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Abstract

Background
As one of the factors of male infertility, high temperature induces apoptosis of differentiated spermatogenic cells,
sperm DNA oxidative damage, and changes in morphology and function of Sertoli cells. Spermatogonial stem cells
(SSCs) is a kind of germline stem cells which maintain the spermatogenesis through self-renewal and differentiation. At
present, however, the effect of high temperature on SSC differentiation in vitro has not been reported.

Methods
In the present study, we used in vitro differentiation model of SSCs to research the effect of heat stress treatment on
SSC differentiation. Firstly, real-time PCR was used to detect the expression levels of self-renewal and differentiation
marker genes in differentiation-cultured SSCs after heat stress treatment. Then, the effect of heat stress on the
transcriptome of differentiation cultured SSCs was analyzed by RNA-seq. Enrichment of functions and signaling
pathways analysis were performed based on Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database.

Results
We found that 2 days of 37℃ or 43℃ (30min/d) heat stress treatment signi�cantly inhibited SSC differentiation. The
differentiation related genes c-kit, stra8, Rec8, Sycp3 and Ovol1 were down-regulated after 2 days and 4 days of heat
stress at 37℃. The transcriptome of SSCs was signi�cantly differentially expressed on the second day and fourth day
after heat stress treatment at 37℃. In total, 1660 and 7252 differentially expressed genes (DEGs) were identi�ed by
RNA-Seq in SSCs treated with heat stress at 37℃ for 2 days and 4 days respectively, compared with those cultured at
34℃. KEGG pathway analysis showed that P53, ribosome and carbon metabolism signaling pathways promoting stem
cell differentiation were signi�cantly enriched after heat stress treatment at 37℃.

Conclusion
These results indicate that high temperature at 37℃ signi�cantly inhibits SSC differentiation and promotes enrichment
of P53, ribosome and carbon metabolism signaling pathways in stem cell differentiation, providing a reference for the
pathogenesis of heat-induced azoospermia.

Background
The World Health Organization predicts that infertility will become the third most intractable disease after cancer and
cardio-cerebrovascular disease in the 21st century [1]. Infertility occurs in 10–15% couples of childbearing age, and
male factors account for 50% of cases [2]. A Global Burden of Disease survey reported that from1990 to 2017, the age-
standardised prevalence of infertility increased annually by 0.291% in men [3]. Heat is one of the causes of male
infertility [4]. Cryptorchidism or increased scrotal temperature leads to non-obstructive azoospermia or asthenospermia.

SSCs are the source of spermatogenesis and their differentiation is tightly regulated. SSCs are widely considered to be
single undifferentiated spermatogonia cells existing on the basement membrane in seminiferous tubules. SSCs belong
to Asingal spermatogonia (As). In rodents, As spermatogonia generate two As spermatogonia without an intercellular
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bridge. Subsequent cell divisions of the Apr spermatogonia generate Aaligned−4, Aaligned−8, and Aaligned−16 (Aal), which will
differentiate to type A1 spermatogonia. The As, Apr, and Aal spermatogonia are called undifferentiated spermatogonia
(Aundiff), retaining the potential to differentiate into A1, A2, A3, A4, In, and B spermatogonia, which goes into meiosis to
form primary spermatocyte, secondary spermatocyte, and eventually form sperm [5, 6]. Retinoic acid (RA) is the inducer
of differentiation in SSCs and induces differentiating spermatogonia to express early markers of spermatogenic
differentiation, including KIT and STRA8 [7, 8]. To become sensitive to the differentiation-inducing stimulus (RA), Aundiff

need to exit the self-renewing state and undergo differentiation priming [8, 9]. This transition involves the activation of
the mTORC1 pathway that plays a critical role in maintenance of SSCs, and aberrant mTORC1 activation promotes
stem cell exhaustion [10–13]. WNT/β-catenin signaling plays an important role in the differentiation priming of Aundiff

by promoting the transition from self-renewing to RA-responsive state [14, 15]. Interestingly, Tokue et al identi�ed
SHISA6 as a novel marker for a speci�c subset of GFRα1-expressing Aundiff [16]. SHISA6 is suggested to act as a WNT
signaling inhibitor and thus confer resistance to the differentiation-priming program. Mir-322 regulates SSC
differentiation through the WNT/β-catenin signaling pathway, and miR-322 overexpression decreased STRA8, C-KIT and
BCL6 expression [17]. Luo et al. found that SSCs can be derived into ovarian organoids and produce offspring [18]. In
the study, they transdifferentiated SSCs into oocytes by transduction of H19, Stella, and Zfp57 and inactivation of Plzf
in SSCs. The regulation of SSC differentiation process is very complex, and any failure of the regulation can lead to
male infertility. The causes of male infertility are wide ranging and poorly understood in most cases [19–21].

