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Abstract
Background: Sesame (sesamum indicum) charcoal rot, a destructive fungal disease caused by Macrophomina phaseolina (Tassi) Goid (MP), is a
great threat to the yield and quality of sesame. However, there is a lack of information revealing gene-for-gene relationship between sesame and MP,
and the molecular mechanism in the interaction is not yet clear. The aim of this study is to interpret the molecular mechanism of sesame resistance
against MP in disease-resistant (DR) and disease-susceptible (DS) genotypes based on transcriptomes, which is the �rst report on the interaction
between sesame and MP from the transcriptomes.

Results: A set of core genes that function in sesame disease resistance were revealed in our investigation by comparative transcriptomics, which
preferentially associate with GO terms such as ribosome-related processes, fruit ripening, regulation of jasmonic acid mediated signaling pathway
and cell-cell signaling. In addition, 52 potential resistance-related genes differentially and persistently expressed all through were obtained in
sesame. Furthermore, we preliminarily studied the immune response mechanism of sesame against MP and found that auxin signal pathway shows
negative regulation in the process. Also, the most highlighted pathway JA/ET signal transduction plays a negative regulatory role in sesame
resistance against MP. Finally, a JAZ gene (LOC105168467) and an ERF transcription factor (LOC105171710) that may be related to disease
resistance were screened. 

Conclusions: In our investigation, the mechanism of resistance against MP from the transcriptomes were illustrated, which is a complex bioprocess
involved in many phytohormones and disease resistance-related genes. The �ndings not only shed more light on mechanism of interaction between
sesame and MP, but also help us identify key genes and transcription factors (TFs) associated with charcoal rot resistance in sesame.

Background
Being sessile, plants have evolved complex signaling systems and molecular mechanisms to cope with multifarious biotic stress and abiotic stress
in a constantly changing environment [1]. In 2006, the concept of plant innate immunity was �rst put forward. The pattern-triggered immunity (PTI)
and effector-triggered immunity (ETI) are two vital mechanisms in the long course of co-evolution of plant and pathogen interaction [2]. In spite of
the fact that PTI is feeble, it is essential for plants and the �rst line of defense against pathogens [3]. PTI can be triggered by pathogen-associated
molecular patterns (PAMPs), followed by thickening of cell wall, ligni�cation of cell wall, production of phytoalexin and inducing expression of PR
genes. Yet, some pathogens can restrain and break through the defense of PTI by secreting effectors into plants. However, plants have developed a
reconnaissance mechanism to perceive and recognize these effectors, which leads to ETI. Both PTI and ETI are engaged with the early defense
response of plants, they all perform comparative functions and early induction of defense signal transduction and downstream molecular network
responses can also be observed from the physiological level, such as the burst of reactive oxygen species (ROS), the activation of mitogen activated
protein kinases (MAPK) pathway and the amassing of callose [4]. The production of reactive oxygen intermediates, particularly the outbreak of
superoxide anion radicals and the accumulation of hydrogen peroxide, is considered to be the early defense response of plants to external
pathogens and the necessary autoimmune reaction process of plant [5]. ROS, including O2−, H2O2 and HO−, predominantly collects in chloroplasts
and mitochondria, which can make oxidative damage to lipids, proteins, nucleic acids and photosynthetic devices. So as to reduce oxidative harm,
plants produce different types of antioxidant enzymes such as superoxidase dismutase (SOD), catalase (CAT) and peroxidase (POD) to scavenge
ROS to enhance their disease resistance. Simultaneously, the process of decomposing H2O2 by POD can likewise produce toxic substances to
invasive microorganisms and inhibit the proliferation and diffusion of pathogens [6]. ROS is considered to be an essential signaling component in
plant defense [7–8].

Basic helix-loop-helix (bHLH) proteins belong to TF superfamily and are widely distributed in eukaryotes. Members of the bHLH superfamily
generally contain two highly conserved and functionally different domains: the N-terminal basic region that binds to DNA [9], which mainly
recognizes E-box and G-box [10]; and the C-terminal HLH domain, which depends on the interaction of hydrophobic amino acids to form autodiploid
or allodiploid of two HLH proteins and regulates the expression of downstream target genes [11–12]. bHLHs often cooperate with members of other
TF families to regulate and induce the biosynthesis of an assortment of secondary metabolites like terpenoids, alkaloids, phenylpropanoid,
anthocyanins and so on, which assume a signi�cant job in regulating the interaction between plants and the environment [13–14]. Presently an ever-
increasing number of studies have demonstrated that bHLHs are related to biotic or abiotic stress reactions in various plants [15–17].

