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Summary 

 

Previous genome-wide association studies (GWAS) of stroke, the second leading cause of 

death, have been conducted in populations of predominantly European ancestry.1,2 We 

undertook cross-ancestry GWAS meta-analyses of stroke and its subtypes in 110,182 

stroke patients (33% non-European) and 1,503,898 control individuals of five ancestries 

from population- and clinic-based studies, nearly doubling the number of cases in 

previous stroke GWAS. We identified association signals at 89 independent loci, of 

which 61 were novel. Effect sizes were overall highly correlated across ancestries. Cross-

ancestry fine-mapping, in silico mutagenesis analysis using a novel machine-learning 

approach,3 transcriptome and proteome-wide association analyses revealed putative 

causal genes (e.g. SH3PXD2A and FURIN) and variants (e.g. at GRK5 and NOS3). Using 

a novel three-pronged approach,4 we provided genetic evidence for putative drug effects, 

highlighting F11, KLKB1, PROC, GP1BA, and VCAM1 as possible targets, with drugs 

already under investigation for stroke for F11 and PROC. A polygenic score integrating 

cross-ancestry and ancestry-specific stroke GWAS with vascular risk factor GWAS 

(iPGS) showed strong prediction of ischemic stroke risk in European and, for the first 

time, East-Asian populations.5,6 The iPGS performed better than stroke PGS alone and 

better than previous best iPGS, in Europeans and East-Asians. Transferability of 

European-specific iPGS to East-Asians was limited. Stroke genetic risk scores were 

predictive of ischemic stroke independent of clinical risk factors in 52,600 clinical trial 

participants with cardiometabolic disease and performed considerably better than 

previous scores, both in Europeans and East-Asians. Altogether our results provide 

critical insight to inform biology, reveal potential drug targets for intervention, and 

provide genetic risk prediction tools across ancestries for targeted prevention. 

  



Introduction 

 

Stroke is the second leading cause of death worldwide, responsible for approximately 12% of 

total deaths, with an increasing burden particularly in low-income countries.7 Characterized 

by a neurological deficit of sudden onset, stroke is predominantly caused by cerebral ischemia 

(of which the main etiological subtypes are large-artery atherosclerotic stroke [LAS], 

cardioembolic stroke [CES], and small-vessel stroke [SVS]) and, less often, by intracerebral 

hemorrhage (ICH). The frequency of stroke subtypes differs between ancestry groups as 

exemplified by a higher prevalence of SVS and ICH in Asian and African compared with 

European populations. Most genetic loci associated with stroke have been identified in 

populations of European ancestry. The largest published genome-wide association study 

(GWAS) meta-analysis to date (67,162 cases and 454,450 controls, MEGASTROKE) 

reported 32 stroke risk loci.1,8 To identify new genetic associations and provide insight into 

stroke pathogenesis and putative drug targets, we first performed cross-ancestry GWAS on 

1,614,080 participants including 110,182 stroke patients. We then characterized identified 

stroke risk loci by leveraging expression and protein quantitative trait loci, cross-ancestry 

fine-mapping, and shared genetic variation with other traits. Finally, we used a series of 

approaches for genomics-driven drug discovery for stroke prevention and treatment, and 

explored the prediction of stroke with polygenic scores across ancestries in the setting of both 

population-based studies and clinical trials.  

  

Results 

 

Genetic discovery from association analyses 

We performed a fixed-effect inverse-variance weighted (IVW) GWAS meta-analysis on 29 

population-based cohorts or biobanks with incident stroke ascertainment and 25 clinic-based 

case-control studies, comprising up to 110,182 stroke patients and 1,503,898 controls (of 

which 45.5% in longitudinal cohorts or biobanks), nearly doubling the number of cases in 

previous stroke GWAS (the GIGASTROKE initiative, Supplementary Table 1, Extended 



Data Fig. 1). Genome-wide genotyping and imputation characteristics are described in 

Supplementary Table 2. The cohorts included individuals of European (EUR, 66.7% of 

stroke patients), East-Asian (EAS, 24.8%), African-American (AFR, 3.7%), South-Asian 

(SAS, 3.3%), and Hispanic (HIS, 1.4%) ancestry. Analyses were performed for any stroke 

(AS: comprising ischemic stroke, ICH, and stroke of unknown or undetermined type), any 

ischemic stroke regardless of subtype (AIS, N=86,668), and ischemic stroke subtypes (LAS, 

N=9,219; CES, N=12,790; SVS, N=13,620). We also conducted separate GWAS of incident 

AS and AIS (N=32,903 and 16,863) in longitudinal population-based cohort studies. 

We tested up to ~7,588,359 single nucleotide polymorphisms (SNPs) with minor allele 

frequency (MAF) ≥0.01 for association with stroke. The LD score intercepts for our ancestry-

specific GWAS meta-analyses ranged between 0.91 and 1.12, suggesting no systematic 

inflation of association statistics (Supplementary Table 3). We identified variants associated 

with stroke at genome-wide significance (p<5×10−8) at 60 loci, of which 33 were novel (Fig. 

1, Supplementary Table 4). Lead variants at all novel loci were common (MAF≥0.05), 

except for low-frequency intronic variants in THAP5 (MAF=0.02, in complete association 

[r2=1] with variants in the 5’UTR of NRCAM) associated with cross-ancestry incident 

AS/AIS, and in COBL (MAF=0.04) associated with AS/AIS in South-Asians. Using 

conditional and joint analysis (GCTA-COJO),9 we confirmed three independent signals at 

PITX2 and two at SH3PXD2A (CES in EUR, Supplementary Table 5).1 Cross-ancestry 

gene-based association analyses using VEGAS10 revealed 158 gene-wide significant 

associations (p<2.63x10-6)  in 34 loci, of which 7 were in 4 novel loci not reaching genome-

wide significance in the single-variant analyses (AGAP5/SYNPO2L/SEC24C/CHCHD1, 

USP34, USP38, and MAMSTR, Supplementary Table 6-7). Next, we conducted a cross-

ancestry meta-analysis with MR-MEGA,11 which accounts for the allelic heterogeneity 

between ancestries. We identified three additional genome-wide significant loci for AS (all 

novel), near TSPAN19, and in introns of DAZL and SHOC1, all showing high heterogeneity in 

allelic effects across ancestries (Heterogeneity P-value<0.01, Supplementary Table 8).  

Overall, the largest number of genome-wide significant associations was identified for AS (50 

loci, 27 novel [27]) and AIS (45 loci, [19]), of which one with incident AIS only. While AIS 

subtypes were not available in some population-based cohorts (Supplementary Table 1), 

genome-wide significance was reached for 3 loci ([1]) for LAS, 7 ([5]) for CES, and 7 ([2]) 

for SVS (Supplementary Table 4). To further enhance statistical power for AIS subtypes, we 

conducted multi-trait analyses of GWAS (MTAG)12 in Europeans and East-Asians, including 



traits correlated with specific stroke subtypes, namely: (i) coronary artery disease (CAD) for 

LAS, both caused by atheroma (ii) atrial fibrillation (AF) for CES, as its main underlying 

cause, and (iii) white matter hyperintensity volume (WMH, an MRI-marker of cerebral small 

vessel disease) for SVS (available in Europeans only). In Europeans, 11 [10] additional loci 

were associated with LAS (10 novel), 3 with SVS (all reported in a recent SVS GWAS2), and 

5 with CES (all novel, Supplementary Tables 9-11). Moreover, 18 and 15 additional 

genome-wide significant associations were identified for AS and AIS, respectively (all novel) 

using MTAG with WMH, CAD, and AF (Supplementary Tables 12-13). In East-Asians, one 

locus was associated with AS (FGF5) and one with LAS (HDAC9, novel in EAS) using 

MTAG. This brings the number of identified stroke risk loci to 89 [61] in total, of which 68 

[45] associated with AS, 50 [35] with AIS, 14 [11] with LAS, 12 [10] with CES, and 10 [2] 

with SVS (Fig. 1, Supplementary Table 4, 8, and 9-14).  

Comparing effects across ancestries and cross-ancestry fine-mapping  

To our knowledge, our results include the most comprehensive and largest description of 

stroke genetic risk variants to date in each of the five represented ancestries. In cross-ancestry 

meta-analyses (IVW and MR-MEGA) 56 loci reached genome-wide significance, while 39 

loci were genome-wide significant in Europeans, 6 in East-Asians (4 shared with Europeans), 

1 in South-Asians, and 2 in African-Americans (at 3p21 and PTCH1 [SVS], Supplementary 

Table 4).  

For the 60 stroke risk loci derived from the IVW meta-analyses we compared the per-allele 

effect size across the three ancestries with the largest sample size (EUR, EAS, AFR). 

Correlations of per-allele effect sizes of index variants varied from r=0.55 (EUR with AFR) to 

0.66 (EUR with EAS) and 0.74 (EAS with AFR, Fig. 2a).  

