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Abstract 1 

Improving drug discovery efficiency is a core and long-standing challenge in drug 2 

discovery. For this purpose, many graph learning methods have been developed to search 3 

potential drug candidates with fast speed and low cost. In fact, the pursuit of high prediction 4 

performance on a limited number of datasets has crystallized them, making them lose 5 

advantage in repurposing to new data generated in drug discovery. Here we propose a 6 

flexible method that can adapt to any dataset and make accurate predictions. The proposed 7 

method employs an adaptive pipeline to learn from a dataset and output a predictor. Without 8 

any manual intervention, the method achieves far better prediction performance on all tested 9 

datasets than traditional methods, which are based on hand-designed neural architectures 10 

and other fixed items. In addition, we found that the proposed method is more robust than 11 

traditional methods and can provide meaningful interpretability. Given the above, the 12 

proposed method can serve as a reliable method to predict molecular interactions and 13 

properties with high adaptability, performance, robustness and interpretability. This work 14 

would take a solid step forward to the purpose of aiding researchers to design better drugs 15 

with high efficiency. 16 

 17 

  18 
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1 Introduction 1 

Drug discovery is a lengthy, costly, and complex process that plays a crucial role in human 2 

health and well-being1,2. At present, experimental assays3 remain the most reliable approach to 3 

screen compounds but cost too much. Although many computational methods4 are proposed to 4 

estimate molecular interactions and properties and improve drug discovery efficiency, it is still a 5 

tricky process. 6 

Graph learning methods have the potential to improve drug discovery efficiency dramatically 7 

for their ability to amplify insights available from existing drug-related datasets5. Using the insights 8 

to predict molecular interactions and properties6,7 is a key to finding potential drug candidates from 9 

the vast chemical space with extremely fast speed and low cost. On the other hand, molecular 10 

generation8,9 based on the insights can more efficiently traverse the vast chemical space to find 11 

potential drug candidates. Accordingly, graph learning is becoming a rising area of interest within 12 

the field of drug discovery10. 13 

However, the pursuit of high prediction performance on a limited number of existing datasets 14 

has crystallized them11–13, making them lose advantage in repurposing to new data generated in 15 

drug discovery. In practice, a graph learning method tends to be made with a fixed architecture and 16 

a fixed hyperparameter set to get the best performance on a dataset14. This heavily limits them in 17 

repurposing to new data generated in drug discovery, which tend to be increasingly complex15. 18 

Besides, most graph learning methods rely heavily on expert knowledge of deep learning to achieve 19 

their claimed state-of-the-art results, or even cannot be reproduced16. Therefore, they are not 20 

flexible and reliable enough. 21 

More recently, a few works have been reported to address these problems above. MolMapNet 22 

introduced an out-of-the-box deep learning method based on broadly learning knowledge-based 23 
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representations to get reliable prediction performance on more datasets7. A recent work introduced 1 

a neural architecture search based method to design neural architecture for molecular property 2 

predictions11.  3 

In this work, we proposed Graph Learning based Adaptive Machine (GLAM), a flexible 4 

method that can adapt to any dataset and make accurate predictions without human intervention. 5 

We fairly compared our proposed method with previously reported methods in terms of 6 

adaptability and prediction performance. The results show that our proposed method can adapt to 7 

all tested datasets exceptionally well and obtain far better prediction performance than reported 8 

methods. On the other hand, we also investigated the robustness and interpretability of our 9 

proposed method. We found that the proposed method is more roubst than tested methods and can 10 

provide meaningful intepretability, making the proposed method a more reliable method. 11 

 12 

2 Results 13 

Method Overview 14 

Our method utilizes an automated pipeline to learn from datasets and build a predictor, as 15 

shown in Figure 1. Our method is mainly different from previous graph learning methods17–22, 16 

which rely heavily on human experts to design architecture, tune model hyperparameters, select 17 

the optimizer, and select the loss function. We creatively combine these four items into a 18 

configuration and put potential configurations into a configuration space. Starting from this 19 

configuration space, we perform configuration sampling, low-fidelity training based on sampled 20 

configurations, configuration selection, high-fidelity training based on selected configurations, 21 

predictor selection, and predictor blending to build a predictor.  22 
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 1 