Sesame, a member of the Pedaliaceae family, is one of the most advantageous and nutritious oil crops with an oil substance of 50% − 60% and a
protein substance of 20% − 30%. Furthermore, it is wealthy in unsaturated fats (about 85%) and natural antioxidants like sesamol, tocopherol and
nutrient E [18–19]. These antioxidants have signi�cant health-promoting effects, such as reducing cholesterol and hypertension, reducing the
incidence of some cancers and neuroprotective effects against hypoxia. Subsequently, the worldwide demand for sesame has continuously
expanded as of late. But sesame is vulnerable to a variety of pathogens in China, which are the leading causes for the low and unstable yield of
sesame. In addition, the basic research on sesame is still scarce compared with other crops, which is also one of the reasons for low yield of
sesame. It is necessary to study the basic genetics and molecular biology of sesame to improve the resistance of sesame to biotic stress.

Sesame charcoal rot generally occurs at the end of the �owering to the ripening stage of sesame, with the disease spots beginning to appear and
spread from the root or stem under hot and dry weather or negative environmental stress. It is caused by a seed- and soil-borne fungus MP, which is
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highly contagious and can infect in excess of 500 species of plants. Charcoal rot can usually diminish sesame production of 10%-15%, even over
80% in serious cases. Furthermore, it will likewise impact the quality of sesame by diminishing the oil substance of sesame seeds of 4.2%- 16.2%
[20]. Hence, revealing the resistance mechanism of sesame, screening the resistance genes in sesame and cultivating resistant varieties are helpful
for us to lessen the loss of yield. Unfortunately, the genetic improvement of sesame is proceeding slowly due to the lack of the molecular mechanism
and information regarding the gene–for–gene relationship in the interaction between sesame and MP. With the publication of sesame genomes [21–
22], the research on sesame has become more and more active. Hitherto, the investigation on the transcriptomes of the interaction between sesame
and MP has not been published yet.

Consequently, this study preliminarily explored the response molecular mechanism of sesame resistance to MP by comparing and analyzing the
transcriptome data of sesame resistant genotype DR and susceptible genotype DS inoculated with MP globally, which gave fundamental theoretical
researches to the genetic improvement of sesame.

Results
Illumina sequencing and alignment to genome

Five time points post-inoculation (0 HPI, 12 HPI, 24 HPI, 36 HPI, 48 HPI) and their biological replicates of sesame were sequenced and 30
transcriptomes were obtained. The evaluation of sequencing quality indicated that the sequencing results of all samples were excellent, the base
distribution was balanced and the mean Q value was about 36. More than 2.4 billion raw reads were generated from 30 libraries and then about
2.337 billion clean reads (clean ratio > 95.69%) were obtained for subsequent analysis after removing adapter sequences, low-quality reads and rRNA
sequences. On average, 95.89% of the reads can be mapped to the reference genome of sesame and most of them (88.28%) can be mapped to the
coding region (Additional �le: Table S1, Fig. 1).

Check the relationship between samples through the pearson correlation coe�cients between samples and principal component analyses (PCA)
(Additional �le: Figure S1). We selected out the samples with high correlation between biological replicates (R2 > 0.96). Furthermore, we can also see
that the two samples of DS 0 h-2 and DR 48 h-3 are seriously outlier from PCA. Taken above, DS 0 h-2 and DR 48 h-3 were excluded in the following
analysis. PCA also showed that there was a great difference between control (0 HPI) and treated groups, which indicated that the sesame
transcriptomes regulated plenty of genes expressed under MP press, and there must be some resistance-related genes in the interaction between
sesame and MP.

Core gene sets in response to MP

In order to apprehend the overall transcriptome changes of the interaction between sesame and MP in two genotypes, the genes with FPKM value
greater than 0.1 were regarded as expressed genes. 22049,22114,21961,21712 and 22032 genes were detected in DS while
22514,22036,22032,22049 and 22100 genes were detected in DR at 0 HPI, 12 HPI, 24 HPI, 36 HPI, 48 HPI, respectively. The expression of 23042 and
23217 genes was also observed all time-points in DS and DR, respectively (Additional �le: Figure S2A). There are 96.9% (22761) of the genes
expressed in both DS and DR, 1.2% (281) of the genes were speci�cally expressed in DS and 1.9% (456) in DR (Additional �le: Figure S2B).

