21 22 23 t 24 25 26 27 28 29 30 31 32
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ethics approval Not applicable. Competing inter The authors dea Consent for pull Not applicable. Authors' contri N.T.T. created Inalysis and wre o discuss and a nanuscript. Authors' inform N. N. Thang re- legree in Le Qu Interna, wireles T. M. Hoang w Felecommunica Engineering from Electronics Eng He is currently Interests include communications 3. C. Nguyen w	and consent to participate rests clare that they have no competing interests. plication butions the main ideas and formulates the problem; T.M.H. executed performance evaluation by rigorous obte the original draft; B.C.N. wrote simulation programs; P.T.T. worked as an advisor of the projec dvise the main ideas, provided recommendations on performance evaluation, and edited the final exiton resived the B.S. degree in Le Quy Don Technical University, in 1991, the M.S. degree and the Ph.D y Don Technical University, Hanoi, Vietnam, in 1997 and 2017, respectively. His major interests and s communication and cooperative communication. E-mail: nguyennhuthang@tcu.edu.vn. as born in November 07, 1977. He received the B.S. degree in Communication Command at tions University, Ministry of Defense, Vietnam, in 2002, and the B.Eng. degree in Electrical n Le Quy Don Technical University, Ha Noi, Vietnam, in 2006. He obtained the M.Eng. degree in neering from Posts and Telecommunications, Institute of Technology, (VNPT), Vietnam, in 2013. pursuing the Ph.D degree at Le Quy Don Technical University, Hanoi, Vietnam. His research e energy harvesting, Non-Orthogonal Multiple Access, and signal processing for wireless cooperative to E-mail: tranmanhhoang@tcu.edu.vn.	18 19 20 21 22 23 t 24 25 26 27 28 29 30 31 32 33

1 the	Ph.D degree at Le Quy Don Technical University, Hanoi, Vietnam. His research interests include energy	1
2harv	resting, full-duplex, and cooperative communication. E-mail: bacao.sqtt@gmail.com.	2
Р. Т	. Tran was born at Ho Chi Minh City, Vietnam, in 1979. He received B.Eng. and M.Eng degrees in electrical	
³ engi	neering from Ho Chi Minh University of Technology, Ho Chi Minh City, Vietnam in 2002 and 2005, respectively.	3
4 ^{In 2} M.S	007, he became a Vietnam Education Foundation Fellow at Purdue University, U.S.A., where he received his . degree in mathematics and Ph.D. degree in electrical and computer engineering in 2013. In 2013, he joined the	4
⁵ Fac	ulty of Electrical and Electronics Engineering of Ton Duc Thang University, Vietnam and served as the Vice	5
Dea 6 wire	n of Faculty since October 2014. He is currently an IEEE Senior Member. His major interests are in the area of eless communications and network information theory. Email: tranthanhphuong@tdtu.edu.vn.	6
7		7
Aut	hor details	_
8 ¹ Nb	a Trang Telecommunications University. Nha Trang, Vietnam, ² Wireless Communications Research Group	8
9 _{Fac}	ulty of Electrical and Electronics Engineering. Ton Duc Thang University. Ho Chi Minh City, Vietnam	9
1 4 6	any of Electrical and Electronics Englishering, for Dae Thang onlyching, no chi while engly vicinalit.	
10 Pof	Noncos	10
11 1	Wang X Ren B Sun S Kang S Yue X: Analysis of Non Orthogonal Multiple Access for 5C	11
1.	China Commun 13 (Supplement No 2), 52–66 (2016)	
12 2.	Dai, L., Wang, B., Yuan, Y., Han, S., I. CL., Wang, Z.: Non-Orthogonal Multiple Access for 5G:	12
13	Solutions, Challenges, Opportunities, and Future Research Trends 53(9), 74–81 (2015)	13
3.	Yang, Z., Ding, Z., Fan, P., Al-Dhahir, N.: The Impact of Power Allocation on Cooperative	
14	Non-orthogonal Multiple Access Networks with SWIPT 16 (7), 4332–4343 (2017)	14
15 4.	Luo, S., Teh, K.C.: Adaptive transmission for cooperative NOMA system with Buffer-Aided Relaying 21(4), 027, 040 (2017)	15
16 ₅	Kader M.E. Shahah M.B. Shin S. V.: Exploiting Non-orthogonal Multiple Access in Cooperative	16
17	Relay Sharing 21(5) 1159–1162 (2017)	17
17 6.	Du, C., Chen, X., Lei, L.: Energy-Efficient Optimisation for Secrecy Wireless Information and Power	17
18	Transfer in Massive MIMO Relaving Systems, IET Commun. 11(1), 10–16 (2017)	18
7.	Chen, Y.: Energy-Harvesting AF Relaying in the Presence of Interference and Nakagami-Fading	
19	15 (2), 1008–1017 (2016)	19
20 8.	Boshkovska, E., Ng, D.W.K., Zlatanov, N., Schober, R.: Practical non-linear energy harvesting model and	20
01	resource allocation for SWIPT systems $19(12)$, 2082–2085 (2015)	01
21 9.	Ding, Z., Perlaza, S.M., Esnaola, I., Poor, H.V.: Power allocation strategies in energy harvesting wireless	21
22	cooperative networks 13 (2), 846–860 (2014)	22
10.	Varshney, L.R.: Transporting information and energy simultaneously, pp. 1612–1616 (2008). IEEE	~~
²³ 11.	Ashraf, M., Shahid, A., Jang, J.W., Lee, KG.: Energy Harvesting Non-Orthogonal Multiple Access	23
24	System With Multi-Antenna Relay and Base Station. IEEE Access 5 , 17660–17670 (2017)	24
12.	Sun, R., Wang, Y., Wang, X., Zhang, Y.: Transceiver design for cooperative non-orthogonal multiple access	~ ~
25	systems with wireless energy transfer. IET Commun. $10(15)$, 1947–1955 (2016)	25
26 ^{13.}	Han, W., Ge, J., Men, J.: Performance Analysis for NOMA Energy Harvesting Relaying Networks	26
07	with Transmit Antenna Selection and Maximal-Ratio Combining over Nakagami- <i>m</i> Fading. IET	~ 7
27	Commun. 10(18), 2687–2693 (2016)	21
14. 28	Liu, Y., Ding, Z., Elkashian, M., Poor, H.V.: Cooperative non-orthogonal multiple access with simultaneous	28
a a 1 F	wireless information and power transfer $34(4)$, $938-953$ (2010)	
2915.	3 (3), 774–788 (2019)	29
³⁰ 16.	Nomikos, N., Charalambous, T., Vouyioukas, D., Karagiannidis, G.K., Wichman, R.: Hybrid NOMA/OMA	30
31	with buffer-aided relay selection in cooperative networks $13(3)$, 524–537 (2019)	31
17.	Manoj, B., Mallik, R.K., Bhatnagar, M.R.: Performance analysis of buffer-aided priority-based max-link	
32	relay selection in DF cooperative networks $66(7)$, 2826–2839 (2018)	32
33 ^{18.}	Xu, P., Quan, J., Yang, Z., Chen, G., Ding, Z.: Performance Analysis of Buffer-Aided Hybrid NOMA/OMA in Cooperative Uplink System. IEEE Access 7, 168759–168773 (2019)	33