Figure 1. Overview of GLAM and traditional method. 2 

 3 

Figure 2. GLAM pipeline details. 4 

 5 

Figure 3. the general architectures for molecular interactions and properties prediction in GLAM. 6 
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In detail, the method has a well-designed pipeline that is to achieve high adaptability, 1 

prediction performance, and acceptable speed, as shown in Figure 2. Initially, GLAM samples a 2 

lot of configurations from the configuration space. Then the dataset is fed to these configurations 3 

for low-fidelity training, which produces evaluation scores to select the high-performance 4 

configurations. In the next high-fidelity training, each previously selected configuration is fed with 5 

the dataset to perform full epochs training with three different random seeds. Accordingly, the 6 

evaluation scores of the high-fidelity training are used to select high-performance predictors. 7 

Finally, all selected predictors are blended into a predictor. 8 

We have designed two general architectures, one for molecular interaction and another for 9 

molecular property, as shown in Figure 3. In practice, the input data are mapped to output by five 10 

steps: (1) preprocess a molecule to a molecular graph, (2) linear transformation by feed-forward 11 

block, (3) iterated convolution by message-passing block for T time-steps, (4) node reduction by 12 

global pooling block, (5) linear transformation by final feed-forward block. Each block in the 13 

general architecture is created with its own design space, as shown in Extended Data Figure 1.  14 

Adapt to any dataset for high performance 15 

GLAM was created to adapt to any dataset to obtain high prediction performance. To 16 

investigate the adaptability and performance of our method, we compared its performance on 14 17 

datasets with a range of representative traditional methods7,17–21,23–25. The types of tested datasets 18 

include drug-protein interactions, drug-drug interactions, physical-chemistry property, bioactivity, 19 

pharmacokinetics, and toxicity. Considering that different splits of datasets cause different 20 

performances, we let all methods share the same splits of datasets for a fair evaluation. We also try 21 

our best to adjust the parameters of all methods manually to achieve the best performance. Finally, 22 

we run benchmarks on molecular interaction and molecular property datasets. 23 
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Compared to all traditional methods, our proposed methods can adapt to datasets well and 1 

achieve promising prediction performance, as shown in Table 1, Table 2 and Extended Data 2 

Table 1. (All tables can be found at the end of this manuscript.) Given the above, GLAM sets a 3 

new state-of-the-art on both molecular interactions and properties prediction. Relative to the best 4 

scores of reported results, the proposed method got an average 18.7% decrease of prediction error 5 

on 14 datasets than the best of traditional methods. In addition, GLAM can consistently achieve 6 

the best scores without human intervention. Therefore, GLAM is poised to be a flexible, reliable, 7 

and trustworthy method that works well across a wide range of activities in drug design.  8 

High robustness against molecular structure perturbation 9 

The following essential issue is about the robustness26 of the proposed method. Graph 10 

learning methods usually are susceptible to outliers, and it can be disastrous if data is contaminated 11 

with outliers. In fact, some safe-sensitive domains (such as healthcare) require more robustness of 12 

a method as even a slight perturbation will lead to a wrong result with serious consequence35. 13 

Admittedly, the robustness of a graph learning method is also an essential issue. 14 

To evaluate the robustness of our proposed method, we first introduce an algorithm named 15 

property-slightly-affected structure perturbation (PASP). The PASP works by iteratively mutating 16 

the molecular structure with small perturbations that do not significantly affect the properties of 17 

the molecules.  18 

Then we perform the PASP algorithm on a dataset named PhysProp28, consisting of 14,176 19 

molecules structures with their corresponding properties log 𝑃. To estimate the potential change of 20 

log 𝑃	 upon mutations, we use RDKit29 to calculate the log 𝑃 values before and after PASP as an 21 

observer. Moreover, we limit an acceptable change (value change < 0.2 before and after the PASP), 22 

which can ensure that the PASP does not significantly affect the log 𝑃  of molecules. In this 23 
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experiment, The molecular structures whose similarity (before and after the mutation) of 1 

fingerprint in the scale of 0.8-1.0, 0.5-0.8, and 0.3-0.5 are marked as levels 1, 2, and 3, respectively.  2 