Temperature is considered to be a key regulator of reproductive activity and testicular homeostasis. Spermatogenesis
and sperm maturation are closely related to temperature and require a temperature slightly lower than the normal body
temperature 2-7℃ [22, 23]. Severe or repetitive heat exposures often induce male subfertility or infertility due to reduced
sperm output and qualities [24]. Therefore, high temperature is an important external factor affecting multiple stages of
spermatogenesis and sperm function. In the heat stress condition, mammalian male germ cells show a variety of
changes in cellular events including stress granule (SG) formation, DNA damage and apoptosis [25]. A study showed
that adult male mice were exposed to an elevated ambient temperature of 35 for 24h and followed by recovery 1 day,
identi�ed elevated sperm mitochondrial ROS generation, increased sperm membrane �uidity, pachytene spermatocytes
and round spermatids DNA damage [26]. The most relevant consequence of heat stress on the testis is death of germ
cells via apoptosis. Previous research indicate that the testicular germ-cell loss by apoptosis after exposure to
abdominal heat stress occurs [27]. Studies have shown that p38 MAPK pathway regulates both apoptosis and
spermatocyte differentiation [28–30].

However, the role and mechanism of heat stress in regulating SSC development is unclear, due to the small number of
SSCs in the mouse testis (only 0.02–0.03% of total testis cells ) [31]. Our previous study shown that heat shock
treatment at 43℃ for 45 min signi�cantly inhibited SSC self-renewal through S phase cell cycle arrest but not apoptosis
[32]. But there are few reports on the effect of high temperature on the differentiation of SSCs. In this study, we �rst
successful used in vitro differentiation model of SSCs studied the effect of heat stress treatment on SSC differentiation.

Materials And Methods
SSCs self-renewal and differentiation culture

SSCs self-renewal culture medium was prepared according to our previously published paper [33]. In brief, the medium
was based on Minimum Essential Medium α (MEM-α, 12571-063, Gibco, Grand Island, NY, USA), containing 2mM
glutamine (G7012, Sigma, MO, USA), 10% foetal bovine serum (FBS) (16000-36, Gibco), 0.5× pen/strep (15240-062,
Invitrogen, Grand Island, NY, USA), 1× nonessential amino acid (NEAA, 11140-050, Gibco) solution, 1× β-
mercaptoethanol (β-ME, M3148, Sigma), 25μg/ml insulin(I1882, Sigma), 100μg/ml transferrin (T1428, Sigma), 60μM
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putrescine (P5780, Sigma), 60 ng/ml progesterone (P8783, Sigma), and 8 ng/ml basic �broblast growth factor (bFGF,
F0291, Sigma). The feeder layer cells were STO cells treated with mitomycin (M0503, Sigma). The SSCs were incubated
at 37℃ in the presence of 5% CO2. The culture medium for SSCs differentiation was prepared according to the
literature published by Zhou Q et al. [34]. In brief, on the basis of SSCs self-renewal medium, the differentiation culture
medium was established by adding cytokine SCF (100ng/ml, R&D Systems), BMP4 (20ng/ml, R&D Systems), RA (10-
6M Sigma) and activin A (100ng/ml, R&D Systems). The SSCs used for differentiation were incubated at 34℃ in the
presence of 5% CO2.

Heat stress treatment of differentiated culture SSCs

The SSCs used in differentiation culture were subjected to heat stress of 37℃ and 43℃, respectively. For the 37℃ heat
stress treatment, the culture conditions were the same as the differentiation culture except that the culture temperature
was increased from 34℃ to 37℃. For the 43℃ heat stress treatment, SSCs were cultured in a 43℃ CO2 incubator for
30 minutes every day and then returned to a 34℃ CO2 incubator for further culture.