To investigate genes in response to MP in sesame, differentially expressed genes (DEGs) were identi�ed under the standard of false discovery rate
(FDR) < 0.01 and |log2 Fold change| > 1. As shown in Fig. 2A, 3607, 3876, 3336 and 3359 DEGs were signi�cantly up-regulated and 2839, 3684, 4329
and 2956 DEGs down-regulated in DS, while 2304, 2410, 2485,2600 DEGs in DR were signi�cantly up-regulated and 2803,2703,3091,2394 DEGs
down-regulated at four time points post-inoculation, respectively. It follows that overall DEGs (4994–5576 DEGs) of DR was less than that of DS
(6315–7665 DEGs) within 48 hours post-inoculation, and the number of DEGs responding to stress in DR was signi�cantly less than that in DS at
each time point. This indicated that the injury caused by MP in DR is much less than that in DS, which can change the transcriptome expression
pro�le to a smaller extent and cope with the stress more leisurely.

Further overlap analysis of up- and down-regulated DEGs at four time points of DS and DR showed that 1977 and 1320 co-up-regulated genes and
1791 and 1357 co-down-regulated genes were identi�ed in DS and DR respectively. To identify the core gene sets in response to MP, we compared
the overlap DEGs between DS and DR and found that there are 867 up-regulated DEGs and 721 down-regulated DEGs overlapped between the two
genotypes (Fig. 2B).

The enrichment of GO terms of core gene sets above was analyzed to study the potential function of genes in response to MP. The 867 up-regulated
DEGs are mainly enriched in ribosome-related process, followed by thiamine pyrophosphate binding, maturation of LSU-rRNA from tricistronic rRNA
transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA), fruit ripening, acylglycerol lipase activity and defense response to gram-negative bacterium (Fig. 3A).
Likewise, the main term with the highest enrichment of 721 down-regulated DEGs are regulation of jasmonic acid mediated signaling pathway, UDP-
galactosyltransferase activity, cell-cell signaling, response to freezing and regulation of secondary cell wall biogenesis (Fig. 3B, Additional �le: Table
S2).

DEGs up-regulated peculiarly in DR
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To study the functional speci�city of disease resistance in DR, up-regulated DEGs observed peculiarly in DR compared with DS were explored along
the time trend. At 12 HPI, 733 DEGs are enriched in the process of ribosome synthesis and assembly, maturation of SSU-rRNA from tricistronic rRNA
transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) and cytoplasmic translation (Fig. 4A), indicating that DR can respond more quickly than DS and prepare
for translation of resistance-related proteins at the level of transcription and translation at the initial stage of stress. At 24 HPI, 488 DEGs are
enriched best in GO terms, such as ligand-gated ion channel activity, cellular response to hypoxia, oxidoreductase activity, systemic acquired
resistance, positive regulation of defense response and so on (Fig. 4B), which reveals that DR has made a series of responses to the infection stress,
such as the production of peroxidase, activated the systemic acquired resistance process and defense response, illustrating that DR can arrange the
defense system more quickly and effectively to resist MP. When the stress was more severe (36 HPI), a total of 737 DEGs are speci�cally up-
regulated in DR, which are mainly enriched in ribosome-related processes, followed by phloem transport, nucleoside, nucleobase transport,
nucleobase transmembrane transporter activity, cytoplasmic translation and hydrogen peroxide catabolic process (Fig. 4C). At 48 HPI, GO
enrichment indicated that 750 DEGs involved in ribosome related pathways, cytoplasmic translation, RNA binding, beta-glucosidase activity, ligand-
gated ion channel activity and monoterpenoid biosynthetic process (Fig. 4D). It indicated that DR is continuously transcribing, translating and
transporting disease resistance-related proteins and secondary metabolites such as monoterpenes to deal with the stress. All in all, the rapid stress
responses and the activation of speci�c disease-related pathways of DR lead to its resistance.

DEGs between DS and DR

Moreover, DEGs were compared between DR and DS to �lter the genes with high correlation with disease resistance in sesame. Under normal growth
conditions (0 HPI), 1577 DEGs were observed between DR and DS (Fig. 5A). GO enrichment analysis showed that these genes were enriched in
condensin complex, mitotic chromosome condensation, DNA primase activity, chromosome condensation, DNA unwinding involved in DNA
replication, FMN reductase activity and response to anoxia (Additional �le: Figure S3).

Then, based on overlapped analysis, a total of 52 genes that were signi�cantly differentially expressed at all four time-points between the two
genotypes were obtained (Fig. 5B, Additional �le: Table S3). Then they were classi�ed into 5 clusters exhibiting different functions (Fig. 5C). These
52 genes are most enriched in GO terms such as response to abscisic acid, cell wall, hormone-mediated signaling pathway, response to hormone,
cell-cell junction, defense response and signal transduction (Additional �le: Figure S4), most of which are known to be associated with plant stress.
This further con�rms that these genes are crucial candidate genes inducing higher resistance in DR than DS. Among them, 20 of these genes exhibit
signi�cant differences in expression even under normal conditions between the two genotypes.