Table 3 shows that GLAM is less affected by the PASP and manifests higher robustness than 3 

conventional methods. We first run GLAM on the unperturbed train and validation sets to get a 4 

predictor. Then, we feed the test set to the predictor and migrate the testing to the three perturbed 5 

test sets. Compared with conventional methods, including GCN18, GAT19, GIN20,22, MPNN, the 6 

results show that all these methods suffer a significant performance drop, as shown in Table 3. In 7 

contrast, our method is less affected by PASP than conventional methods on all three levels of 8 

PASP. The robustness of the GLAM is most likely due to the model blending at the end of the 9 

pipeline. The main idea of blending is to train several models and draw a final prediction from 10 

averaging. So, perturbing the molecular structure may cause a molecule misclassified by a predictor 11 

but not by all predictors.  12 

Interpretation cases 13 

To better understand the models in the predictor, we investigate its decision-making process 14 

and interpret its learned knowledge. In the past, most machine learning models have long been 15 

considered as black boxes. Previous works adopt attention mechanisms21,30,31 to aid interpretation 16 

of the model. Here we explain the model from the hidden states by averaging and visualizing it, 17 

which can directly utilize the information provided by the models in the predictor.  18 

Extended Data Figure 2a shows some case studies of solubility prediction, which are 19 

consistent with the intuition of chemists. Generally, hydroxyl and amino groups are considered to 20 

be more hydrophilic and alkyl and halogen groups are considered to be more lipophilic. We select 21 

and visualize some representative molecules from the PhysProp dataset. The atoms in the 22 

hydrophilic group tend to be bluer in our visualization, which means their weights are closer to 1. 23 
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In contrast, the atoms in the lipophilic group tend to be redder in our visualization, which means 1 

their weights are closer to -1. These observations are consistent with the intuition of chemists, 2 

indicating that the models in predictor can detect essential atomic groups with clear interpretability 3 

of results of solubility. 4 

In the same way, we visualize some cases of drug-drug interaction identification as shown in 5 

Extended Data Figure 2b. We consider the interactions between sidenafil/udenafil and 6 

nitrates(nicorandil/ isosorbide dinitrate) as cases. They are combined into four pairs of drug-drug 7 

interactions and fed into models in predictor to visualize the decision process. (Typically, the 8 

sildenafil/udenafil can selectively inhibit the phosphodiesterase type 5 (PDE5) targets in the human 9 

body. The N-methyl groups in the pyrazolorpyrimidone rings of sildenafil/udenafil are important 10 

for the activity and selectivity of the PDE5. For the reasons above, combining sildenafil/udenafil 11 

with nitrate drugs may lead to serious blood pressure reduction and heart diseases.) The 12 

visualization results show the models in predictor pay more attention to the nitrates of isosorbide 13 

dinitrate and nicorandil, and pay more attention to the N-methyl of sildenafil and udenafil. Thus, 14 

Our visualization results are consistent with previous findings of drug interaction, indicating that 15 

models in the predictor can provide deep insights into molecular interactions. 16 

 17 

3 Discussion 18 

We have shown that GLAM can adapt to all tested datasets well and make accurate 19 

predictions automatically. In the past, the adaptability for new data has largely been ignored as 20 

most researchers pay almost all attention to getting high prediction performance. Our well-designed 21 

method can serve as a reliable method to predict molecular interactions and properties with high 22 

adaptability, prediction performance, robustness and interpretability. Furthermore, the automated 23 
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pipeline of our proposed method enables more researchers, even those who lack machine learning 1 

experience, to make full use of the power of machine learning. These advantages of our proposed 2 

method will greatly increase the acceptance of machine learning aided drug discovery.  3 

 4 

4 Limitations and frontiers 5 

Adaptive feature input can help the models in our proposed method to extract important and 6 

sufficient representations. In this work, we only provide the graph model with the basic node 7 

features, such as atomic/residual number. Adaptive feature input can be of great help to some 8 

particular prediction jobs. Adding the feature decisions to configuration space might improve our 9 

proposed method. An strategy that provides neither too little information nor too redundant 10 

information would contribute a lot to the representation extraction process. 11 

 12 

5 Outlook 13 

Our proposed method is expected to advance and evolve the automated drug design1,32. 14 