Quantitative real-time PCR

Some SSCs differentiation marker genes were detected by quantitative real-time (qRT) PCR. The following primers were
used. ID4, Forward: TGCAGTGCGATATGA ACGAC, Reverse: GCAGGATCTCCACTTTGCTG; Thy-1, Forward: GCTCTCC
TGCTCTCAGTCTT, Reverse: GCTGAACTCATGCTGGATGG; c-
kit, Forward: GGGACACATTTACGGTGGTG, Reverse: GCTTTACCTGGGCTATGTGC;
Stra8, Forward: TTGACGTGGCAAGTTTCCTG , Reverse: GGGCTCTGGTTCCTGGT TTA;
Rec8, Forward: CCCGCTTCTCCCTCTATCTC , Reverse: CGATGTAGGT GCTCCAGGAT;
Sycp3, Forward: CCAATCAGCAGAGAGCTTGG, Reverse: CC TCGAAGCATCTGAGGAAA;
Ovol1, Forward: TGTCTTACAGGCAGAGCACA, Reverse: GGCCTGTCTCTGTAAGTGGT; GAPDH
, Forward: AACGGATTTGG CCGTATTGG, Reverse: CATTCTCGGCCTTGACTGTG. We used the Tip Green qPCR SuperMix
(Q311-02, Vazyme Biotech, Nanjing, China) in a 20μl reaction volume on a 7500 Fast Real-Time PCR System, and the
reaction conditions were set at 95 ℃ for 30s followed by 42 cycles of 95 ℃ for 10s and 60℃ for 30s. The qRT-PCR
primers were synthesized by Sangon Biotech (Shanghai) Co, Ltd. The data analysis was performed using the 2−△△CT

method.

Total RNA-sequence and bioinformatics

We used RNA-Sequence to analyze gene expression for functional enrichment analysis [35], all DEGs were mapped to
terms in the GO databases, and then signi�cantly enriched GO terms were searched for among the DEGs using P < 0.05
as the threshold. GO term analysis was classi�ed into three subgroups, namely biological process (BP), cellular
component (CC) and molecular function (MF). All DEGs were mapped to the KEGG database, and searched for
signi�cantly enriched KEGG pathways at P < 0.05 level.

Statistical analysis

The dates are presented as the mean ± standard error of mean. The data were analyzed using one-way ANOVA. P≤0.05
was considered to indicate a statistically signi�cant difference, and P≤0.01 was considered to indicate a highly
signi�cant difference among the different treatment groups.

Results
Establishment of in vitro SSCs differentiation system



Page 5/20

We successfully established the in vitro SSC differentiation culture system. We added SCF, BMP4, RA and Activing A to
the SSC culture medium to induce SSCs differentiation and used real-time PCR to detect SSCs self-renewal and
differentiation marker genes expression. The result showed compared with self-renewing SSCs cultured at 37℃, SSCs
cultured for differentiation at 34℃ showed obvious colony-like growth on the 4th and 6th day after differentiation
culture (Fig. 1A). SSC marker genes ID4 and Thy-1 were signi�cantly (P≤0.05) decreased at day 6 after differentiation
culture. SSC differentiation marker gene c-kit, meiosis related genes Stra8 and Rec8, and spermatocyte related gene
Sycp3 were signi�cantly increased at day 6 after differentiation culture (Fig. 1B). These results showed that the SSCs
differentiation system was successfully established.