To identify putative causal variants at stroke risk loci identified through IVW meta-analyses, 

we performed multiple-causal-variant fine-mapping using SuSiE,13 separately in Europeans 

and East-Asians (Methods). Across stroke types we identified 110 and 16 95% credible set 

(CS)-trait pairs in EUR and EAS respectively, each of which having a 95% posterior 

probability of containing a causal variant, with multiple CS identified at 6 (EUR) and one 

(EAS) stroke risk loci (Supplementary Tables 15-17). Within the CS identified in EUR, 17 

variants were found to have a posterior inclusion probability (PIP) > 0.9. We found 

overlapping CS between Europeans and East-Asians at SH3PXD2A (19 overlapping variants), 

suggesting cross-ancestry shared genetic architecture at this locus (Fig. 2b). Two loci had CS 



with a single variant (rs10886430 at GRK5 [PIP= 0.999], associated with GRK5 platelet gene 

expression and thrombin-induced platelet aggregation,14 and rs1549758 at NOS3, PIP= 

0.995), likely representing strong targets for functional validation.   

Although there were six nonsynonymous variants among CS (rs671 [ALDH2], rs8071623 

[SEPT4], rs35212307 [WDR12], rs72932557 [CARF], rs11906160 [MYH7B], and rs2501968 

[CENPQ]), exonic variants for coding RNA within CS were few (1.2%). To detect putative 

causal regulatory variants, we conducted in silico mutagenesis analysis using MENTR, a 

machine-learning method to pin-point prediction of causal variants on transcriptional 

changes.3  From CS, we obtained 78 robust predictions of variant-transcript-model sets 

comprising 13 variants and 19 transcripts (Supplementary Table 18). In particular, 

rs12476527 (5’UTR of KCNK3, also a blood pressure locus15) was predicted to increase 

KCNK3 expression in kidney cortex tubule cells, despite no eQTL of this variant being 

reported in GTEx (v8) or eQTLgen (2019-12-23). Furthermore, three variants (rs12705390 at 

PIK3CG, rs2282978 at CDK6, rs2483262 at PRDM16) were predicted to affect expression of 

a long non-coding RNA and enhancer RNAs, in endothelial cells, umbilical vein, and visceral 

preadipocytes respectively.  

Characterization of stroke-associated loci  

VEGAS2Pathway16 analysis revealed significant enrichment (P<5.01x10-6) of stroke risk loci 

in pathways involved in (i) carboxylation of amino-terminal glutamate residues required for 

activation of proteins involved in blood clot formation and regulation, (ii) negative regulation 

of coagulation, and (ii) angiopoietin receptor Tie2-mediated signaling, involved in 

angiogenesis (Supplementary Table 19).  

We explored shared genetic variation with 12 (in Europeans) and 6 (in East-Asians) vascular 

risk factor and disease traits (Methods, Supplementary Methods). In Europeans, the lead 

variants for stroke at 57 of the 88 risk loci (64.8%) were associated (P<5×10−8) with at least 

one vascular trait, most frequently blood pressure (34 loci, 38.6%, Extended Data Figure 2, 

Supplementary Table 20). Following correction for multiple testing (Methods, p<4.17x10-3) 

all vascular risk traits except LDL-cholesterol showed significant genetic correlation with at 

least one stroke type, the strongest correlations being for CAD and LAS (rg=0.73), AF and 

CES (rg=0.63), and SBP with all stroke types (rg ranging from 0.21 for CES to 0.49 for LAS 

and SVS, Extended Data Fig. 3, Supplementary Table 21) Using two-sample Mendelian 

randomization (MR) we found evidence for a causal association for every vascular risk trait 



except triglycerides with at least one stroke type (p<4.17x10-3), with some subtype-specific 

association patterns. Genetically predicted WMH was associated with increased risk of SVS 

but not other stroke subtypes, while genetically predicted venous thromboembolism (VTE) 

was associated with AS, AIS, CES, and LAS, but not SVS (Extended Data Fig. 3, 

Supplementary Table 22). In East-Asians, SBP, DBP, and BMI showed significant genetic 

correlation with any stroke (rg=0.45, 0.39 and 0.24 vs. rg=0.36, 0.21, and 0.22 in Europeans), 

with evidence for a causal association of SBP and DBP with AS, AIS, and SVS (Extended 

Data Fig. 4, Supplementary Tables 21-22). 

Next, to generate hypotheses of target genes and directions of effect, we conducted 

transcriptome-wide association studies using TWAS-Fusion17 and expression quantitative trait 

loci (eQTL) based on RNA sequencing in different tissues.18-21 We identified 27 genes whose 

genetically regulated expression associated with stroke and its subtypes at the transcriptome-

wide level and colocalized in at least one tissue (10 genes in arteries and heart; 6 genes in 

brain tissue; 17 genes across tissues), of which 18 overlapped with 11 genome-wide 

significant stroke risk loci (Extended Data Fig. 5, Supplementary Table 23). For loci where 

bulk tissue expression levels of several genes showed evidence for association with stroke, 

human single-cell sequencing data of vascular-related brain cells in the dorsolateral prefrontal 

cortex (dPFC) showed distinct cell-specific gene expression patterns suggesting that multiple 

genes could be involved via different cell types (Extended Data Fig. 6). Further, using 

proteome-wide association studies (PWAS) in dPFC brain tissue we found evidence for 

association of ICA1L with AS and AIS through its cis-regulated protein abundance, with 

colocalization evidence (Extended Data Fig. 7, Supplementary Table 24). In both TWAS 

and PWAS, lower ICA1L transcript or protein abundance in the dPFC was associated with 

higher risk of stroke.  

Genomics-driven drug discovery 

We used a three-pronged approach for genomics-driven discovery of drugs for prevention or 

treatment of stroke (Methods, Fig. 3).4 First, using GREP22 we observed significant 

enrichment of stroke-associated genes (MAGMA23 false discovery rates [FDR] <0.05) in 

drug-target genes for blood and blood-forming organs (Anatomical Therapeutic Chemical 

Classification System [ATC] B drugs, for AS, AIS, and CES). This encompasses the 

previously described PDE3A and FGA genes,24 encoding targets for cilostazol (antiplatelet 

agent) and alteplase (thrombolytic drug), respectively, as well as F11, KLKB1, and MUT 



encoding targets for conestat alfa, ecallantide (both used for hereditary angioedema) and 

vitamin B12, respectively (Supplementary Table 25). Second, we used Trans-Phar25 to test 

the negative correlations between genetically determined case-control gene expression 

associated with stroke (TWAS using all GTEX v7 tissues18) and compound-regulated gene 

expression profiles. We observed significant negative correlations for BRD.A22514244 (for 

SVS; drug target unknown) and GR.32191 (for CES, Supplementary Table 26). GR-32191 

is a Thromboxane A2 receptor antagonist proposed as an alternative antiplatelet therapy for 

stroke prevention,26 and further drugs of this class are under development.27 We note that one 

of those drugs, Terutroban, was evaluated in a Phase III study but failed to show non-

inferiority against Aspirin.28 Third, we used protein quantitative trait loci (pQTL) for 218 

drug-target proteins as instruments for MR and found evidence for causal associations of 9 

plasma proteins with stroke risk (4 cis-pQTL, 6 trans-pQTL), of which 6 were supported by 

colocalization analyses, with no evidence for reverse causation using the Steiger test (PROC, 

VCAM1, F11, KLKB1, MMP12, and GP1BA, Supplementary Table 27). Using public drug 

databases we curated drugs targeting those proteins in a direction compatible with a beneficial 

therapeutic effect against stroke based on MR estimates: such drugs were identified for 

PROC, VCAM1, F11, KLKB1, and GP1BA (Supplementary Table 28). Drugs targeting F11 

(NCT04755283, NCT04304508, NCT03766581) and PROC (NCT02222714) are currently 

under investigation for stroke, and our results provided genetic support for this. Of note, F11 

and KLKB1 are adjacent genes with a long range linkage disequilibrium pattern and complex 

co-regulation,29 as illustrated here by the presence of a shared trans-pQTL in KNG1 

(Supplementary Table 27). Additional studies are needed to disentangle causal associations 

and the most appropriate drug target in this region.30,31 To further validate the candidate drugs 

and estimate their potential side effects, we investigated whether the drug-target genes were 

associated with stroke-related phenotypes using a phenome-wide association study (PheWAS) 

approach.32 We conducted PheWAS in Estonian Biobank (EstBB) for the pQTL variants and 

rare deleterious variants in PROC, VCAM1, F11, KLKB1, and GP1BA genes (Supplementary 

Table 29). Rs2289252, a cis-pQTL for F11, was associated with higher risk of venous 

thromboembolic disorders (p<5.37×10−6), as previously described,33 and showed suggestive 

association (p=4.23×10-3) with cerebral infarction (I63, Extended Data Fig. 8). Conversely, 

we observed no significant association with non-stroke-related phenotypes, suggesting the 

safety of targeting F11. Similar profiles were observed in UK Biobank and FinnGen 

(https://r5.finngen.fi/variant/4-186286227-C-T), with no significant associations with other 

disorders and no overlap of subthreshold signals with side-effects reported in clinical trials.34 

https://r5.finngen.fi/variant/4-186286227-C-T


Overall, combining evidence from genomics-driven drug discovery approaches, 

characterization of stroke risk loci, and prior knowledge from monogenic disease models and 

experimental data, we found evidence for potential functional implication of 47 genes to be 

prioritized for further functional follow-up, with evidence from multiple approaches for 17 

genes (Supplementary Table 30).  