It is noteworthy that there were the most DEGs in two sesame genotypes at 36HPI, as well as between the two genotypes (Fig. 2A, 5A).Furthermore,
many DEGs in KEGG pathways related to biological stress are signi�cantly enriched at 36 HPI compared between DR and DS, including "plant
hormone signal transduction" (35 DEGs), "plant-pathogen interaction" (15 DEGs), "brassinosteroid biosynthesis" (2 DEGs) and " diterpenoid
biosynthesis " (12 DEGs). However, DEGs in these key signal pathways were not obvious at other time points, indicating that 36 HPI is an important
period in the disease resistance of sesame (Additional �le: Table S4).

DEGs involved in key pathways at 36 HPI

In the perspective of KEGG pathways, "Plant-pathogen interaction" and "Plant hormone signal transduction" are the key pathways in plant resistance.
Therefore, the two main pathways in sesame were analyzed at the important time period of 36 HPI.

The genes involved in the "Plant-pathogen interaction" pathway were identi�ed based on the KEGG pathway assignment. The results show that 48
and 72 DEGs were identi�ed in DR and DS respectively, and most of these genes were down-regulated in both genotypes. In DR, the expression of
PR1 (pathogenesis-related protein 1), HSP90 (heat shock protein 90 kDa beta), MAP2K1 (mitogen-activated protein kinase kinase 1) and RPM1
(disease resistance protein RPM1) increased, while the expression of WRKY22, WRKY29, WRKY33, Rboh (respiratory burst oxidase), FLS2 (LRR
receptor-like serine/threonine-protein kinase FLS2) and CDPK (calcium-dependent protein kinase) decreased. In DS, the expression of BAK1
(brassinosteroid insensitive 1-associated receptor kinase 1), HSP90, MAP2K1 and Pti1 (pto-interacting protein 1) genes were up-regulated, while
FLS2, MEKK1 (mitogen-activated protein kinase kinase kinase 1), NHO1 (glycerol kinase), Rboh, RPS2 (disease resistance protein RPS2), WRKY22,
WRKY29 and WRKY33 genes were down-regulated. Furthermore, in the "Plant-pathogen interaction" pathway, up-regulated genes such as HSP90
were more involved in DR than in DS. For the genes that detected only in DS, the expression of BAK1 and Pti1 increased while the expression of
MEKK1 and NHO1 decreased (Additional �le: Table S6).

Similarly, in the "Plant hormone signal transduction" pathway, DEGs involved in DS (113) are more than that in DR (76). Most of these genes
participate in auxin (AUX), abscisic acid (ABA) and ethylene (ET) biosynthesis. In addition, genes connected to CRE1 (Arabidopsis histidine kinase
2/3/4), B-ARR (two-component response regulator ARR-B family), SnRK2 (serine/threonine-protein kinase SRK2), EIN2 (ethylene-insensitive protein
2), BZR1_2 (brassinosteroid resistant 1/2) and BSK (BR-signalling kinase) speci�cally expressed in DS were all down-regulated while those related to
BAK1 and BKI1 were all up-regulated (Additional �le: Table S6).

In the " Plant-pathogen interaction" pathway, in comparison with DS, the expression levels of 2 CDPKs, 3 disease resistance protein RPM1, 1 LRR
receptor-like serine/threonine-protein kinase FLS2, 2 CALM genes encoding calcium-binding protein and 1 Rboh gene in DR were signi�cantly up-
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regulated. These genes can induce PTI in plants by identifying Ca2+ signal and then activate hypersensitive response and cell wall reinforcment to
prevent the spread of pathogens. The expression levels of other genes such as WRKY22 was signi�cantly up-regulated, which can induce resistance
by generating downstream defense gene. On the other hand, A total of 35 genes were differentially expressed in "Plant hormone signal transduction"
pathway, with 11 DEGs up-regulated in connection with auxin, including those 2 IAA (auxin-responsive proteins), 2 AUX1 (auxin in�ux carriers), 2
auxin-responsive GH3 family, 1 ARF (auxin response factor) and 4 SAUR proteins. The other up-regulated genes were 2 genes encoding ethylene-
responsive transcription factor (ERF1) involved in ethylene response, 2 transcription factors TGA and 1 regulatory protein NPR1 related to SA
biosynthesis, 2 cyclin D3 (CYCD3) involved in brassinosteroid pathway, 1 DELLA protein in gibberellin biosynthesis and 2 genes encoding two-
component response regulator related to cytokinin synthesis pathway (Additional �le: Table S7).