Heat stress inhibited SSCs differentiation

In order to clarify the effect of high temperature on the SSC differentiation, the heat stress treatment on differentiated
SSCs was carried out at 37℃and 43℃, respectively (Fig. 2A). Firstly, we examined the effect of heat stress on SSCs
marker genes expression during SSC differentiation. The results showed that 4 days after heat stress treatment, the
expression of stem cell marker genes ID4 and Thy-1 in the 37℃and 43℃ heat shock-treated differentiation culture
groups were signi�cantly higher than those in the 34℃ differentiation culture group. Then, we examined the effects of
heat stress on the expression of SSCs differentiation related genes. The results showed that 2 and 4 days after heat
stress treatment, the expression of c-kit, Stra8, Rec8, Sycp3 and spermatocyte related gene Ovol1 in 37℃ and
43℃ differentiation groups were signi�cantly lower than that in 34℃ differentiation group (P≤0.05). Finally, we
compared the inhibitory effects of heat stress treatment at 37℃and 43℃ on SSC differentiation, and found that long-
term heat stress treatment at 37℃ inhibited the differentiation of SSCs more signi�cantly than heat stress treatment at
43℃ for 30min per day. Two and four days after heat stress treatment, the expression of differentiation related genes c-
kit, Stra8 and Rec8 in 37℃ treatment group was signi�cantly lower than that in 43℃ treatment group, and the
expression of stem cell marker genes Thy-1 was higher than that in 43℃ treatment group (Fig. 2B). These results
showed that heat stress inhibited SSCs differentiation, and long-term 37℃ heat stress treatment inhibited SSC
differentiation more signi�cantly than 30 min 43℃ short-term heat stress treatment. In the subsequent experiments, we
adopted long-term 37℃ heat stress to treat SSCs. 

Heat stress changed gene expression of differentiation cultured SSCs

To reveal the molecular mechanism associated with the effect of heat stress treatment on SSCs differentiation, a DEG
analysis was performed to identify gene expression changes between normal temperature (34℃) and heat stress
temperature (37℃) during SSCs differentiation culture. The results showed that compared with SSCs cultured at 34℃,
765 genes were up-regulated and 895 genes were down-regulated in SSC cultured at 37℃ on day 2; On day 4, 3892
genes were up-regulated and 3360 genes down-regulated (Fig. 3A and B). With the extension of heat stress treatment
time from the second day to the fourth day, although the number of total expressed genes did not change signi�cantly
(29401 and 24713 respectively), the number of differentially expressed genes increased signi�cantly (from 1160 to
7252) (Fig. 3C). 

Gene ontology analysis of the differentially expressed genes

Gene Ontology (GO) analysis was used to characterize the functions of the DEGs obtained from RNA-Seq. Three
different aspects of DEGs called biological processes (BP), cellular component (CC) and molecular function (MF)
re�ected the effects of thermal stress on cell differentiation (Fig. 4A and B). The top 30 enriched terms on the second
and fourth day after 37℃ heat stress treatment are shown in Fig. 4C and Fig. 4D. We compared the top 30 enriched
terms on the second and fourth day after 37℃ heat stress treatment and found 11 common GO Terms (Fig. 4E). These
11 GO terms are cell adhesion molecule binding, rRNA binding, structural molecule activity, structural constituent of
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ribosome, large ribosomal subunit, cytosolic large ribosomal subunit, cytosolic part, ribosome, ribosomal subunit,
cytosolic ribosome, and ribosome biogenesis (Fig. 4C and D, Table 1). 

KEGG analysis of the differentially expressed genes

KEGG enrichment analysis of DEGs can reveal pathways with signi�cant enrichment, which is helpful for �nding
signi�cantly altered biological regulatory pathways. To further explore the roles of DEGs in the effect of SSCs
differentiation after heat stress treatment, we tested whether the DEGs were enriched in certain KEGG pathways. The
top 33 enriched KEGG pathways on the second and fourth after 37℃ heat stress treatment are shown in Fig. 5A and
Fig. 5B. We compared the top 33 enriched KEGG pathway on the second and fourth day after 37℃ heat stress
treatment and found 6 common KEGG pathways (Fig. 5C). These 6 common KEGG pathways are Ribosome, Carbon
metabolism, Citrate cycle (TAC cycle), P53 signaling pathway, Bacterial invasion of epithelial cells and Apoptosis. In
these 6 common KEGG pathway, only the Ribosome, Carbon metabolism and Citrate cycle (TAC cycle) were
signi�cantly enrich on the second day after 37℃ heat stress treatment (Fig. 5A and B, Table 2).  

Discussion
In this study, we successfully investigate the effect of heat stress on SSC differentiation by using in vitro differentiation
cultured SSCs. The results show that high temperature inhibits SSC in vitro differentiation, and alter the expression of
SSC transcriptome. RNA-seq analyses identify signi�cantly inhibited pathways in DEGs after heat stress treatment,
including p53 signaling pathway, carbon metabolism, and ribosome signaling pathways. These results provide new
insights for the diagnosis and treatment of human oligospermia associated with high temperature.