Polygenic risk prediction in the population 

We explored the risk prediction potential of stroke GWAS, alone and in combination with 

vascular risk trait GWAS, in Europeans and East-Asians, using ancestry-specific polygenic 

scores (PGS). PGS were based on ancestry-specific and cross-ancestry GWAS summary 

statistics. We first derived single PGS (sPGS) models from single stroke GWAS summary 

data (Supplementary Table 31). We then constructed integrative PGS (iPGS) models, which 

combined multiple GWAS summary data of different traits into a PGS using elastic-net 

logistic regression (Extended Data Fig. 9-10).6 The iPGS analysis used two datasets for each 

ancestry for model training and evaluation, respectively. Participants in the training and 

evaluation datasets did not overlap and were not included in the input GWAS summary data.  

For Europeans, we constructed the iPGS model using 1,003 prevalent AIS cases and 8,997 

controls, followed by evaluation of the model using 1,128 incident AIS cases among 102,099 

participants, all from EstBB. The improvement in predictive ability (∆C-index) was assessed 

over a base model including age, sex, and the top 5 principal components for population 

stratification (PCs). The iPGS model for Europeans incorporated 10 GIGASTROKE GWAS 

(all stroke types, using the European and cross-ancestry analysis) and 14 vascular risk trait 

GWAS (Extended Data Fig. 9, Supplementary Table 32). The iPGS model achieved a ∆C-

index of 0.022 (Figure 4a and Supplementary Table 33), 58% higher than that for a 

previously constructed iPGS model for Europeans, derived from 5 MEGASTROKE GWAS 

and the same vascular risk trait GWAS (∆C-index=0.014).6 The age-, sex-, and top 5 PC-

adjusted hazard ratio (HR) per standard deviation (SD) of the PGS was 1.25 (95% confidence 

interval [CI], 1.18–1.32; P=8.2×10-14) for the GIGASTROKE-based iPGS model compared to 

1.19 (95%CI, 1.12–1.26; P=4.2×10-9) for the MEGASTROKE-based iPGS model (Fig. 4a).  

For East-Asians, we derived the iPGS model using 577 prevalent AIS cases and 9,232 

controls, and evaluated the model using 1,470 prevalent AIS cases and 40,459 controls, from 

Biobank Japan (BBJ). A base model including age, sex, and top 5 PCs showed an area under 

the curve (AUC) of 0.634. The iPGS model was constructed by integrating 10 



GIGASTROKE GWAS and 37 vascular risk trait GWAS (Extended Data Fig. 10, 

Supplementary Table 34). The iPGS model for East-Asians showed an improvement in 

AUC (∆AUC) of 0.020 (Figure 4a and Supplementary Table 35). The age-, sex-, and top 5 

PC-adjusted odds ratio (OR) per SD of PGS was 1.33 (95%CI, 1.26–1.40; P=2.3×10-26) for 

the iPGS model. The MEGASTROKE- and GIGASTROKE-based iPGS models for 

Europeans achieved lower AUC improvement (∆AUC=0.007 and 0.014, respectively) than 

the GIGASTROKE-based iPGS model for East-Asians. While this suggests that the 

transferability of iPGS models for Europeans to East-Asians might be limited 

(Supplementary Table 35), it does indicate that an ancestry-specific stroke iPGS approach 

yields similar improvement in predictive ability relative to their base models.   

For Europeans (Figure 4b and Supplementary Table 36), compared to those in the middle 

10% (45–55%) of the GIGASTROKE-based iPGS, those in the top 1% showed a >2.6-fold 

higher hazard of ischemic stroke (HR=2.61 [95%CI, 1.72–3.96]; P=1.1×10-6), while those in 

the top 0.1% showed a >3.6-fold higher risk (HR=3.65 [95%CI, 1.28–10.38]; P=0.02). For 

East-Asians (Figure 4c and Supplementary Table 37), those in the top 1% of the iPGS 

showed >2.1-fold higher odds of ischemic stroke (OR=2.11 [95% CI, 1.37–3.25]; P=6.7×10-4) 

and the risk of those in the top 0.1% was >3.1-fold higher (OR=3.11 [95% CI, 1.08–8.92]; 

P=0.04) than the middle 10%. Although caution is warranted when interpreting risk estimates 

in the highest PGS groups due to wide confidence intervals, these results indicate that 

GIGASTROKE-based iPGS models may be useful to stratify individuals exposed to 

genetically high risk of ischemic stroke, not only for Europeans but also for East-Asians.  

Risk prediction in a clinical trial setting  

We further explored whether a genetic risk score (GRS) based on genome-wide significant 

risk loci from the cross-ancestry IVW any stroke (AS) meta-analyses could identify 

individuals at higher risk for AIS after accounting for established risk factors in 5 clinical 

trials35-39 across the spectrum of cardiometabolic disease. The primary analysis was conducted 

in 51,288 European participants of whom 960 developed an incident ischemic stroke (AIS) 

over 3 years follow-up. In a Cox model adjusted for age, sex, and vascular risk factors 

(Methods), a higher GIGASTROKE GRS was significantly associated with increased risk for 

AIS in Europeans (adjusted hazard ratio [HR] of 1.17 [95%CI, 1.09-1.24] per standard 

deviation [SD] increase, P=2x10-6, Supplementary Table 38). This association was 

substantially stronger than the association with the earlier MEGASTROKE GRS based on 32 



genome-wide significant stroke risk loci (HR=1.07 [1.00-1.14], P=0.036).1,40 Compared with 

patients in the lowest GIGASTROKE GRS tertile, patients in the top GRS tertile had an 

adjusted HR of 1.35 (1.16-1.58) for developing AIS whereas those in the middle tertile had an 

adjusted HR of 1.13 (0.96-1.33, Ptrend=1.4x10-4, Fig. 4). The performance of the GRS was 

stronger in individuals without previous stroke (N=44,095; adjusted HR of top versus lowest 

tertile, 1.37 [1.14-1.65]) than in those with a previous stroke (N=7,193; adjusted HR, 1.15 

[0.87-1.54]). Similar associations were observed when using effect estimates from stroke 

GWAS meta-analyses in Europeans or for AIS (Supplementary Table 38). In secondary 

analyses we explored the association of the GIGASTROKE cross-ancestry AS GRS with 

incident AIS in the much smaller East-Asian sample (1,312 participants of whom 27 

developed an incident stroke over 3 years follow-up), and found consistent associations 

(HR=1.49 [1.00-2.21] per SD increase, P=0.048, Supplementary Table 38), while the 

MEGASTROKE GRS was not associated with incident AIS in East-Asians (HR=0.82 [0.55-

1.23], P=0.34).  



Discussion 

 

Our GWAS meta-analyses gathering over 110,000 stroke patients from five different 

ancestries identified 61 novel risk loci for stroke and stroke subtypes and suggest substantial 

shared susceptibility to stroke across ancestries, with strong correlation of effect sizes. Effect 

estimates for variants that were common across ancestries were typically similar, while, 

expectedly, variants that were rare or low frequency (MAF≤0.05) in one or more populations 

showed differences in effect size, e.g. at PROCR, TAP1, or BNCZ-CNTLN (MAF≤0.05 in 

EAS), or at GRK5, FOXF2, or COBL (MAF≤0.05 in AFR). Ancestry-specific meta-analyses 

in non-European populations detected fewer loci than in Europeans (likely due to smaller 

sample sizes), which were nevertheless biologically plausible, e.g. 3p21 and PTCH1 for SVS 

in AFR. Rare variants at 3p21 were recently shown to be associated with WMH volume,41 

whereas common variants at PTCH1 were associated with functional outcome after ischemic 

stroke (in EUR).42 Novel association signals from cross-ancestry GWAS included for instance 

variants at PROCR, GRK5 and F11 (thrombosis), LPA and ATP2B1 (lipid metabolism, 

hypertension, and atherosclerosis), SWAP70 (membrane ruffling), and LAMC1 

(cerebrovascular matrisome). 

Extensive bioinformatics analyses highlight genes for prioritization in further functional 

follow-up (Supplementary Table 30). For example, a promoter variant of SH3PXD2A, 

encoding an adaptor protein involved in extracellular matrix degradation via invadopodia and 

podosome formation,43 was predicted to modulate its expression in macrophages. As another 

example, FURIN expression levels across tissues were associated with increased stroke risk. 

