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Abstract
Although emerging cells or animals based evidence supports an association between nuclear factor
kappa-B1 (NF-κB1) cells and cancers, there has no pan-cancer analysis. Therefore, based on TCGA (The
Cancer Genome Atlas) and GEO (Gene Expression Omnibus) data sets, we �rst studied the potential
carcinogenic effect of NF-κB1 in 33 tumors. As we not only found high expression of NF-κB1 in most
tumors, but also found that NF-κB1 expression is closely related to the prognosis of tumor patients.
Enhanced phosphorylation of S893 was observed in several tumors, such as breast cancer, uterine corpus
endometrial carcinoma or lung adenocarcinoma. In thymoma, NF-κB1 expression was relevant to CD8+ T-
cell in�ltration levels, and tumor-associated �broblast in�ltration has also seen in other tumors, such as
uterine corpus endometrial carcinoma or glioblastoma multiforme. In addition, the functional mechanism
of NF-κB1 also involves the related functions of protein processing and RNA metabolism. In this study,
NF-κB1 was pan-cancer study in order to have a systematic and comprehensive understanding of the
carcinogenic effect of NF-κB1 in different tumors.

1 Introduction
The inhomogeneity of tumorigenesis. It is very important to analyze the pan cancer expression of any
gene of interest to evaluate its relevance to clinical prognosis and potential molecular mechanism. We
were able to conduct pan cancer analysis because the government funded TCGA project and the existing
geo database contain functional genomics data sets of different tumors (1–3).

NF-κB1 (nuclear factor kappa B subunit 1) is a protein complex that controls transcription of DNA,
cytokine production, and cell survival. The current evidence strongly suggests that the abnormal
activation of NF-κB1 signaling pathway is related to tumorigenesis. A great deal of key cellular processes
are controlled by effectors of this pathway, including immune response and apoptosis, both sides of
which are critical in the development of cancer (4). Structural/functional analysis of NF-κB1 has been
studied in physiology and clinicopathology in different diseases (5–7). NF-κB1 gene consists of 24
exons, located on chromosome 4q24 (8). NF-κB1 encodes a 105kD protein, which could be co-translated
by 26S proteasome to produce a 50kD protein (9). The multifunctional NF-κB1 protein has been studied
in this research group, and the functional relationship between NF-κB1 protein and liver cancer (10)
breast cancer (11, 12),, and ovarian cancer (13). However, based on large clinical data, there is currently
no evidence of a pan-cancer association between NF-κB1 and various tumor types.

Our study used TCGA project and geo database for pan-cancer analysis of NF-κB1 for the �rst time. At
the same time, the possible molecular mechanism of NF-κB1 in the pathogenesis or clinical prognosis of
different tumors was discussed through factors such as gene expression, survival status, DNA
methylation, genetic changes, protein phosphorylation, immune in�ltration and related cellular pathways

2 Materials And Methods
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2.1 Gene expression analysis
We are on timer2 (tumor immune estimation resource, version 2) website (http://timer.cistrome.org) Gene
of_ Enter NF-κB1 in the de module. To observe the expression difference of NF-κB1 in speci�c tumors or
different tumor subtypes of TCGA project, adjacent normal tissues and tumors. For certain tumors with
highly limited or without normal tissues, such as TCGA-DLBC (Lymphoid Neoplasm Diffuse Large B-cell
Lymphoma), TCGA-TGCT (Testicular Germ Cell Tumors), etc. We used the GEPIA2 (Gene Expression
Pro�ling Interactive Analysis, version 2) “Expression Analysis-Box Plots” module web server
(http://gepia2.cancer-pku,cn/#analysis) (14). If the P-value cutoff=0.01, log2 FC (fold change) cutoff=1,
“Match TCGA normal and GTEx data”, the difference in expression between these tumor tissues and
corresponding normal tissues in the GTEx (Genotype-Tissue Expression) database was obtained by box
plots. In addition, through the "pathological stage map" module of depia2, we obtained the �ddle map of
NF-κB1 expression in different pathological stages (stages I, II, III and IV) of all TCGA tumors. The
expression data of the log2 [TPM (Transcripts per million) +1] transformation is used for the box or �ddle
diagram.