Previous studies have shown that heat stress treatment induces the spermatogenic cell apoptosis in mice and rats, and
leads to infertility gradually [36]. However, the effects of high temperature on SSCs development are still poorly
understood due to the low number in testes. In this study, we added cytokines RA, BMP4, SCF and activin A into the SSC
differentiation medium and established an in vitro SSC differentiation system [33]. Previous studies indicated that RA
was su�cient to induce the entry of SSCs into meiosis, and the expression of Stra8 was signi�cantly increased 24h
after induction of differentiation in combination with BMP4 [37, 38]. As a ligand of c-kit, SCF binds to it and plays an
important role in regulating the balance between self-renewal and differentiation of SSCs [39]. Activin A plays an crucial
role in germ cell maturation during the period when gonocytes resume mitosis to form the SSCs and differentiating
germ cell populations [40], and Activin A is widely used as a cytokine in stem cell differentiation cultured in vitro [41–
43]. Through this culture system, we are able to study SSC differentiation process.

We evaluated the stem cell differentiation culture system by detecting the expression of spermatogenic stage-speci�c
marker genes [34]. The expression of the helix-loop-helix protein ID4 is selective for a subset of Asingle in mouse testes
and plays a role in maintenance of the SSC pool [44]. The level of ID4 is predictive of stem cell or progenitor capacity in
spermatogonia and dictates the interface of transition from the stem cell to the immediate progenitor state [45]. Flow
cytometric cell sorting and the SSC transplantation assay demonstrated that Thy-1 is a unique surface marker of SSCs
in neonatal pup, and adult testes of the mouse [46]. c-kit has been a marker for SSCs pluripotency lost. In early studies,
c-kit expression is detected in type A (A1–A4), intermediate, type B spermatogonia, as well as preleptotene
spermatocytes, but not in the undifferentiated spermatogonia [47, 48]. Stra8, as a response gene to RA, plays an
important role in the initiation of meiosis during spermatogenesis and is a marker for germ cells to enter meiosis [49].
Rec8 is a key component of the meiotic cohesin complex. Rec8 has an essential role in mammalian meiosis, and both
male and female Rec8 null mice have germ cell failure and sterility [50]. SYCP3 (or SCP3) is a DNA binding protein that
forms a structural component of the ligand complex, which mediates chromosome binding or homologous pairing
during meiosis in germ cells [51, 52]. Ovol1 (previously known as movo1), encoding a member of the Ovo family of zinc-
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�nger transcription factors, regulate meiotic pachytene progression during spermatogenesis by repressing Id2
expression, and the targeted deletion of Ovol1 leads to germ cell degeneration and defective sperm production in adult
mice [53].

We successfully established SSC in vitro differentiation culture system. The results of this study showed that after we
added RA, BMP4, SCF and activing A in SSC differentiation medium for differentiation culture, the expressions of ID4
and Thy-1 were down-regulated, while the expressions of c-kit, Stra8, Rec8, Sycp3 and Ovol1 were up-regulated,
indicating that we successfully established the differentiation culture system of SSCs.

High temperature inhibited in vitro cultured SSC differentiation. In most male mammals, the temperature in the scrotum
is usually 2-7 ℃ lower than the core body temperature, and the temperature of the testes is strictly regulated by a heat
exchange system [54]. Therefore, we used 34℃ as the temperature for SSC in vitro differentiation culture. In previous
studies, the 32-34.5℃was widely used for function SSC culture in vitro [55–58]. In this study, we used 37℃ or 43℃ as
the heat stress temperature. 37℃ is the core body temperature, which is equivalent to the testicular temperature in
patients with cryptorchidism. In many studies, 43℃ has been widely used as a heat stress treatment temperature to
study the effects of high temperature on male germ cells in vivo [59]. In our previous study, 43℃was used as a heat
stress temperature to treat self-renewal cultured SSCs in vitro, and it was found that heat stress treatment at 43℃
inhibited the differentiation of SSCs and did not induce SSC apoptosis [32]. The results of this study showed that both
37℃ and 43℃ heat stress inhibited SSC differentiation. The expression of SSC marker genes ID4 and Thy-1 increased
signi�cantly in differentiation cultured SSCs after heat stress treatment, and untill now no similar reports have been
reported. After heat stress treatment, the expression of differentiation related genes c-kit, Stra8, Rec8, Sycp3 and Ovol1
in differentiation cultured SSCs was signi�cantly decreased. Previous studies have shown that the expression of SYCP3
in testis of C57 adult mice was signi�cantly decreased 1d and 7d after 43℃ 15min heat stress treatment [60, 61]. Stra8,
which was periodically expressed in germ cells in seminiferous tubule, was signi�cantly decreased after heat stress
[62]. In our study, we also found that long-term heat stress treatment at 37℃ had a more obvious inhibitory effect on
germ cell differentiation-related gene expression than the 30 min heat stress treatment at 43℃, which provided ideas
for the pathogenesis of azoospermia caused by SSC differentiation disorder in cryptorchidism.