FURIN is expressed in brain endothelial cells,44 has previously been implicated in coronary 

artery disease,45 and FURIN inhibition reduces vascular remodeling and atherosclerotic lesion 

progression in mice.46 FURIN  also plays a key role in SARS-CoV-2 infectivity,47 and 

COVID-19 patients are at increased risk of AIS, especially LAS.48 The FURIN locus was 

predominantly associated with LAS in our data (Supplementary Table 39).   

Our results provide genetic evidence for putative drug effects using three independent 

approaches, with converging results from two methods (gene enrichment analysis and pQTL-

based MR) for drugs targeting F11 and KLKB1. F11 and F11a inhibitors (e.g. abelacimab, 

BAY 2433334, BMS-986177) are currently explored in phase-2 trials for primary or 

secondary stroke prevention (NCT04755283, NCT04304508, NCT03766581). Additional 



evidence from pQTL-based MR suggested PROC, GP1BA, and VCAM1 as potential drug 

targets for stroke. A recombinant variant of human activated protein C (encoded by PROC) 

was found to be safe for the treatment of acute ischemic stroke following thrombolysis, 

mechanical thrombectomy or both in phase 1 and 2 trials (3K3A-APC, NCT02222714),49,50 

and is poised for an upcoming phase 3 trial. 3K3A-APC is proposed as a neuroprotectant, 

with evidence for protection of white matter tracts and oligodendrocytes from ischemic injury 

in mice.51 Anfibatide, a GPIbα antagonist, reduced blood-brain barrier disruption following 

ischemic stroke in mice52 and is being tested as an antiplatelet drug in myocardial infarction 

(NCT01585259). While specific VCAM1 inhibitors are not available, probucol, a lipid 

lowering drug with pleiotropic effects including VCAM1 inhibition was tested for secondary 

prevention of atherosclerotic events in CAD patients (PROSPECTIVE, UMIN000003307).53 

We improved polygenic risk prediction of stroke and importantly pioneered the exploration of 

stroke PGS across ancestries. Polygenic scores integrating cross-ancestry and ancestry-

specific stroke GWAS with vascular risk factor GWAS (iPGS) showed strong prediction of 

ischemic stroke risk in European and, importantly, for the first time, in East-Asians where 

stroke incidence is highest.7 The iPGS performed better than stroke PGS alone and better than 

previous best iPGS in Europeans.6 We obtained similar improvement in predictive ability of 

ancestry-specific and cross-ancestry iPGS relative to base models in Europeans and East-

Asians, whereas, in contrast to the approach we develop, transferability of European-specific 

iPGS to East-Asians was limited. Individuals in the top 0.1% of the PGS distribution had a 

more than 3-fold risk of ischemic stroke in both EUR and EAS compared to those in the 

middle 10%. Our results indicate that GIGASTROKE-based iPGS models may be useful to 

stratify individuals exposed to genetically high risk of ischemic stroke. They highlight the 

importance of ancestry-specific and cross-ancestry genomic studies for the transferability of 

genomic risk prediction across populations, and the urgent need to vastly increase the 

diversity of participants in genomic studies to avoid exacerbation of health disparities in the 

era of precision medicine and precision public health.54-56  

Finally, leveraging data from 5 clinical trials in 52,600 patients with established 

cardiometabolic disease, we showed that a cross-ancestry genetic risk score predicted 

ischemic stroke, independently of the presence of clinical risk factors while outperforming 

previous genetic risk evaluation.5,40 Notably, although the trials included predominantly 

European participants, consistent results were observed, also for the first time, in participants 

with East-Asian ancestry.  



While non-European ancestry-specific stroke GWAS are limited by sample availability, our 

study includes by far the largest contribution of non-European stroke genetics resources 

(N>310,000 for the GWAS and >55,000 for the PGS/GRS studies). Although the lack of 

suitable additional datasets precludes direct replication efforts, we provide validation of our 

findings in independent population studies and major clinical trials. The muted risk prediction 

in participants with previous stroke history possibly points to the impact of selection or index 

event biases and secondary prevention therapy.57  

In conclusion, our results provide critical insight to inform future biological research into the 

pathogenesis of stroke and its subtypes, highlight potential drug targets for intervention, and 

provide genetic risk prediction tools across ancestries for targeted prevention.58,59 
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Figure 1: Identifying genetic variants influencing stroke risk  3 
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Ideogram of 89 genomic regions influencing stroke risk; circles represent genome-wide significant (GWS) loci in cross-ancestry 5 

analyses, diamonds GWS loci in Europeans, triangles GWS loci in East-Asians, and squares GWS loci in African-Americans or South-6 

Asians; colors correspond to associated stroke types (green, AS; red, AIS; light blue, SVS; dark blue, CES; purple, LAS);  nearest 7 

genes to lead variants are displayed (red: new loci; blue: known loci) loci;  8 



1 
 

Figure 2: Effect size comparison across ancestry groups of lead variants identified in stroke 1 

GWAS and cross-ancestry fine-mapping.  2 



2 
 

a: Per-allele effect sizes (β) of the 60 lead variants in European ancestry any stroke GWAS meta-3 

analysis (x axis) are plotted against per-allele effect sizes from the East-Asian stroke GWAS 4 

meta-analysis (y axis) (left); European per-allele effect sizes (x axis) are plotted against African-5 

American per-allele effect sizes (y axis) (middle); East-Asian per-allele effect sizes (x axis) are 6 

plotted against African-American per-allele effect sizes (y axis) (right). Each dot denotes the per-7 

allele effect size; purple (EUR), significant (p<5×10−8) in Europeans only (± cross-ancestry); 8 

green (EAS), significant (p<5×10−8) in East-Asians only (± cross-ancestry); yellow (AFR), 9 

significant (p<5×10−8) in African-Americans only (± cross-ancestry); blue  (both), significant 10 

(p<5×10−8) in both plotted ancestries; red (cross-ancestry only), significant (p<5×10−8) in cross-11 

ancestry analyses and not in the two plotted ancestries; grey (NS), non-significant (p>5×10−8) in 12 

cross-ancestry analyses and in the two plotted ancestries. For SNPs showing a difference in effect 13 

size (absolute value) between pairs of ancestries > 0.05, the nearest gene is indicated. r 14 

corresponds to the Pearson correlation coefficient between effect sizes across ancestries. b: Locus 15 

plots of the variants at SH3PXD2A locus in 5 ancestries. Fine-mapped variants are only shown in 16 

EUR and EAS (insufficient power in other ancestries). Variants are colored by their LD level 17 

with the cross-ancestry lead variant (rs4918058) in purple diamond. In fine-mapping panel only 18 

variants in CS are shown. Shared variants between CS of EUR and EAS are in black circle. The 19 

red vertical lines represent the position of lead variant in EUR (rs55983834) and EAS 20 

(rs4918058). The gray horizontal line represents p-value of 5×10-8. LD of each ancestry were 21 

derived from 1000 Genomes Project. EUR: European, EAS: East-Asian, HIS: Hispanic, AFR: 22 

African, SAS: South Asian, PIP: posterior inclusion probability, CS: 95% credible set of SuSiE. 23 

 24 

  25 
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Figure 3: Genomics driven drug discovery 26 

 27 

Top: overlap enrichment analysis using GREP22; middle: integrating Mendelian randomization 28 

results using cis- and trans-pQTLs as instrumental variables with data from drug databases; 29 

bottom: negative correlation tests between compound-regulated gene expression profiles and 30 

genetically determined case-control gene expression profiles using Trans-Phar. 31 
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Figure 4: Risk prediction in a population and trial setting 33 

 34 
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(A) Predictive ability and association of polygenic scores for Europeans and East-Asians: 35 

improvement of predictive ability achieved by integrative polygenic score (iPGS) is shown. The 36 

GIGASTROKE-based iPGS model for each ancestry was compared to a previously constructed 37 

MEGASTROKE-based iPGS model for Europeans.6 (B,C) Association of iPGS for Europeans 38 

(B) and East-Asians (C) with ischemic stroke is shown. Compared to the middle decile (45–55%) 39 

of the population as a reference group, the risk of high iPGS groups with varying percentile 40 

thresholds was estimated using a Cox proportional hazards model for Europeans and logistic 41 

regression models for East-Asians with the adjustments for age, sex, and top 5 genetic principal 42 

components; (D) Kaplan-Meier event rates for ischemic stroke in EUR in 5 clinical trials 43 

(Methods), by tertile of genetic risk score at 3 years (the genetic risk score uses effect estimates 44 

of the cross-ancestry AS GWAS as weights). Int. indicates intermediate; and KM, Kaplan-Meier, 45 

AUC indicates area under the curve; EAS, East-Asians; EUR, Europeans; GWAS, genome-wide 46 

association study; iPGS, integrative polygenic score; IS, ischemic stroke.  47 

 48 

  49 
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Methods 50 

 51 

Study design and phenotypes 52 

Information on participating studies, study design, and definition of stroke and stroke subtype is 53 

provided in the Supplementary Appendix. Population characteristics of individual studies are 54 

provided in Supplementary Table 1. Relevant research and medical ethics committees approved 55 

individual studies. All participants or their next-of-kin signed an informed consent. 56 