The UALCAN portal website (http://ualcan.path.uab.edu/analysis-prot.html) is an analysis of cancer
omics data interactive web resources, and it allows us to CPTAC (Clinical proteomic tumor analysis
consortium) data sets to analyze protein expression (15). Here, we investigated the expression level of
total protein or phosphorylated protein (phosphorylated at sites S851, S892, S893, S903, S907, T939,
S944) of NF-κB1 (NP_001158884.1) between normal tissue and primary tumor by inputting “NF-κB1”.
The existing data sets of CHOL (cholangiocarcinoma), DLBC (Lymphoid Neoplasm Diffuse Large B-cell
Lymphoma), GMB (Glioblastoma multiforme), LAML (Acute Myeloid Leukemia), PAAD (Pancreatic
adenocarcinoma), THYM (Thymoma) were selected.

2.2 Survival prognosis analysis
We used the survival map module of GEPIA2 (16) to obtain the OS (overall survival) and DFS (disease
free survival) signi�cance map data of NF-κB1 in all TCGA tumors. Cutoff-high (50%) and cutoff-low
(50%) values were used as expression thresholds to split the high-expression and low-expression cohorts.
The hypothesis test adopts log rank test, and the survival map is also from GEPIA2 survival analysis
module.

2.3 Genetic alteration analysis
Login cBioPortal website (https://www.cbioportal.org/) (17, 18), in the quick select section, select TCGA
pan cancer atlas studies, enter NF-κB1, and query the genetic variation characteristics of NF-κB1. In the
cancer type summary module, the change frequency, mutation type and can (copy number change)
results of all TCGA tumors can be observed. The NF-κB1 mutation site information can be displayed in
the protein structure diagram or three-dimensional (3D) structure through the mutation module.

2.4 Immune in�ltration analysis
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We used the immune gene module of TIMER2 web server to explore the relationship between NF-κB1
expression and immune in�ltration of all TCGA tumors, and selected immune cells of tumor associated
�broblasts and CD8 + T cells. The TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, XCELL,
MCPCOUNTER and EPIC apply algorithms to estimate immune penetration. P-value and partial derivative
correlation (COR) value were adjusted by purity Spearman rank correlation. The data are visualized as
heat maps and scatter diagrams.

2.5 NF-κB1-related gene enrichment analysis
We start by searching the STRING website (http://string-db.org/) for the name of a single protein (“NF-
κB1”) and the name of an organism (“Homo sapiens”). Then, we set the following main parameters:
minimum interaction score [“Low con�dence (0.150)”], network edge meaning (“evidence”), maximum
number of interactive users to display (“not more than 50 interactive users” in the �rst shell), and active
each other sources (“experiments”). Last, the useable NF-κB1 conjugated proteins were gained.

We used the "similar gene detection" module of GEPIA2 to obtain the �rst 100 targeted genes related to
NF-κB1 based on all normal tissue and TCGA tumor data sets. We also applied GEPIA2's "correlation
analysis" module to NF- κB1 was paired with the selected gene for Pearson correlation analysis. Log2
TPM is used for point graphs. P-values and correlation coe�cients (R) are given. In addition, the
"gene_corr" module of TIMER2 was used to provide the heat map data of the selected genes, including
partial correlation (COR) and purity adjusted p value of Spearman rank correlation test. We used the
JVENN interactive Venn diagram viewer (19) for cross analysis to compare the NF-κB1 binding and
interacting genes. In addition, we combined the two sets of data for KEGG (Kyoto Encyclopedia of Genes
and Genomes) pathway analysis. In short, we uploaded the list of genes to DAVID (a database for
annotation, visualization, and integrated discovery), set the selected identi�ers
(“OFFICIAL_GENE_SYMBOL”) and species (“Homo sapiens”), and obtained the data for the functional
annotated map. Finally, the enrichment path was visualized through “tidyr” and “ggplot2” R packets. In
addition, the R package of “clusterPro�ler” was used for GO (Gene Ontology) enrichment analysis. BP
(Biological Process), CC (Cellular Component) and MF (Molecular Function) were visualized as Cnetplot.
Use the CNETPLOT function (Circular = F, ColorEdge =T, NODE_LABEL =T) (20). SangerBox
(http://sangerbox.com/Tool/) was used for this analysisDouble-tailed P<0.05 was considered statistically
signi�cant.