Recent advances such as chemical retrosynthesis predictions33,34 and molecular generations35–37 15 

have laid the foundation for an automated drug design pipeline in the future. Automated drug 16 

design or semi-automatic drug design will become a trend. The proposed method can serve as a 17 

predictor generator contributing to the automated drug design. For further applications, our 18 

proposed method can be repurposed to more scientific discovery fields, such as agrochemicals and 19 

materials design. 20 

 21 

 22 



11 
 

Methods 1 

Details of datasets 2 

We use LIT-PCBA38, BindingDB39, and DrugBank40 to evaluate our proposed method for 3 

molecular interaction prediction. In LIT-PCBA, we selected four datasets of representative protein 4 

based on the number of positive and negative samples. On the other hand, we used datasets in 5 

MoleculeNet41 to evaluate the proposed method for molecular property prediction. MoleculeNet 41 6 

is a set of benchmarking datasets for molecular machine learning to achieve a fair performance 7 

comparison. 8 

LIT-PCBA is a virtual screening dataset consisting of fourteen targets, 7844 confirmed 9 

active, and 407,381 confirmed inactive compounds38. BindingDB dataset contains 39,747 positive 10 

examples and 31,218 negative examples from a public database39. DrugBank includes 1,850 11 

approved drugs with 221,523 DDI positive labels 40. The blood-brain barrier penetration (BBBP) 12 

contains 2053 molecules on their permeability properties 41. SIDER is a database of marketed drugs 13 

and adverse drug reactions, which grouped into system organ classes for 1427 approved drugs 41. 14 

The BACE is a database consisting of binding results for a set of inhibitors of human β-secretase 15 

1 with 1522 compounds 41. Tox21 contains qualitative toxicity measurements for 8014 compounds 16 

on 12 different targets, including stress response pathways and nuclear receptors 41. ToxCast is 17 

another toxicity database that contains qualitative results of 617 experiments on 8615 compounds 18 

41. The Free Solvation Database (FreeSolv) provides experimental and calculated hydration free 19 

energy of 643 small molecules in water 41. ESOL is a small dataset consisting of water solubility 20 

data for 1128 compounds 41. Lipophilicity is an important feature of drug molecules that affects 21 

both membrane permeability and solubility of 4200 compounds 41. PhysProp consists of 14,176 22 

molecules and their corresponding 𝐿𝑜𝑔	𝑃 values28.  23 

Configuration space 24 
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The Configuration space of GLAM consists of two parts: architecture decisions and training 1 

decisions. The architecture decisions decide how to build an architecture of a model. The general 2 

architectures of pairs- and single-molecule contain 8 and 4 blocks with their independent design 3 

space, respectively, as shown in Figure 1. The training decisions decide how to train the model, 4 

including batch size, number of epochs, type of loss, type of optimizer, learning rate, reduce rate 5 

of learning rate, reduce patience of learning rate, early-stop patience. 6 

Graph learning in architectures  7 

Given a molecular graph 𝐺with 𝑥!  denoting node features of node 𝑖 and 𝑒"!  denoting edge 8 

features from node 𝑗 to node 𝑖, the feed-forward block can be described as  9 

ℎ! = 𝑓##(𝑥!) 31.6 10 

, where ℎ! denote the hidden node features and 𝑓## denote a feed-forward neural network. And 11 

the message-passing block can be described as 12 

ℎ!$ = 𝑓%(ℎ! , 8  
"∈'!

𝑓!(ℎ" , 𝑒"!)) 32.6 13 

where 𝑓% denote the update function and 𝑓! denote the interaction function. The output property 𝑝 14 

are transformed by the global pooling block and final feed-forward block can be described as 15 

𝑝 = 𝑓## <𝑓())*(ℎ!$)= (3) 16 

where 𝑓## denote a feed-forward neural network and 𝑓())* denote the global pooling layer. 17 

Design spaces of blocks 18 

Each block is created with its own design space, as show in Extended Data Figure 1. The 19 

feed-forward block consists of a normalization layer, a dropout layer, a feed-forward layer, and an 20 
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activation layer. The normalization layer, dropout layer, and activation layer can be chosen to be 1 

empty in this block. Most parts of the message-passing block are the same as the feed-forward 2 

block, but the core is changed to a message-passing layer with a choice of five possible types. The 3 

fusion block is designed to extract information on a pair of interacting molecules. Global pool block 4 

consists of one layer of graph pool layer with a choice of three types of pooling layers. 5 