Genotyping, imputation and genome-wide association testing  57 

Genotyping methods, pre-imputation quality control (QC) of genotypes and imputation methods 58 

of individual cohorts are presented in Supplementary Table 2. High quality samples and SNPs 59 

underwent imputation using mostly Haplotype Reference Consortium (HRC) or 1000 genomes 60 

phase 1/3 reference panels and more seldom TOPMed, HapMap or biobank specific reference 61 

panels. Individual studies performed a genome-wide association study (GWAS) using logistic 62 

regression (or cox regression in some longitudinal population-based cohorts) testing association 63 

of genotypes with five stroke phenotypes (AS, AIS, CES, LAS, and SVS) under an additive 64 

effect model, adjusting for age, sex, principal components of population stratification, and study-65 

specific covariates when needed (Supplementary Table 2).  66 

The R package EasyQC along with in-house custom harmonization scripts were used to perform 67 

the QC of individual GWAS summary results. Marker names and alleles were harmonized across 68 

studies. Meta-analyses were restricted to autosomal biallelic SNPs from the HRC panel. 69 

Duplicate markers were removed. Prior to meta-analysis we removed variants with extreme effect 70 

size values (log(OR)>5 or log(OR)<–5), minor allele frequency (MAF) <0.01, imputation quality 71 

score less than 0.50 and effective allele count (EAC= 2 × Number of cases × MAF × imputation 72 

quality score) less than 6. 73 

The overall analytical strategy is shown in Extended Data Fig. 1. We conducted ancestry-74 

specific fixed-effect inverse-variance weighted (IVW) meta-analyses in EUR, EAS, AFR, HIS, 75 

and EAS populations, followed by cross-ancestry meta-analyses, using METAL.1 In each meta-76 
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analysis we removed variants with heterogeneity P-value <1×10−6 and variants available in less 77 

than 1/3rd of the total number of cases and less than 1/3rd of the total number of contributing 78 

studies. We applied the covariate adjusted LD score regression (cov-LDSC) method to ancestry-79 

specific GWAS meta-analyses without GC correction to test for genomic inflation and to 80 

compute robust SNP-heritability estimates in admixed populations.2 81 

We applied the conditional and joint  analysis approach3 implemented in the Genome-wide 82 

Complex Trait Analysis  software4 (GCTA-COJO) to identify potentially independent signals 83 

within the same genomic region. We performed GCTA-COJO analyses on 1) EUR GWAS meta-84 

analysis summary statistics using HRC imputed data of 6,489 French participants from the 3C-85 

study as a reference5 and 2) EAS ancestry specific GWAS meta-analysis summary statistics using 86 

Biobank Japan data as reference (Supplementary Appendix). 87 

We additionally performed a cross-ancestry meta-regression using MR-MEGA.6 Prior to meta-88 

analysis using MR-MEGA we applied the ‘genomic inflation’ correction option to all input files, 89 

and removed variants with extreme effect size values (log(OR)>5 or log(OR)<–5), MAF<0.01, 90 

imputation quality score less than 0.50 and effective allele count (EAC= 2 × Number of cases × 91 

MAF × imputation quality score) less than 6. Post-meta-analysis we considered loci to be 92 

genome-wide significant for MR-MEGA P<5×10-8 and showing nominal association (P <0.05) in 93 

at least 1/3rd of studies in any individual ancestral group (EUR, EAS, AFR, HIS, SAS). 94 

Multi-trait association study 95 

To identify additional stroke risk loci we conducted multi-trait analyses of GWAS (MTAG)7 in 96 

Europeans and East-Asians, including traits correlated with specific stroke subtypes, namely 97 

coronary artery disease (CAD) for LAS, atrial fibrillation (AF)8 for CES, and white matter 98 

hyperintensity volume9 (WMH, an MRI-marker of cerebral small vessel disease, available in 99 

Europeans only) for SVS. We also ran an MTAG analysis of AS and AIS, including all three 100 

correlated traits (CAD, AF, WMH [EUR]).  In Europeans we used summary statistics of 101 

published GWAS for CAD,10 AF,8 and WMH.9 In East-Asians we used the independent Tohoku 102 

Medical Megabank cohort to generate GWAS of AF and CAD (Supplementary Appendix). 103 

Associations were retained when the following three conditions were verified: (i) MTAG p-value 104 
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for stroke <5×10-8; (ii) p-value for stroke <0.05 in the univariate GWAS; and (iii) MTAG p-value 105 

for stroke less than the p-value for any of the included traits in univariate GWAS. 106 

Gene and pathway-based analyses 107 

We performed gene-based tests of common variant associations using the VEGAS2 software.11 108 

All variants in the gene or within 10kb on either side of a gene’s transcription site were used to 109 

compute a gene-based p-value. We performed analyses using the ‘-top 10’ parameter that tests 110 

enrichment of the top 10% variants assigned to a gene accounting for LD between variants and 111 

total number of variants within a gene. We used 1000 Genomes phase 3 continental reference 112 

samples European, East-Asian, African, South-Asian and South-American (for our Hispanic 113 

samples), to compute LD between variants for respective ancestry-specific gene-based analyses. 114 

We then meta-analyzed ancestry-specific gene-based results, using Stouffer’s method for sample 115 

size weighted combination of P-values. Gene-wide significance was defined as p<2.72x10-6, 116 

correcting for 18,371 autosomal protein-coding genes tested.  117 

Next, we used the ancestry-specific gene-based association p-values to perform pathway analyses 118 

for individual ancestral groups, testing enrichment of gene-based p-values in Biosystems 119 

pathways with VEGAS2Pathway.11,12 For each stroke phenotype, we meta-analysed the ancestry-120 

specific pathway association p-values using Stouffer’s method. Pathway-wide significance was 121 

defined at p<5.01x10-6 correcting for 9,977 Biosystems pathways tested. 122 

Shared genetic variation, genetic correlation, Mendelian randomization with vascular risk traits 123 

We explored shared genetic variation with 12 vascular risk factor and related disease traits in 124 

Europeans using summary statistics of GWAS on systolic blood pressure (SBP),13 diastolic blood 125 

pressure (DBP),13 body mass index (BMI) and waist-to-hip ratio (WHR),14 high density 126 

lipoprotein (HDL) cholesterol,15 low density lipoprotein (LDL) cholesterol,15 triglycerides,15 type 127 

2 diabetes,16 WMH volume,9 atrial fibrillation,8 coronary artery disease,10 and venous 128 

thromboembolism (VTE).17 We extracted sentinel stroke risk variants (or a proxy [r2>0.9]) that 129 

showed genome-wide significant association (p<5x10-8) with the aforementioned vascular risk 130 

factors.  131 
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We then systematically explored genetic correlations and potentially causal associations between 132 

vascular risk traits and risk of stroke using LD score regression (LDSC) and Mendelian 133 

randomization (MR) analyses, with 12 (in Europeans) and 6 (in East-Asians) vascular risk traits. 134 

In individuals of European ancestry, we used summary statistics of the aforementioned GWAS.8-135 

10,13-17 For the analysis in East-Asians we used unpublished GWAS for SBP, DBP, LDL and HDL 136 

cholesterol, triglycerides, and BMI in up to 53,323 participants of the independent Tohoku 137 

Medical Megabank Project (Supplementary Appendix) 138 

We used cov-LDSC to compute genetic correlations between stroke and vascular risk traits, using 139 

European and East-Asian GWAS summary files and 1000Gp3v5 reference data of respective 140 

continental ancestries (considering the recommended subset of high quality HapMap3 SNPs 141 

only).  142 

For MR analyses, we constructed genetic instruments for each vascular risk trait based on 143 

genome-wide significant associations (p<5x10-8) after clumping for LD at r2<0.01 (based on 144 

European and East-Asian 1000G). We applied two-sample MR analyses in the GIGASTROKE 145 

summary statistics separately for individuals of EUR and EAS ancestry based on variant 146 

associations derived from the aforementioned sources. Following extraction of the association 147 

estimates and harmonization of their direction-of-effect alleles, we computed MR estimates with 148 

fixed-effects inverse-variance weighted (IVW) analyses.18 As a measure of pleiotropy, we 149 

assessed heterogeneity across the MR estimates for each instrument in the IVW MR analyses 150 

with Cochran’s Q statistic (p<0.05 was considered significant).19 We further applied alternative 151 

MR methods that are more robust to the use of pleiotropic instruments: the weighted median 152 

estimator allows the use of invalid instruments under the assumption that at least half of the 153 

instruments used in the MR analysis are valid;20 MR-Egger regression allows for the estimation 154 

of an intercept term, provides less precise estimates and relies on the assumption that the 155 

strengths of potential pleiotropic instruments are independent of their direct associations with the 156 

outcome.21 The intercept obtained from MR-Egger regression was used as a measure of 157 

directional pleiotropy (p<0.05 indicated significance).21 MR analyses were performed in R v4.1.1 158 

using the MendelianRandomization package. 159 

For all genetic correlation and MR analyses, we set statistical significance at a Bonferroni-160 

corrected p-value<4.17x10-3 in EUR (correcting for 12 vascular risk traits) and <8.33x10-3 in 161 