TFs involved in sesame defense

To research the major TFs of sesame in the interaction between sesame and MP, we investigated the expression of all genes involved in
transcriptional regulation. A total of 3904 TFs were identi�ed in the DEGs in sesame, which grouped into 49 gene families. In general, the number of
transcription factors increased with the severity of stress (Additional �le: Table S5). In DR, bHLH gene family, the most abundant and active TF
family, is signi�cantly higher than other transcription factor families, followed by ERF, MYB, NAC, WRKY, C2H2, LBD, GRAS, HD-ZIP, bZIP, ARF,
MYB_related and other transcription factor families. Also, it could be seen that many DEGs were the members of TF families bHLH, MYB, ERF, NAC,
WRKY, HD-ZIP, bZIP, GRAS, LBD, C2H2, ARF and HSF (Fig. 6). In this research, it was discovered that the bHLH transcription factor family was the
most abundant transcription factor in the interaction between sesame and MP, indicating that bHLH proteins play a vital role in sesame charcoal rot
resistance.

Real-time quantitative PCR

Five genes in two genotypes responded to MP were selected to con�rm the RNA-seq results. LOC105160699 [LRR receptor-like serine/threonine-
protein kinase (LRR-RTPK)] and LOC105169518 (LRR receptor-like serine/threonine-protein kinase) were associated with PTI while LOC105156719
(WRKY2) and LOC105157468 (disease resistance protein RPM1) were involved in ETI. Also, another gene LOC105167014 (PYL4) was related to
plant hormone signal transduction. The results show that the data of real-time quantitative PCR and RNA-seq are consistent in the overall expression
trend (Fig. 7).

Discussion
Comparative transcriptome analysis

Plants are generally subjected to a series of biotic and abiotic stresses, particularly pathogens stress, which seriously affect the growth and
development of them. In our investigation, MP infection gradually changed the expression of sesame transcriptomes and demonstrated the most
DEGs at 36 HPI, implying that it is the key period for sesame to resist the invasion of pathogens. In addition, we found that DS have more DEGs and
TFs than DR regardless of the time point post-inoculation, indicating that susceptible genotypes were more likely to be interfered by MP at the
transcriptional level, which may be due to the lack of corresponding mechanism in DS to adapt to MP stress. Different decisions made by DR and DS
during pathogen infection led to their disparities in resistance. Based on GO enrichment analysis in all four time points, a great deal of DEGs
engaged with ribosome-related procedures were collected in DR speci�cally, however these DEGs were not found in DS, which indicated that
pathogen infection seems to speci�cally trigger adapted transcription responses in DR. Ribosomes are 'factories' that synthesize proteins at the
cellular level and various mechanisms have been evolved to detect and react to environmental changes rapidly at transcriptional and translational
levels in plants [23–24]. More DEGs involved in ribosome-related pathways in DR demonstrates that DR has a rapid and intenseresponse to MP
stress with translational mechanisms activating synergistically with that of transcription, which is consistent with the consequences of Supriyo
Chowdhury [25].

There are some DEGs constantly expressing in the two genotypes under MP stress, which represent the core genes mediating disease resistance
against MP in sesame. It was discovered that many of these genes were PODs, and their expression increased signi�cantly post-inoculation.
Numerous studies have demonstrated that higher antioxidant enzyme activity helps to improve plant disease resistance [26–27]. POD participates in
the defense against pathogens through its role in the detoxi�cation of H2O2 and assumes an essential job in the process of disease resistance.
When stressed by external pathogens, the enhancement of POD activity can increase the content of phenolic oxides to trigger hypersensitive
responses, and afterward inhibit the proliferation and spread of pathogens [28]. There are also plenty of protein kinase genes and pathogenesis-
related genes in this core gene set. It is realized that a signi�cant number of receptor protein kinases and pathogenesis-related protein can confer
plant resistance against pathogens [29]. It is found that the PmDTM gene encoding receptor-like serine/threonine-protein kinase in wheat can
improve the resistance of wheat to Blumeria graminis f. sp. tritici [30]. Similarly, CsWAKL08 gene encoding a wall-associated receptor-like kinase was
found to regulate resistance against Xanthomonas citri subsp. citri positively via a mechanism of ROS control and JA signaling, which further
features the signi�cance of this kinase family in plant disease resistance [31]. ScPR10 was identi�ed as a pathogenesis-related gene from
sugarcane, which regulates plant resistance against Sporisorium scitamineum, Sorghum mosaic virus, salicylic acid and methyl jasmonate stresses
positively [32]. Another important gene family identi�ed in this core gene set is cytochrome P450, one of the largest gene families in the plant
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genome. In wheat, the cytochrome P450 gene TaCYP72A was a�rmed to be identi�ed with the resistance to deoxynivalenol, which mediated the
early resistance of wheat to F. graminearum [33]. Likewise, Guilin Wang et al. discovered that GbCYP86A1-1 gene in Gossypium barbadense plays a
positive role in the resistance against Verticillium dahliae, it initiates the downstream immune pathways of disease resistance. For instance,
GbCYP86A1-1 transgenic Arabidopsis signi�cantly increased genes encoding the protein kinases, TFs and PRs, thereby increasing its resistance [34].
What's more, a few genes encoding laccase also re�ected in this gene set. Yan Zhang et al. reported that GhLAC15 gene contained domains
conserved by laccases enhances resistance against Verticillium dahliae by means of an increase of ligni�cation and accumulation of arabinose and
xylose [35], which indicates that laccase may have a signi�cant relationship with the resistance of plants to pathogens.