Preparing for both molecular interactions and properties prediction 6 

We prepare two general architectures for both molecular interactions and properties 7 

prediction, as shown in the Figure 3. The pair-graph architecture for molecular interactions accepts 8 

a pair of molecules as input and outputs their interaction. The single-graph architecture for 9 

molecular properties accepts a molecule as input and outputs one or multiple properties of the 10 

molecule. Some essential tasks in drug discovery are molecular interactions, such as protein-ligand 11 

interactions. All molecules are processed to graphs with basic node attributes as input of the 12 

architectures. Small molecules are processed into atom-level molecular graphs, where the edge 13 

information is provided by chemical bonds. Proteins are processed into residue-level graphs, where 14 

the edge information is provided by contact maps predicted by RaptorX46.  15 

Multi-GPU parallel 16 

GLAM works in parallel with multiple graphics cards. The most time-consuming parts of a 17 

graph learning process are the training, validation, and test. The proposed methodhave lots of 18 

independent graph learning processes. Subsequently, we let them work in parallel to utilize the 19 

computational source fully. In detail, we build a queue and insert all these processes as jobs into it. 20 

If a graphics card is free, a job will be popped up and be assigned to the card until all the jobs are 21 

popped up. 22 

Robustness experiments using molecular structure perturbations  23 

Molecular structure perturbation experiment aims to investigate the robustness of a model. If 24 
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the accuracy of a method is not greatly affected by some perturbations, the method is robust 1 

enough. A dataset is first divided into training set, validation set and test set. Among them, the 2 

training set is used to train a model of the method, the verification set is used to decide when to 3 

save the model weights, and the test set is used for robustness experiment.  4 

Given a molecule set of 𝑀 = {𝑚!|1 ≤ 𝑖 ≤ 𝑁} and a method 𝑓, we can predict the property 5 

set 𝑃 = {𝑝!|1 ≤ 𝑖 ≤ 𝑁} by equation (4). Given a property observer function 𝑜, we can calculate a 6 

property observer set 𝑄 =	 {𝑞!|1 ≤ 𝑖 ≤ 𝑁} by equation (5).  7 

𝑃 = 𝑓(𝑀) (4) 8 

𝑄 = 𝑜(𝑀) (5) 9 

Applying an algorithm 𝑔 to M, we can obtain a perturbed test set  𝑀′ = {𝑚!
$|1 ≤ 𝑖 ≤ 𝑁′}, 10 

where 𝑁′ is the size of molecules that have been applied 𝑔  successfully. We also predict the 11 

property set 𝑃′ = {𝑝!$|1 ≤ 𝑖 ≤ 𝑁′} by equation (6). Using the observer function 𝑜 above, we can 12 

calculate a property observer set 𝑄′ = {𝑞!$|1 ≤ 𝑖 ≤ 𝑁′} of 𝑀′ by equation (7). 13 

𝑃$ = 𝑓(𝑀$) (6) 14 

𝑄 = 𝑜(𝑀) (7) 15 

By observing the perturbation Effect score of the model after perturbation, we get to know 16 

the robustness of a model. Given a loss function	𝐿, if  𝐿(𝑃, 𝑃$) > 𝐿(𝑄, 𝑄$), the model is not robust, 17 

that is, the perturbation will have an essential impact on performance of the model. If 𝐿(𝑃, 𝑃$) ≤18 

𝐿(𝑄, 𝑄$), the model is robust and the perturbation will have less impact. We define a perturbation 19 

Effect score by equation (8), where the Δ(𝑓, 𝑔) represents the perturbation Effect score of method 20 