EAS (correcting for 6 vascular risk traits). 162 
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Cross-ancestry fine mapping 163 

Fine-mapping was performed separately for Europeans and East-Asians with susieR v.0.9.122 on 164 

all variants within 3Mb of the lead variant of each genomic risk locus (60 loci reaching genome-165 

wide significance in the IVW meta-analysis). Unrelated individuals from UK Biobank (UKB, 166 

N=420,000) and Biobank Japan (BBJ, N=170,000) were used as ancestry-matched LD reference 167 

panels that fulfill the sample size requirement.23 After extracting variants present in the LD 168 

reference panel, default settings of susieR were used while allowing a maximum of 10 putative 169 

causal variants in each locus. We checked the loci harboring multiple 95% confident credible sets 170 

and removed likely false positive signals from the cross-ancestry analysis by checking LD 171 

pattern. We compared the variants in CS of the same loci between EUR and EAS. 172 

To detect putative causal regulatory variants in the credible sets, we conducted an in silico 173 

mutagenesis analysis using MENTR (Mutation Effect prediction on Non-coding RNA (ncRNA) 174 

TRanscription; https://github.com/koido/MENTR), a quantitative machine-learning framework 175 

that predicts the effect of genetic variants on transcription, including transcription of ncRNAs, in 176 

a tissue- or cell-type-dependent manner.24,25 The in silico mutations predicted to have strong 177 

effects are highly concordant with the observed effects of known variants in a cell-type-178 

dependent manner. Furthermore, MENTR does not use population datasets and therefore is less 179 

susceptible to LD-dependent association signals, allowing to pin-point prediction of causal 180 

variants on transcriptional changes. From 1,274 variants in the credible sets from the EUR and 181 

EAS fine-mapping, we searched FANTOM5 promoters and enhancers, obtained by cap analysis 182 

of gene expression (CAGE), within +/- 100-kb from each variant. As a result, we found 37,878 183 

variant-transcript pairs comprising 1,270 variants and 2,350 transcripts. We used MENTR with 184 

the pre-trained FANTOM5 347 cell/tissue models + LCL models26-29 and extracted reliable 185 

predictions using the pre-determined robust threshold (absolute in silico mutation effects ≥0.1, 186 

achieving >90% concordance for predicting effects on expression).  187 

Transcriptome-wide and proteome-wide association studies  188 

We performed transcriptome-wide association studies (TWAS) using TWAS-Fusion30 to identify 189 

genes whose expression is significantly associated with stroke risk. We restricted the analysis to 190 

tissues considered relevant for cerebrovascular disease, and used precomputed functional weights 191 
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from 21 publicly available expression quantitative trait loci (eQTL) reference panels from blood 192 

(Netherlands Twin Registry, NTR; Young Finns Study, YFS)30,31, arterial and heart (Genotype-193 

Tissue Expression version 7 [GTEx v7]),32 and brain tissues (GTEx v7, CommonMind 194 

Consortium [CMC]).32,33 In addition, we used the newly developed cross-tissue weights 195 

generated in GTEx v8 using sparse canonical correlation analysis (sCCA) across 49 tissues 196 

available on the TWAS-Fusion website, including gene expression models for the first 3 197 

canonical vectors (sCCA1-3), which were shown to capture most of the gene expression signal.34 198 

TWAS-Fusion was then used to estimate the TWAS association statistics between predicted gene 199 

expression and stroke by integrating information from expression reference panels (SNP-200 

expression weights), GWAS summary statistics (SNP-stroke effect estimates), and LD reference 201 

panels (SNP correlation matrix).30 Transcriptome-wide significant genes (eGenes) and the 202 

corresponding eQTLs were determined using Bonferroni correction, based on the average 203 

number of features (5005.8 genes) tested across all reference panels and correcting for the 5 204 

stroke phenotypes (p<2.0x10-6). eGenes were then tested in conditional analysis as implemented 205 

in the Fusion software.30 To ensure observed associations does not reflect random correlation 206 

between gene expression and non-causal variants associated with stroke, we performed a 207 

colocalization analysis (COLOC) on the conditionally significant genes (p<0.05) to estimate the 208 

posterior probability of a shared causal variant between the gene expression and trait association 209 

(PP4).35 We used a prior probability of p<2.0x10-6 for the stroke association. Genes presenting a 210 

PP4≥0.75, for which eQTLs did not reach genome-wide significance in association with stroke, 211 

and were not in LD (r²<0.01) with any of the lead SNPs of genome-wide significant risk loci for 212 

stroke, were considered as novel.  213 

Using similar parameters in TWAS-Fusion,36 we also performed a proteome-wide association 214 

study. For this analysis we used the precomputed weights for protein expression in dorsolateral 215 

prefrontal cortex (dPFC)37 from the ROS/MAP study (n=376, proteins=1,475)38 and the Banner 216 

Sun Health Institute study (n=152, proteins=1,145).39 Proteome-wide significant genes and the 217 

corresponding pQTLs were determined using Bonferroni correction, on the number of proteins 218 

tested across the reference panel and correcting for the 5 stroke phenotypes (p<1.7x10-4 for 219 

ROS/MAP and p<2.2x10-8 for the Banner Sun Health Institute). We then followed the same 220 

method as described for the TWAS 221 
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Brain single-cell expression of TWAS genes 222 

Single-nucleus RNA-sequencing data of the dLPFC region of 24 aging individuals chosen to 223 

represent the range of pathologic and clinical diagnoses of AD dementia, from the ROS/MAP 224 

cohorts, was obtained.40 RNA profiles of cells annotated as endothelial, pericytes or smooth 225 

muscle cells and vascular leptomeningeal cells (VLMC) were used, and a pseudo-bulk RNA 226 

profile was generated for each cell type, by averaging the expression of all genes across the cells. 227 

Average expression level and percentage of expressed genes were calculated for genes of interest 228 

using the DotPlot function from the Seurat package V4.0.4 in R V.4.1.1. 229 

Genomics-driven drug discovery 230 

We used three methodologies for in-depth genomics-driven drug discovery as described 231 

previously:41 (i) an overlap enrichment analysis of disease-risk genes in drug-target genes in 232 

medication categories, (ii) negative correlation tests between genetically determined case-control 233 

gene expression profiles and compound-regulated gene expression profiles, and (iii) 234 

endophenotype Mendelian randomization (MR). The detail of the methods is described in the 235 

following sections. For the overlap enrichment analysis and the endophenotype MR nominated 236 

drug targets we curated drug candidates from four major drug databases, DrugBank,42 237 

Therapeutic Target Database (TTD),43 PharmGKB,44 and Open Target Platform.45 As for the 238 

endophenotype MR, we curated drugs with opposite effects against the signs of the MR effect 239 

sizes. On the other hand, the negative correlation tests directly prioritized candidate compounds. 240 

We manually curated supporting evidence for candidate drugs and compounds. 241 

Overlap enrichment analysis of disease-risk genes in drug-target genes in medication categories 242 

We ran MAGMA46 to summarize variant-level p-values into gene-level and used the genes with 243 

false discovery rates (FDR) less than 0.05 as the disease-risk genes. We then used GREP47 to 244 

perform a series of Fisher’s exact tests for the enrichment of the disease-risk genes in the drug-245 

target genes involved in the drug indication categories, Anatomical Therapeutic Chemical 246 

Classification System (ATC) codes.  247 

Negative correlation tests between genetically determined and compound-regulated gene 248 

expression profiles 249 
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We nominated the compounds with inverse effects on gene expression against genetically 250 

determined gene expression by using Trans-Phar48. In brief, genetically determined case-control 251 

gene expression was inferred for 44 tissues in the Genotype-Tissue Expression project v732 with 252 

FOCUS49, and the genes in the top decile for the absolute value of the Z-score were used for the 253 

following correlation analysis. The Library of Integrated Network-based Cellular Signatures 254 

project (LINCS) CMAP L1000 library data50 was used for the compound library. After matching 255 

the tissues in GTEx with the cell lines in the LINCS L1000 library, we performed a series of 256 

Spearman’s rank correlation tests for 308,872 pairs of genetically determined gene expression 257 

and the compound-perturbed cell-type gene expression profiles. We prioritized compounds with 258 

FDR<0.1 as we previously showed that the compounds with FDR < 0.1 contained plausible 259 

therapeutic targets with literature supports.41 260 

Endophenotype Mendelian randomization 261 

To pin-point the disease-causing proteins that were targeted by existing drugs, we performed MR 262 

analysis (specifically, Wald ratio test) by using lead variants in protein quantitative trait loci 263 