Furthermore, the gene expression of DR and DS during stress was compared, and 52 genes were screened as differentially and continuously
expressed, indicating that they may give DR higher tolerance against charcoal rot. Accordingly, further research may focus on these genes to identify
their functions and �nd favorable genes with high disease resistance in sesame.

Vital KEGG pathways involved in sesame resistance against MP

KEGG enrichment analysis showed that there were plenty of DEGs involved in the two important pathways ‘plant-pathogen interaction’ and ‘plant
hormone signal transduction’ at 36 HPI, which indicated that these two pathways also play an important role in the immune response of sesame. At
present, both two pathways have been discussed and analyzed in detail in many investigations between plants and pathogens, such as the
interaction between V.dahliae and sun�ower [36] and the interaction between Penicillium oxalicum and orchidaceae [37], here we discuss and
investigate the interaction between sesame and MP in detail.

"plant-pathogen interaction" pathway is generally considered to be one of the most important ways to initiate defense response during the interaction
between plants and pathogens. According to Fig. 8, we can see that PR1,MAP2K1,RPM1 and HSP90 genes were up-regulated in DR while other
genes were down-regulated or mixed-regulated, indicating that these genes may contribute to the resistance in DR. Interestingly, we found 7 HSP90
genes up-regulated in DR, signi�cantly more than 4 in DS, and it is realized that many HSP90 genes have been con�rmed to be associated with plant
biotic stress [38–40]. All DEGs in DR above were involved in the process of hypersensitive response (HR), cell wall reinforcment, defense-related gene
induction and phytoalexin accumulation in PTI and HR in ETI, proving these genes are important to the resistance against MP in sesame.

As key signaling molecules, phytohormones assume an essential function in signaling networks that regulate plant responses to various biological
stresses [41], such as ZmAuxPR1 can respond to pathogen stress and participate in its resistance to Fusarium ear rot and Gibberella by a rapid
reducing of its expression in maize [42]; ABA, which is the substrate of disease resistance gene Lr34 in wheat, can enhance its resistance to fungal
pathogens [43];Cytokinin has also been proved that it can induce the expression of SNC1, a plant immune receptor gene in Arabidopsis thaliana,
thereby improving its disease resistance [44]; In cucumber, T.longibrachiatum H9 can activate JA/ET and SA signaling pathways to enhance
resistance to B.cinerea. [45]; Shaoqun Zhou et al. found that ethylene signal can regulate the resistance of maize to F.graminearum [46]; Gibberellin
signaling also mediates plant sensitivity to Ralstonia solanacearum and Rhizoctonia solani via increasing gibberellin 3 content in tobacco. Similarly,
activation of brassinosteroids and ethylene signaling pathways in rice can cooperatively regulate the resistance to Rhizoctonia solani. [47]; SA and
JA have also been proved that they play a vital role in resistance against Fusarium spp. in wheat [48]. In our investigation, most DEGs related to
biotic stress were enriched in the biosynthesis of AUX, ABA, ET, cytokinine and JA, indicating that complex networks of diverse plant hormones play a
signi�cant role in the interaction between sesame and MP (Fig. 9). Furthermore, many DEGs such as EIN3, JAZ (jasmonate ZIM domain-containing
protein) and MYC2 involved in ET/JA pathway were down-regulated signi�cantly, implying that JA/ET signal transduction plays a negative
regulatory role in the sesame resistance against MP. Interestingly, we found that a JAZ gene (LOC105168467) and an ERF transcription factor
(LOC105171710) were down-regulated in DR but up-regulated in DS, indicating that these two genes may also be related to the sesame resistance,
which requires to study follow-up bio-function.