In this study, RNA-Seq analysis was performed on the in vitro differentiation cultured SSCs after heat shock treatment,
and many DEGs were found. GO and KEGG analysis found that after heat stress treatment at 37℃, there were
signi�cant inhibition of some DEGs in p53 signal pathway, carbon metabolism and ribosome signal pathway. Previous
studies suggest that p53 signaling pathway relate to cell differentiation closely [63, 64]. Jain AK’s study show that in
response to the differentiation stimuli such as RA, p53 is activated after being acetylated by CBP/p300 histone acetyl
transferases to induce embryonic stem cells (ESCs) differentiation [65]. In our RNA-seq results, the Thrombospondins1
(Thbs1) gene in p53 signaling pathway was down-regulated. Thbs1 is a member of the extracellular matrix (ECM)
protein family. Thbs1 is associated with angiogenic activity, endothelial cell migration and proliferation, and tumor
angiogenesis [66]. Studies have shown that lung stem cell differentiation in mice directed by endothelial cells via a
BMP4-NFATc1-Thbs1 axis [67]. Thbs1 was activated by TGF-β, as an intermediate factor plays an important role in the
differentiation of mesenchymal stem cells [68]. The results of our study indicate that p53 signaling pathway may play
an important role in inhibiting the differentiation of SSCs at high temperature.

Previous studies have shown that ribosome signaling pathway associated with cell differentiation. Sankaran’s study
found that ribosome levels selectively regulate translation and lineage commitment in human hematopoiesis [69]. The
researchers note that a reduction in ribosome numbers leads to a reduction in the output of the GATA1 protein in blood
stem cells, which in turn affects their differentiation into mature red blood cells [69]. The results of our study showed
that 7 ribosome related GO terms were found in the 11 GO terms that were enriched on the second and fourth day of
heat stress treatment at 37℃ in differentiation cultured SSCs. We found that Rpl13a, Rpl17, Rpl34, Rps28 and Rps2
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genes were enriched in the 6 ribosomal related GO terms. KEGG results indicated that Rpl13a, Mrps18c, and Rps28
genes were enriched in ribosome signaling pathway. The results of our study indicate that ribosome signaling pathway
may play an important role in inhibiting the differentiation of SSCs at high temperature.

The Carbon metabolism signaling pathways enriched in this study may play an important role in inhibiting SSCs
differentiation at high temperature. For many years, stem cell metabolism was viewed as a byproduct of cell fate status
rather than an active regulatory mechanism [70]. Carbon metabolism is a crucial aspect of cell life. Many studies have
found that carbon metabolism is inseparable from cell differentiation. Both folate receptor 1 (folr1) overexpression and
treatment with folinic acid stimulate β-cell differentiation in zebra�sh and pig islets [71]. And the folic acid is an
important vitamin of the one-carbon metabolism pathway that provides carbon units for numerous cellular processes
[72, 73]. Due to its essential role in nucleic acid synthesis, inhibition of folate metabolism blocks cellular proliferation
[74]. Mitochondria are bioenergetic organelles that produce ATP via oxidative phosphorylation (OXPHOS) and play an
important role in mediating stem cell fate and function. In the pre-implantation stage of mammalian development,
cellular energy in the form of adenosine triphosphate (ATP) is generated primarily through the oxidation of carbon
sources [75]. Loss of the mitochondrial complex III subunit rieske iron-sulfur protein (RISP) in fetal mouse
hematopoietic stem cells allows them to proliferate but impairs their differentiation, leading to anemia and prenatal
death [76]. Mitochondria dynamically regulate stem cell identity, self-renewal, and differentiation by orchestrating a
transcriptional program [77].