(pQTL) as instrumental variables. We used the tier 1 lead variants defined by Zheng et al.51 to 264 

avoid confounding by horizontal pleiotropy. The tier 1 variants were summarized from five 265 

pQTL studies52-56 and excluded the variants with heterogeneous effect sizes among the studies or 266 

the number of associated proteins larger than five. We restricted the lead variants to the variants 267 

associated with drug-target proteins. For the lead variants of pQTL that were missing in the 268 

stroke GWAS summary statistics, the proxy variants with the largest R2 were used if the R2 was 269 

greater than 0.8. In total, we used 277 lead variants for 218 drug-target proteins for MR. Weused 270 

the “TwoSampleMR” R package57 for MR analysis. As post-MR quality controls, we performed 271 

(i) directionality check of causal relationships by Steiger filtering58 and (ii) colocalization 272 

analysis for the proteins with FDR < 0.05. To examine colocalization assuming multiple causal 273 

variants per locus, coloc35 was applied to the decomposed signals by SuSiE22 for the variants 274 

within 500 kb upstream and downstream of the lead variants (coloc + SuSiE).59 If SuSiE did not 275 

converge after 10,000 iterations, coloc was used instead. Coloc + SuSiE and coloc were run with 276 

their respective default parameters. For the two pQTL studies without public summary 277 

statistics,52,56 we compared the R2 between the lead variants of the pQTL study and the stroke 278 

GWAS. We considered that colocalization occurred when the maximum posterior probability 279 

(i.e., PP.H4) was greater than 0.8 or R2 was greater than 0.8. 280 
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PheWAS  281 

We conducted a phenome-wide association study (PheWAS),60 in Estonian Biobank (EstBB) for 282 

the pQTL variants and rare deleterious variants in identified drug target genes using the R software 283 

(4.0.3). We tested the association between ICD10 main codes and genetic variants using logistic 284 

regression adjusting for sex, birth year and 10 genotype PCs. All ICD10 codes with number of 285 

cases<100 and all variants with MAF<0.001 were removed from the analysis. We applied 286 

Bonferroni correction to select statistically significant associations (number of tested ICD main 287 

codes:1,034, number of tested SNPs:7 corrected p-value threshold:0.05/1034*7=6.91×10−6). 288 

Results were visualized using the PheWas library (https://github.com/PheWAS/PheWAS). 289 

Polygenic risk prediction 290 

We constructed integrative polygenic scores (iPGS) models for stroke in Europeans and East-291 

Asians (Extended Data Fig.9-10). For each ancestry, two independent datasets were used for 292 

model training and evaluation, respectively. We used as input summary statistics data of multiple 293 

GWAS for stroke outcomes and vascular risk traits in order to derive iPGS models. We denote 294 

the number of input GWAS as N. For each of the N GWAS summary data, 37 candidate single 295 

trait polygenic score (sPGS) models were generated using P+T,61,62 LDpred,63 and PRScs64 296 

algorithms with an ancestry-specific LD reference panel from the 1000 Genomes Project  297 

(Supplementary Methods).65 The plink (v1.90b6.8),66 LDpred (v.1.0.11),63 and PRScs.py (Jun 298 

5, 2021)64 programs were used to compute P+T, LDpred, and PRScs models, respectively. 299 

Among the 37 candidate models, subsequently, the best sPGS model, which was defined as the 300 

model that showed a maximal improvement in AUC over a base model (age, sex, and top 5 PCs 301 

were included in the base model), was selected using the model training dataset.62,67 Then, N best 302 

sPGS models were selected from the N input GWASs.  303 

Each best sPGS was z-transformed (zero mean and unit SD) over the model training dataset, 304 

followed by elastic-net logistic regression68 to model the associations between the N sPGS 305 

variables and IS with the adjustments for age, sex, and top 5 genetic PCs. Two regularization 306 

parameters (α and λ) were optimized using 10-fold cross-validation. Then, coefficients (weights) 307 

for the N sPGS models were determined by the elastic-net logistic regression with optimal 308 

regularization parameters, followed by the integration of N sPGS models into a single iPGS 309 
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model according to the formula presented in a previous study.67 The elastic-net regression was 310 

performed using the glmnet R package.69  311 

The predictive ability of the iPGS model was estimated using the model evaluation dataset, where 312 

we evaluated the improvement in C-index for a prospective cohort dataset (Europeans) or AUC 313 

for a case-control dataset (East-Asians) over a base model that includes age, sex, and top 5 314 

genetic PCs.  315 

We used EstBB data for the model training and evaluation of iPGS model in Europeans . The 316 

model training dataset was composed of 1,003 prevalent IS cases at baseline and 8,997 controls. 317 

The control subjects were randomly selected among EstBB participants who had no history of AS 318 

at baseline and who did not develop AS during follow-up. The remaining 102,099 EstBB subjects 319 

were used for the model evaluation (mean±SD age at baseline, 44.0±15.7 years; 37.8% men). 320 

Among the subjects in the model evaluation dataset, 1,128 incident IS cases were observed 321 

during 4.6±4.8 years. To derive the European iPGS model, we incorporated 5 ancestry-specific 322 

and 5 cross-ancestry stroke GWAS (AS, AIS, LAS, SVS, and CES) from the GIGASTROKE 323 

project, and 14 GWASs of vascular risk traits from other groups (Extended Data Fig.9). To 324 

avoid the overlap of subjects across datasets, the GWAS summary statistics for stroke outcomes 325 

were re-calculated for the iPGS analysis by excluding the EstBB from the meta-analysis of 326 

GIGASTROKE studies. To allow comparison with a previous European iPGS model based on 327 

the MEGASTROKE GWAS,67 we selected the best sPGS model from 10 GWASs of vascular 328 

risk traits (T2D, SBP, DBP, TC, LDL-C, HDL-C, TG, BMI, height, and smoking)15,70-74 using the 329 

model training dataset. The 10 selected sPGS models and 4 pre-computed sPGS models (one 330 

AF75 and three CAD models10,76,77 provided by the authors of the previous study67) were 331 

incorporated into the GIGASTROKE-based iPGS model as vascular risk traits.  332 

For the East-Asian iPGS model we used BBJ data for the model training and evaluation. The 333 

model training dataset was composed of 577 IS cases and 9,232 controls, whereas there were 334 

1,470 IS cases and 40,459 controls in the model training dataset. The mean±SD of age at 335 

recruitment was 69.2±10.8 years old for cases and 66.5±12.5 for controls in the model evaluation 336 

dataset. The percentage of males was 70.0% for cases and 53.1% for controls. The two case-337 

control datasets were not included in the meta-analysis of GIGASTROKE studies, and therefore, 338 

the overlap of subjects across datasets was avoided. To derive the East-Asian iPGS model, we 339 

incorporated 5 ancestry-specific and 5 cross-ancestry stroke GWAS (AS, AIS, LAS, SVS, and 340 
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CES) from the GIGASTROKE project, and 37 GWAS of vascular risk traits from other groups 341 

(Extended Data Fig. 10). Among the 37 GWAS, 21 were Japanese-ancestry GWAS78-84 and 16 342 

were cross-ancestry GWAS.85 343 

Genetic risk score in a clinical trial setting   344 

Subjects who had consented for genetic testing and who were of European ancestry from the 345 

ENGAGE AF-TIMI (Effective Anticoagulation with Factor Xa Next Generation in Atrial 346 

Fibrillation),86 SOLID-TIMI  (Stabilization of Plaques Using Darapladib),87 SAVOR-TIMI 347 

(Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus),88 348 

PEGASUS-TIMI (Prevention of Cardiovascular Events in Patients With Prior Heart Attack Using 349 

Ticagrelor Compared to Placebo on a Background of Aspirin),89 and FOURIER  (Further 350 

Cardiovascular Outcomes Research With PCSK9 Inhibition in Patients With Elevated Risk)90 351 

trials were included in this analysis. Methods for genotyping and imputation have previously 352 

been published and are summarized in Supplementary Table 2).91,92 A set of 58 sentinel variants 353 

at stroke risk loci identified in IVW meta-analysis was used to calculate a GRS in each trial 354 

participant and identify tertiles of genetic risk (Supplementary Table 40). A Cox model was 355 

used to estimate hazard ratios for ischemic stroke associated with the quantitative GRS and 356 

across genetic risk groups, adjusted for clinical risk factors (age, sex, hypertension, 357 

hyperlipidemia, diabetes, smoking, CAD, AF, and congestive heart failure) and the first 5 358 

principal components of population stratification. Analyses were conducted primarily in 359 

participants of European ancestry (N=51,288, with 960 incident strokes), with secondary analyses 360 

in the much smaller East-Asian (N=1,312, with 27 incident strokes) ancestry subset, using AS 361 

cross-ancestry IVW meta-analysis effect estimates as weights for the primary analysis and 362 

ancestry-specific and AIS effect estimates for secondary analyses. We also looked separately at 363 

associations with incident stroke in participants with and without previous stroke.  364 

  365 
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Extended Data Fig. 1: GIGASTROKE study workflow 1 