Defense-related TFs

It has been reported that plenty of TFs like bHLH [49–50], MYB [51–52], ERF [53–55], NAC [56–57], WRKY [58–60] were related to various plant
resistance against pathogens. In our study, the bHLH transcription factor family was the most abundant transcription factor in the interaction
between sesame and MP. It is known that many members of the bHLH family are related to abiotic stress resistance of plants, such as drought
tolerance [61], cold tolerance [62] and salt tolerance [63]. However, their roles in plant biotic stress are rarely depicted. Until recently, Qun Cheng et al.
revealed the role of a bHLH transcription factor GmPIB1 gene in soybean phytophthora root rot and found that GmPIB1 can directly bind to the
promoter of the key enzyme GmSPOD1 gene that encodes ROS and inhibit its expression, reducing the production of ROS and enhancing the
resistance of soybean to Phytophthora [49]. Yan S et al. discovered that cucumber transgenic plants with bHLH transcription factor CsIVP-RNAi had
higher resistance to downy mildew and could accumulate higher level of SA. CsIVP can physically interact with CsNIMIN1, a negative regulatory
factor in SA signal pathway, thus CsIVP is a signi�cant regulatory factor in SA-mediated downy mildew resistance in cucumber [50]. Here, the current
investigation also got the similar result that bHLH transcription factors play an important role in sesame resistance (Fig. 6).

Conclusions
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To summarize, �rst of all, core disease resistance gene sets and 52 genes that may mediate the higher resistance of DR were obtained in sesame via
comparative transcriptome analysis. In the process of MP stress, a group of core genes were activated to resist the infection of pathogens, including
disease resistance-related protein kinase genes, pathogenesis-related genes, cytochrome P450 genes, peroxidase genes and so on. Then we further
compared DEGs between DR and DS during the stress and found that 52 genes were differentially and persistently expressed, demonstrating that
they may impart DR higher resistance against MP.

Then, we preliminarily investigated the immune response mechanism of sesame against MP and we can conclude that highlighted pathway JA/ET
signal transduction plays a negative regulatory role in the process. This is the �rst report on the interaction between sesame and MP from the
transcriptomes, which provides more viewpoints to understand the molecular mechanism of sesame against MP. Firstly, PTI and part of ETI in
sesame were triggered in the infection. Secondly, auxin signal pathway shows negative regulation in sesame resistance against MP. Thirdly, SA
signal transduction is also involved in sesame in response to MP, but its mechanism is complex and requires to be further revealed. Last but not
least, two genes [a JAZ gene (LOC105168467) and an ERF transcription factor (LOC105171710)] may contribute to resistance against MP were
likewise detected in plant hormone signal transduction pathway.

Finally, we found that bHLHs may play an important potential regulatory role under MP stress, for they were the most abundant and active
transcription factor family in the process of MP infection. Findings above not only help us shed an insight to mechanism of interaction between
sesame and MP, but also provide us important foundation for breeding for cultivars with high resistance.

Methods
Materials and stress treatment

Disease-susceptible genotype (Ji 9014) and disease-resistant genotype (Zhengzhi No.13) [64–65] used in this experiment were widely planted
varieties and both of them were provided by Sesame Research Center, Henan Academy of Agricultural Sciences. Macrophomina phaseolina (MP),
the pathogen of charcoal rot, was isolated and preserved by Biocontrol Lab, Institute of Plant Protection, Henan Academy of Agricultural Sciences.

Preparation of stroma mixed with MP: The MP strain stored in 25% glycerol at -20℃ was activated on PDA solid medium. After activation, MP was
cultured in PDA solid medium and incubated in 30 ℃ incubator for 4 days. The PDA culture medium full of MP was divided into pieces width of
about 0.5 cm with a sterilized toothpick, and then they were inoculated into the sterilized 200 mL liquid PD medium (each bottle was inoculated with
half a plate of PDA). The medium was shaken and cultured for 5 days at the condition of 30℃ and 200 r/min. The mycelium suspension was
obtained by breaking the culture medium full of mycelium with a tissue crusher. Then every 100 mL mycelium suspension was mixed with 100 mL
sterilized water and sterilized stroma (nutritional soil: vermiculite = 3:1) 200 g.

The sesame seedlings were cultured in the growth bowl of stroma (soil: nutritional soil: vermiculite = 3:1:1), thinning them in 2 pairs of true leaf
stage, leaving 3 seedlings in each pot. They were cultured in arti�cial climate box under the condition of 16 h light (30℃) and 8 h darkness (28℃).
DS and DR were transplanted from the growth bowl to the stroma with mycelium carefully at three pairs of true leaves. The root tissues of DS and
DR were collected as samples (three biological replicates) for RNA extraction during MP treatment (12 h, 24 h, 36 h, 48 h) and before treatment (0 h).