Conclusion
These results indicate that high temperature at 37℃ signi�cantly inhibits SSC differentiation and promotes enrichment
of P53, ribosome and carbon metabolism signaling pathways in stem cell differentiation, providing a reference for the
pathogenesis of heat-induced azoospermia.
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Table 1
The 11 common GO terms enriched on the second and fourth day after 37℃ heat stress treatment

GO-ID GO term 37℃ diff-2d vs 34℃ diff-2d 37℃ diff-4d vs 34℃ diff-4d Type

UP-Genes Down-
Genes

P-
value

UP-Genes Down-
Genes

P-
value

GO:
0022626

cytosolic
ribosome

Rps28, Rpl13a Uba52,
Rps2

3.18E-
14

Rpl17,
Rpl10,
Rpl34

Rps10,
Repin1,
Rp121

6.78E-
21

CC

GO:
0044391

ribosomal
subunit

Rpl13a, Rps28 Rbm3,
Uba52,
Rps2

3.34E-
10

Rpl13,
Rpl17,
Npm1

mt-Co1,
mt-Nd5

1.54E-
28

CC

GO:
0003735

Structural
constituent
of
ribosome

Rpl13a, Rps28 Rps2,
Rps25,
Rpl10

1.14E-
09

Rpl17,
Rpl10,
Rpl34

Rps10,
Rpl21

9.69E-
27

MF

GO:
0005840

ribosome Rpl13a, Nu�p2,
Rps28

Rbm3,
Uba52,
Rps2

1.57E-
08

Rbm3,
Rpl17,
Npm1

Rps10,
Repin1,
Rrbp1

2.56E-
28

CC

GO:
0044445

Cytosolic
part

Rpl13a, Ahr, Pfkl Uba52,
Rps2,
Gm11808

4.41E-
08

Rpl17,
Rpl10,
Rpl34

Eno2,
Adcy6, Ahr

1.02E-
14

CC

GO:
0022625

cytosolic
large
ribosomal
subunit

Rpl13a Uba52,
Gm11808,
Rpl10

2.21E-
06

Rpl17,
Rpl10,
Rpl34

Rpl21 1.96E-
14

CC

GO:
0005198

structural
molecule
activity

Mapk8ip3,Rpl13a,
Col5a2

Col18a1,
Sept9,
Rps2

5.14E-
06

Rpl13,
Rpl17,
Rpl10,
Mrpl14

Mapk8ip3,

Col1a1,

Col3a1

3.34E-
11

MF

GO:
0042254

ribosome
biogenesis

Ddx17, Skiv2l2,
Utp14b

Rps2,
Rps25,
Rpl10

3.03E-
05

Rpl13, Fb1,
Rpl17,
Rpl10,

Mapk8ip3,
Col1a1,
Col3a1

2.43E-
25

BP

GO:

0019843

rRNA
binding

- Cirbp,
Rps13,
Ncl

1.23E-
04

Rpl17,

Npm1,Ncl

Cavin1,

Mdm2,Lipe

1.22E-
07

MF

GO:
0015934

large
ribosomal
subunit

Rpl13a Rbm3,
Uba52,
Gm11808

1.42E-
04

Rbm3,
Rpl17,
Npm1

Rpl21 5.00E-
19

CC

GO:
0050839

cell
adhesion
molecule
binding

Nisch, Flnb, Jaml Vwf,
Tgfbi,
Efhd2

1.27E-
03

Rps2,Bzw1,
Serbp1,
Rps26

Thbs1,
Cyr61

3.82E-
12

MF
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Table 2
The 6 common KEGG pathways enriched on the second and fourth day after 37℃ heat stress treatment