¹ 19.	Zhang, Q., Liang, Z., Li, Q., Qin, J.: Buffer-aided non-orthogonal multiple access relaying systems in rayleigh	1
2	fading channels 65 (1), 95–106 (2017)	2
20.	Luo, S., Yang, G., Teh, K.C.: Throughput of wireless-powered relaying systems with buffer-aided hybrid relay	
3	15 (7), 4790–4801 (2016)	3
4 ^{21.}	Ju, H., Zhang, R.: Throughput Maximization in Wireless Powered Communication Networks 13(1), 418–428 (2014)	4
522.	Gu, Y., Aïssa, S.: RF-based energy harvesting in decode-and-forward relaying systems: Ergodic and	5
	outage capacities 14 (11), 6425–6434 (2015)	
6 23.	Nasir, A.A., Zhou, X., Durrani, S., Kennedy, R.A.: Relaying protocols for wireless energy harvesting and	6
7	information processing 12 (7), 3622–3636 (2013)	7
24.	Abdelhady, A.M., Amin, O., Shihada, B., Alouini, MS.: Spectral efficiency and energy harvesting in multi-cell	I
8	slipt systems (2020)	8
9 ^{25.}	Tran, H.M., Nguyen, C.B., Tran, P.T., Le, D.T.: Outage analysis of rf energy harvesting cooperative	9
¹⁰ 26	Pedersen K I Kolding T F. Seskar I Holtzman I M. Practical implementation of successive interference	10
11	cancellation in DS/CDMA systems. In: Universal Personal Communications, 1996. Record., 1996 5t. IEEE International Conference On vol 1 pp. 321–325 (1996). IEEE	h 11
1227	Zwillinger D : Table of Integrals Series and Products Elsevier ??? (2014)	12
28.	Boyd, S., Vandenberghe, L.: Convex Optimization, Cambridge University Press. ??? (2004)	
13 29.	Lu, X., Wang, P., Niyato, D., Kim, D.I., Han, Z.: Wireless networks with RF energy harvesting: A	13
14	contemporary survey. IEEE Commun. Tutorials 17 (2), 757–789 (2015)	14
30. 15	Benjebbour, A., Saito, K., Li, A., Kishiyama, Y., Nakamura, T.: Non-Orthogonal Multiple Access (NOMA): Concept and Design. Signal Processing for 5G: Algorithms and Implementations,	15
16 31	143–168 (2016) Papaulis A. Pillai S.U.: Probability Pandom Variables and Stochastic Processes. Tata McCraw Hill	16
17	Education 777 (2002)	17
32. 18	Wang, T., Cano, A., Giannakis, G.B., Laneman, J.N.: High-performance cooperative demodulation with	18
	decode-and-forward relays 55(7), 1427–1438 (2007)	
19		19
20	[width=2.5in]Fig1SM.pdf	20
21 F	igure 1 Wirelessly powered NOMA downlink relaying network	21
22		22
23	[width-2 5in]markov1 ndf	23
24 F	Groups 2 The diagram of the Markov chain of huffer states at the relay node	24
25	igure 2 The diagram of the Markov chain of burlet states at the relay houe.	25
26		26
27		27
28		28
20		20
29		29
30		30
31		31
32		32

Figure 1

Wirelessly powered NOMA downlink relaying network

Figure 2

The diagram of the Markov chain of buffer states at the relay node.

Figure 3

The average packet delay versus SNR according to theorycal analysis.

Overall outage probability versus average SNRs for optimal and fixed power allocation.

Outage probability versus the SNR with optimal power allocation for the cases of with buffer and without buffer aided relaying.

Outage probability of D1 versus the transmission power of the source for optimal and fixed power allocation.

Outage probability of D2 versus its SNR for the cases of optimal power allocation and xed power allocation.

The effect of power allocation coefficient on the OP for different data rates, EbNo = 10dB.

Average capacity of the system versus its SNR.