𝑓 on the perturbation function 𝑔.  21 

Δ(𝑓, 𝑔) = 𝐿(𝑃, 𝑃$) − 𝐿(𝑄, 𝑄$) (8) 22 

Property-slightly-affected structural perturbation 23 
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Property-slightly-affected structural perturbation (PASP) works by iteratively mutating the 1 

molecular structure with small perturbations that do not significantly affect the properties of the 2 

molecules. In each iteration, PASP mutate the structure of a molecule by modifying/adding a 3 

random atom. If the mutated molecule can meet two conditions at the same time in this number of 4 

perturbations during the iterations, we got a new perturbed molecular 𝑥!$. The first condition is that 5 

the molecular fingerprint similarity 𝑆(𝑥! , 𝑥!$) ∈ [𝛾+!#, 𝛾+,-) , where [𝛾+!#, 𝛾+,-)  is a preset 6 

similarity area. The second condition is that the loss 𝐿(𝑞! , 𝑞!$) < 𝜖., where 𝜖/ is a preset maximum 7 

loss. Finally, we combine all the perturbed molecules into a set	𝑀′ = {𝑚!
$|1 ≤ 𝑖 ≤ 𝑁′}, where 𝑁′ 8 

is the size of all molecules that be perturbed successfully. 9 

Node-level interpretation 10 

We extract the output of the message-passing block, which is a matrix 𝑋 = {𝑥!"|	1 ≤ 𝑖 ≤11 

𝑁, 1 ≤ 𝑗 ≤ 𝑀}. 𝑁 is the number of atoms, and 𝑀 is the dimension of the outputs. Then we obtain 12 

the weight 𝑊 = {𝑤! ∣ 1 ≤ 1𝑖 ≤ 𝑁} of each atom according to 𝑤! = /

0
∑  0
"1/ 𝑥!", and visualize the 13 

molecule with the weights. In some cases, the weight  𝑤! may be scaled to [-1,1] or [0, 1]. 14 

 15 
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Table 1. Performance comparison on datasets of molecular interactions 1 

Dataset ALDH1 ESR1_ant   KAT2A   MAPK1   BindingDB 
Params 

adjust on 
Metrics AUC(higher is better) 

Glide (SP) 0.607(-) 0.590(-) 0.474(-) 0.592(-) - - 

Glide (XP) 0.582(-) 0.540(-) 0.441(-) 0.579(-) - - 

RFScore V3 0.556(-) 0.562(-) 0.511(-) 0.640(-) - - 

DGraphDTA 
0.679(0.007) 0.603(0.022) 0.633(0.017) 0.654(0.020) 0.914(0.027)  ALDH1 

0.673(0.013) 0.610(0.011) 0.599(0.032) 0.665(0.031) 0.921(0.023) BindingDB 

TransformerCPI 
0.694(0.008) 0.590(0.010) 0.633(0.022) 0.683(0.008) 0.926(0.017) ALDH1 

0.665(0.008) 0.616(0.032) 0.650(0.042) 0.662(0.012) 0.937(0.016) BindingDB 

GLAM 0.761(0.006) 0.666(0.012) 0.709(0.033) 0.730(0.016) 0.954(0.008) None 

Note: (a) All datasets are split randomly. (b) Glide43 docking scores are obtained on Schrödinger version 2 

2015 with the precision of SP and XP. (c) DGraphDTA17, TransformerCPI24 are implemented from their 3 

open-source code. Their hyper-parameters have been adjusted to obtain the best performance. (d) All deep 4 

learning methods are run with three different split seeds, and then we take the average score and the standard 5 

deviation (in parentheses). (e) the highlight text with bold-black style means the best.  6 

Table 2. Performance comparison on datasets of molecular properties 7 

Task Physical chemistry Bioactivity Pharmacokinetics Toxicity 

Params 

adjust on 
Dataset ESOL Lipophilicity  FreeSolv BACE BBBP SIDER Tox21 ToxCast 

Metrics RMSE (lower is better) AUC (higher is better) 