KEGG ID KEGG Pathway 37℃ diff-2d vs 34℃ diff-2d 37℃ diff-4d vs 34℃ diff-4d

Gene name P-
value

Gene name P-
value

mmu03010 Ribosome Rpl13a, Mrps18c,
Rps3, Rps28

1.59E-
09

Rpl17, Rpl10, Rplp1,
Rpl7a

1.44E-
18

mmu01200 Carbon metabolism Aldoa, Fbp2, Pfkl,
Ogdh, Rpe

4.86E-
06

Phgdh, Gcsh, Sdhb, Me2,
Eno2

1.36E-
02

mmu00020 Citrate cycle (TCA cycle) Sdhb, Ogdh, Idh1,
Mdh2, Sucla2

7.46E-
03

Sdhb, Idh3a, Pdha1,
Idh3g, Sdhd

1.36E-
02

mmu04115 p53 signaling pathway Thbs1, Ccnd3, Perp,
Fas, Bcl2l1

6.16E-
02

Bbc3, Ccng2, Thbs1,
Chek1, Pmaip1

1.53E-
04

mmu05100 Bacterial invasion of
epithelial cells

Sept9, Was, Cbl, Arpc2,
Sept11

7.36E-
02

Was, Fn1, Hcls1, Arpc2,
Sept9

6.11E-
03

mmu04210 Apoptosis Fos, Ctsw, Fas,
Tnfsf10, Itpr3

8.89E-
02

Fos, Gzmb, Tuba8,
Tuba1b, Cycs

8.14E-
03

Figures



Page 16/20

Figure 1

Establishment of in vitro SSC differentiation system. A. SSCs grew well in 37℃ self-renewal culture group and 34℃
differentiation culture group. Bar=100μm. B. SSC marker genes ID4 and Thy-1 were signi�cantly decreased at day 4 and
6 after differentiation culture, and SSC differentiation marker gene c-kit and meiosis related genes Stra8, Rec8 and
Sycp3 were signi�cantly increased. Self-ren, self-renewal; 34℃diff, differentiation culture at 34℃; 34℃diff-4d, the
fourth day of differentiation culture at 34℃; 34℃diff-6d, the sixth day of differentiation culture at 34℃. *P≤0.05,
**P≤0.01.
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Figure 2

Heat stress inhibited the SSC differentiation. A. In control group, SSC was cultured at 34℃. SSCs in heat stress
treatment groups were cultured at 37℃ and 43℃, respectively. Bar=100μm. B. The expression of SSCs marker genes
ID4 and Thy-1 in the 37℃ and 43℃ differentiation culture groups were signi�cantly higher than those in the 34℃
differentiation culture group. The expression of SSCs differentiation marker gene c-kit, meiosis related genes Stra8 and
Rec8, as well as spermatocyte leptotene and pachytene related genes Sycp3 and Ovol1 in 34℃ differentiation groups
was signi�cantly higher than those in 37℃ and 43℃differentiation groups.
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Figure 3

Heat stress changed gene expression of differention cultured SSCs. A. The volcano �gure of 37℃diff-2d vs 34℃diff-
2d. B. The volcano �gure of 37℃ diff-4d vs 34℃diff-4d. C. The number of differentially expressed genes in 37 ℃ heat
stress group and control group.
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Figure 4

Gene Ontology analysis of the differentially expressed genes. A. GO classi�cation in 37℃ and 34℃ differentiation
cultured groups on the second day. B. GO classi�cation in 37℃ and 34℃ differentiation cultured groups on the fourth
day. C. The top 30 enrichment GO terms in 37℃ and 34℃ differentiation cultured groups on the second day. D. The top
30 enrichment GO terms in 37℃ and 34℃ differentiation cultured groups on the fourth day. The red boxes represent
the common GO terms enriched on the second and fourth day of heat stress treatment at 37℃. E. Venn diagrams show
that 11 of the top 30 enrichment GO terms were the same on day 2 and day 4 after heat stress treatment.



Page 20/20

Figure 5

KEGG analysis of the differentially expressed genes. A. The top 33 KEGG enrichment pathways in 37℃ and 34℃
differentiation cultured groups on the second day. B. The top 33 KEGG enrichment pathways in 37℃ and 34℃
differentiation cultured groups on the fourth day. The red boxes represent the common KEGG pathways enriched on the
second and fourth day of heat stress treatment at 37℃. E. Venn diagrams show that 6 of the top 33 KEGG enrichment
pathways were the same on day 2 and day 4 after heat stress treatment.