 2 

Study workflow and rationale. EUR: European; EAS: East-Asian; AFR: African; HIS: Hispanic; SAS: South Asian; AS: any stroke; 3 

AIS: any ischemic stroke; LAS: large artery stroke; CES: cardioembolic stroke; SVS: small vessel stroke; GWAS: genome-wide 4 

association study; IVW: inverse-variance weighted; MR-MEGA: meta-regression of multi-ethnic genetic association; 5 

COJO:conditional and joint analysis; VEGAS2:versatile gene-based association study 2; MTAG: multi-trait analysis of GWAS; 6 

TWAS: Transcriptome-wide association study ; coloc: Colocalisation Test; PWAS: Proteome-wide association studies;pQTL-MR: 7 



2 
 

protein quantitative trait loci Mendelian Randomization; SuSIE: sum of single effects model; MENTR; PIP: posterior probability; 8 

FDR: false discovery rate; LDSC-COV: covariate-adjusted LD score regression; MR-Egger: Mendelian randomization-Egger; GREP: 9 

genome for REPositioning drugs; ATC: Anatomical Therapeutic Chemical; P+T: pruning and thresholding; PRScs: polygenic risk 10 

score under continuous shrinkage; BBJ: Biobank Japan; TIMI: thrombolysis in myocardial infarction11 
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Extended Data Fig. 2: Association of stroke risk variants with vascular risk traits 1 

We report only associations for which the stroke lead variant of a proxy in very high LD (r2 > 0.9) showed genome-wide significant 2 

association with the vascular risk trait in a prior GWAS. Colors represent the Z-scores of association of stroke risk increasing alleles 3 

with the trait  4 

 5 

  6 
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Extended Data Fig. 3: Genetic correlations and Mendelian randomization (MR) causal estimates of 12 vascular risk factor and 7 

disease traits with stroke (any and stroke subtypes), in European ancestry participants 8 

 9 



3 
 

Larger squares correspond to more significant P-values, with genetic correlations or MR causal estimates (expressed in Z-scores) 10 

significantly different from zero at a P<0.05 shown as a full-sized square. Genetic correlations or causal estimates that are significant 11 

after multiple testing Bonferroni correction (P<4.17x10-3) are marked with an asterisk. Two-sided P-values were calculated using LD 12 

score regression for genetic correlations and inverse variance weighted analysis for MR. 13 

 14 
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Extended Data Fig. 4: Genetic correlations and Mendelian randomization (MR) causal 1 

estimates of 6 vascular risk factor and disease traits with stroke (any and stroke subtypes), 2 

in East-Asian ancestry participants  3 

 4 

Larger squares correspond to more significant P-values, with genetic correlations or MR causal 5 

estimates significantly different from zero at a P<0.05 shown as a full-sized square. Genetic 6 

correlations or causal estimates (expressed in Z-scores) that are significant after multiple testing 7 

Bonferroni correction (P<8.33x10-3) are marked with an asterisk. Two-sided P-values were 8 

calculated using LD score regression for genetic correlations and inverse variance weighted 9 

analysis for MR.10 
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Extended Data Fig. 5: Transcriptome-wide association study (TWAS) of stroke in multiple tissues 1 

 2 

Heatmap of the transcriptome-wide association studies of stroke (any stroke and stroke subtypes) reaching transcriptome wide 3 

significance and colocalized in GIGASTROKE; Colored squares are TWAS significant (p<2.0x10-6); * Conditionally significant 4 

(p<0.05) and COLOC PP4 ≥ 0.75; Genes are presented on the x-axis, those underlined in blue are in a GWAS locus, those underlined 5 

in purple are not within a genome-wide significant stroke risk locus (Methods); Tissue types are on the y-axis (blue: cross-tissue 6 

weights; pink: arterial; orange: heart; green: brain) 7 
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Extended Data Fig. 6: Single-cell gene expression data of TWAS-COLOC genes  1 

 2 

 3 

 4 

Dot plot of the mean expression level in expressing cells (color) and percent of expressing cells 5 

(circle size) of selected genes across different cell types (top) and endothelial subsets (bottom). 6 
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Extended Data Fig. 7: Proteome-wide association study (PWAS) of stroke in brain tissue  1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

Association of ICA1L protein abundance in dorsolateral prefrontal cortex with risk of AS and 13 

AIS, using proteome-wide association studies and colocalization.14 
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 Extended Data Fig. 8: Drug target pQTL PheWAS 1 

 2 

PheWAS in Estonian biobank for pQTL of drug targets identified as being putative drug targets for stroke in the Mendelian 3 

randomization analysis, for which associations reached phenome-wide significance (p=6.91×10−6): top, PheWAS for rs2289252, a cis-4 

pQTL for F11. Each triangle in the plot represents one ICD10 main code and the direction of the triangle represents direction of effect. 5 
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Extended Data Fig. 9: Derivation and evaluation of an integrative polygenic score models 1 

for Europeans 2 

 3 

 4 

 5 

The integrative PGS (iPGS) model for Europeans was derived from 10 GIGASTROKE GWASs 6 

and 14 GWASs of vascular risk traits. (A) From the genome-wide summary statistics for each 7 

GWAS and a linkage disequilibrium (LD) reference panel of the European subjects (n=503) from 8 

the 1000 Genomes Project, 37 candidate PGS models were computed using P+T, LDpred, and 9 



2 
 

PRScs algorithms. Then, the best PGS model was selected for each GWAS, where the best model 10 

was defined as the model that showed the maximal area under the curve (AUC) in the model 11 

training dataset (a European case-control data with 1,003 ischemic stroke [IS] cases and 8,997 12 

controls). (B) The 24 selected PGS models derived from the 24 GWASs were used as the 13 

variables for elastic-net logistic regression and the weights for the variables were trained using 14 

the model training dataset. By combining the 24 PGS models using the weights, the iPGS model 15 

consisting of 7,010,016 variants was constructed. The iPGS model was evaluated in the model 16 

evaluation dataset (a European prospective cohort data with 102,099 subjects including 1,128 17 

incident IS cases); AS indicates any stroke; AIS, any ischemic stroke; LAS, large artery stroke; 18 

SVS, small vessel stroke; CES, cardioembolic stroke; AF, atrial fibrillation; CAD, coronary 19 

artery disease; T2D, type 2 diabetes; SBP, systolic blood pressure; DBP, diastolic blood pressure; 20 

TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density 21 

lipoprotein cholesterol; TG, triglyceride; BMI, body mass index; CPD, cigarettes per day; AUC 22 

indicates area under the curve; EUR, Europeans; GWAS, genome-wide association study; LD, 23 

linkage disequilibrium; PGS, polygenic score24 
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Extended Data Fig. 10: Derivation and evaluation of an integrative polygenic score models 1 

for East-Asians 2 

 3 

 4 

 5 

The integrative PGS (iPGS) model for East-Asians was derived from 10 GIGASTROKE GWASs 6 

and 37 GWASs of vascular risk traits. (A) From the genome-wide summary statistics for each 7 

GWAS and a linkage disequilibrium (LD) reference panel of the East-Asian subjects (n=504) 8 

from the 1000 Genomes Project, 37 candidate PGS models were computed using P+T, LDpred, 9 



2 
 

and PRScs algorithms. Then, the best PGS model was selected for each GWAS, where the best 10 

model was defined as the model that showed the maximal area under the curve (AUC) in the 11 

model training dataset (an East-Asian case-control data with 577 ischemic stroke [IS] cases and 12 

9,232 controls). (B) Among the 47 selected PGS models derived from the 47 GWASs, 12 were 13 

significantly associated with IS in the model training dataset (Bonferroni-corrected P<0.05). The 14 

significant PGS models were used as the variables for elastic-net logistic regression and the 15 

weights for the variables were trained using the model training dataset. By combining the 12 16 

significant PGS models using the weights, the iPGS model consisting of 8,544,464 variants was 17 

constructed. The iPGS model was evaluated in the model evaluation dataset (an East-Asian case-18 

control data with 1,470 IS cases and 40,459 controls).  19 

AS indicates any stroke; AIS, any ischemic stroke; LAS, large artery stroke; SVS, small vessel 20 

stroke; CES, cardioembolic stroke; AF, atrial fibrillation; ARR, Arrhythmia; T2D, type 2 21 

diabetes; CAD, coronary artery disease; SBP, systolic blood pressure; DBP, diastolic blood 22 

pressure; MAP, mean arterial pressure; PP, pulse pressure; TC, total cholesterol; LDL-C, low-23 

density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglyceride; 24 

GLU, glucose; BMI, body mass index; SI, smoking initiation; SC; smoking cessation; AOSI, age 25 

of smoking initiation; CPD, cigarettes per day; DPW, drinks per week; MI, myocardial 26 

infarction; SAP, stable angina pectoris; UAP, unstable angina pectoris; AUC indicates area under 27 

the curve; EAS, East-Asian; GWAS, genome-wide association study; LD, linkage 28 

disequilibrium; PGS, polygenic score 29 
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