mRNA Library construction and sequencing

Total RNA extracted with TransZol Up Plus RNA Kit (Cat#ER501-01, Trans) was quali�ed by Agilent Bioanalyzer 2100 (Agilent technologies, Santa
Clara, CA, US) electrophoresis and puri�ed with RNA Clean XP Kit (Cat A63987, Beckman Coulter, Inc.Kraemer Boulevard Brea, CA, USA) and RNase-
Free DNase Set (Cat#79254, QIAGEN, GmBH, Germany). The quality of total RNA was checked by NanoDrop ND-2000 spectrophotometer and Agilent
Bioanalyzer 2100 (Agilent technologies, Santa Clara, CA, US), and the RNA with high quality inspection could be sequenced later. According to the
experimental operation instructions, the puri�ed total RNA was subjected to mRNA separation, fragmentation, �rst-strand cDNA synthesis, second-
strand cDNA synthesis, terminal repair, 3'- terminal addition of A, adapters' junction, enrichment and other steps to complete the construction of
cDNA library. After the construction of the library, Qubit ®2.0 Fluorometer was used to detect the concentration, and Agilent4200 was used to detect
the size of the library.

Sequencing: according to the corresponding process shown by cBot User Guide, Cluster generation and �rst-direction sequencing primer
hybridization were completed on the cBot equipped with Illumina sequencer, and paired-end sequencing was carried out. The sequencing process
and real-time data analysis are controlled by data collection software provided by Illumina.

Transcriptome assembly

Before downstream analysis, unquali�ed reads with low quality, primer sequence and low terminal quality should be removed. Seqtk package is used
to �lter the raw reads to get the clean reads so that reads can be used for subsequent data analysis. After �ltering, the clean reads were mapped to
sesame genome with HISAT2 (version:2.0.4) [66]. The data generated by Mapping is a BAM �le.
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The sesame reference genome is S_indicum_v1.0 [22], which can be downloaded from:
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/512/975/GCF_000512975.1_S_indicum_v1.0/GCF_000512975.1_S_indicum_v1.0_genomic.fna.gz.

Analysis of DEGs

Standardize gene expression by transforming reads into FPKM(fragments per kilobase of exon model per million mapped reads)to calculate gene
expression level of each sample [67]. We �rst count the fragments number of each gene after Hisat2 alignment by Stringtie (version:1.3.0) [68–69],
then normalize it by TMM (trimmed mean of M values) method [70], and �nally use perl script to calculate the FPKM value of each gene.

Differential genes between samples were analyzed by edgeR package [71], and the p-value was corrected by multiple hypothesis testing. The
threshold of p-value was determined by controlling False Discovery Rate (FDR), and the corrected p-value was q-value [72–73]. The differently
expressed genes (DEG) were detected based on the parameters: log2 |Fold change|>=1 and q-value < = 0.05.

Functional annotation and TFs prediction

DEGs were compared with the NCBI non-redundant (NR) database and were functionally annotated into databases GO and KEGG by KAAS.

To identify the transcription factors (TFs) in sesame DEGs, the online website plantTFDB [74] (http://planttfdb.cbi.pku.edu.cn/index.php?sp=Sin)
was used.

qRT-PCR

Relative expression levels of 5 genes in DS and DR quanti�ed by CFX 384™ real-time System made in Singapore and ChamQ Universal SYBR qPCR
Master Mix were calculated with the 2−ΔΔCt method. Each sample had 3 replicates. The primers of qPCR designed and synthesized in Sangon
Biotech were shown as Additional �le: Table S8. The relative expression levels of 5 genes were normalized to that of SiUBQ5 gene [75].

Statistical analysis
All data in this study are mean values of three biological replicates. FPKM value was used to depicted gene expression abundance.
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Figure 1

Mapping region distribution of 30 samples.
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Figure 2

DEGs in DS and DR.

Figure 3
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Top 30 GO terms enriched function categories of co-up-regulated (A) and co-down-regulated (B) DEGs in two genotypes.

Figure 4

Top 30 GO terms enriched function categories of DEGs up-regulated characteristically in DR at 12 HPI (A) 24 HPI (B) 36 HPI (C) 48 HPI (D).
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Figure 5

DEGs compared between DR and DS post-innoculation. A. Numbers of DEGs between DR and DS during MP stress. B. Common and unique DEGs
between DR and DS post-innoculation. C. Expression patterns of 52 common DEGs between DR and DS post-innoculation. The value of gene
expression is shown as log2(FPKM+1).
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Figure 6

Overall TFs in DR and DS post-innoculation.
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Figure 7

Quantitive RT-PCR validation of genes in DS (A) and DR (B).
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Figure 8

Plant-pathogen interaction map in DR. DEGs up-regulated is highlighted in red. DEGs down-regulated is highlighted in green.
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Figure 9

Plant hormone signal transduction map in DR. DEGs up-regulated is highlighted in red. DEGs down-regulated is highlighted in green.
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