GCN 
1.017(0.064) 0.807(0.044) 2.307(0.147) 0.772(0.050) 0.830(0.057) 0.619(0.028) 0.762(0.026) 0.678(0.007) ESOL 

1.056(0.096) 0.799(0.062) 2.858(0.524) 0.797(0.018) 0.792(0.083) 0.612(0.030) 0.752(0.030) 0.663(0.024) BACE 

GAT 
1.079(0.080) 0.925(0.031) 2.491(0.465) 0.716(0.033) 0.815(0.067) 0.606(0.053) 0.769(0.033) 0.675(0.013) ESOL 

1.188(0.058) 0.834(0.037) 2.343(0.272) 0.759(0.019) 0.842(0.042) 0.613(0.023) 0.713(0.022) 0.687(0.017) BACE 

GIN 
0.704(0.078) 0.948(0.058) 2.662(0.289) 0.812(0.032) 0.858(0.035) 0.595(0.031) 0.793(0.026) 0.671(0.019) ESOL 

0.742(0.058) 0.864(0.044) 2.098(0.272) 0.831(0.040) 0.875(0.019) 0.605(0.040) 0.732(0.019) 0.672(0.016) BACE 

MPNN 
0.755(0.077) 0.769(0.031) 1.897(0.092) 0.820(0.047) 0.831(0.036) 0.626(0.038) 0.752(0.011) 0.697(0.023) ESOL 

0.884(0.061) 0.825(0.047) 2.038(0.421) 0.816(0.042) 0.816(0.057) 0.641(0.014) 0.803(0.031) 0.686(0.017) BACE 

AttentiveFP 
0.726(0.032) 0.724(0.030) 1.775(0.392) 0.815(0.072) 0.856(0.023) 0.654(0.027) 0.763(0.022) 0.726(0.020) ESOL 

0.738(0.059) 0.783(0.036) 1.371(0.446) 0.850(0.017) 0.872(0.024) 0.621(0.033) 0.740(0.039) 0.680(0.024) BACE 

MolMapNet 0.752(0.040) 0.731(0.012) 1.398(0.312) 0.868(0.094) 0.911(0.013) 0.634(0.015) 0.813(0.021) 0.703(0.025) None 

GLAM 0.592(0.036) 0.596(0.025) 1.319(0.346) 0.888(0.033) 0.932(0.015) 0.659(0.017) 0.841(0.010) 0.744(0.008) None 

Note: (a) All datasets are split by scaffold. (b) GCN18, GAT19, GIN22, MPNN20 are implemented with 8 

PyTorch Geometric44. AttentiveFP21 is implemented from its open-source code. Their hyper-parameters 9 

have been adjusted to obtain the best performance. (c) All methods are run with three different split seeds, 10 
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and then we take the average score and the standard deviation (in parentheses). (d) the highlight text with 1 

bold-black style means the best. 2 

 3 

Table 3. Effect score of molecular structure perturbation test 4 

Perturbation Level Level 1 Level 2 Level 3 

Fingerprint Similarity 0.8-1.0 0.5-0.8 0.3-0.5 

Metrics Effect score (lower is better) 

GCN 0.728(±0.019) 0.929(±0.015) 1.092(±0.009) 

GAT 0.750(±0.022) 0.985(±0.118) 1.149(±0.124) 

GIN 0.695(±0.064) 0.953(±0.100) 1.087(±0.074) 

MPNN 0.598(±0.018) 0.820(±0.069) 0.998(±0.083) 

GLAM 0.360(±0.014) 0.469(±0.019) 0.632(±0.013) 

 Note: (a)All baselines above are all implemented with PyTorch Geometric44, and their hyper-parameters have been manually 5 

adjusted for several rounds. (b) The losses between P and P' of level 1,2,3 perturbated test sets are 0.0624, 0.0593, 0.0578, 6 

respectively.  7 

  8 
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 1 

Extended Data Figure 1. design space for blocks of the architecutures.  2 

 3 

Extended Data Figure 2. Node-level interpretation. a, case studies of solubility prediction. b case 4 

studies of drug-drug interactions.  5 

Extended Data Table 1. Performance comparison on drug-drug interaction datasets 6 

Dataset DrugBank 

Metrics ROC-AUC PR-AUC 

LR 0.774(±0.003) 0.745(±0.005) 

Nat.Prot  0.786(±0.003) 0.753(±0.003) 

Mol2Vec  0.849(±0.004) 0.828(±0.006) 

MOLVAE 0.852(±0.006) 0.828(±0.009) 

DeepDDI 0.844(±0.003) 0.828(±0.002) 

CASTER 0.861(±0.005) 0.829(±0.003) 

GLAM 0.911(±0.017) 0.899(±0.019) 

Note (a) In the drug-drug interaction task, scores of all baselines are taken from CASTER25. (b) the highlight 7 

score with bold-black style means this method got the highest score. (c) all scores of GLAM are run under 8 

the same default configuration setting.   9 