3 Results

3.1 Gene expression analysis data
In this study, we aimed to investigate the carcinogenic effect of NF-κB1 (NM_001165412 for mRNA,
NP_001158884.1 Fig. S1a) in human. As shown in Fig S1b, the structure of NF-κB1 protein is conserved
between different species (such as H. sapiens, P. troglodytes, M. mulatta, etc.), and is usually composed
of Death_ NF-κB1_p105 (cd08797) domain, RHD-n (c108275) domain, DD (cl14633) and Ank_2
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(pfam12796) domain, etc. Phylogenetic tree data (Fig. S2) showed the evolutionary relationships of NF-
κB1 proteins among different species.

We �rst analyzed the expression pro�le of NF-κB1 in nontumor tissues and different cells. As shown in
Fig. S3a, combined with HPA (Human protein atlas), GTEx and Fantom5 (Function annotation of the
Mammalian genome 5) data set, the expression of NF-κB1 is the highest in lymph nodes, followed by
bone marrow, appendix and thymus (Fig. S3a). However, NF-κB1 was expressed in all the tested tissues
(all of which were consistent with the normalized expression value >1), showing a low RNA tissue
speci�city. When NF-κB1 expression was analyzed in different blood cells, low RNA blood cell type
speci�city also appeared in the HPA/Monaco/Schmiedel dataset (Fig. S3b).

We analyzed the expression status of NF-κB1 in different types of TCGA cancer using the TIMER2
method. As shown in Fig. 1a, NF-κB1 plays an important role in BLCA (Bladder Urothelial Carcinoma),
BRCA (Breast invasive carcinoma), CHOL (Cholangiocarcinoma), COAD (Colon adenocarcinoma), HNSC
(Head and Neck squamous cell carcinoma), HNSC-HPV (Head and Neck squamous cell carcinoma-
human papillomavirus), LUSC (Lung squamous cell carcinoma), SKCM (Skin Cutaneous Melanoma),
STAD (Stomach adenocarcinoma), THCA (Thyroid carcinoma), UCEC (Uterine Corpus Endometrial
Carcinoma) (P<0.001), ESCA (Esophageal carcinoma) (P<0.01), GBM (Glioblastoma multiforme), KIRC
(Kidney renal clear cell carcinoma), LUAD (Lung adenocarcinoma), PCPG (Pheochromocytoma and
Paraganglioma), PRAD (Prostate adenocarcinoma), READ (Rectum adenocarcinoma), PAAD (Pancreatic
adenocarcinoma), (P<0.05), were higher than those of the corresponding control tissues.

After using normal tissues from the GTEx dataset as controls, we further evaluated differences in NF-
κB1expression between CHOL (Cholangiocarcinoma), DLBC (Lymphoid Neoplasm Diffuse Large B-cell
Lymphoma), GBM (Glioblastoma multiforme), LAML (Glioblastoma multiforme), PAAD (Pancreatic
adenocarcinoma), THYM (Thymoma) (Fig. 1b, P<0.05). However, for other tumors, we did not get
signi�cant differences, such as BLCA (Bladder Urothelial Carcinoma), COAD (Colon adenocarcinoma),
ESCA (Esophageal carcinoma), LIHC (Liver hepatocellular carcinoma), KICH (Kidney Chromophobe),
PCPG (Pheochromocytoma and Paraganglioma), as shown in Fig. S4a.

Results from the CPTAC dataset showed that total NF-κB1 protein was highly expressed in primary
tissues of breast cancer, UCEC (Uterine Corpus Endometrial Carcinoma), ovarian cancer, LUAD (Lung
adenocarcinoma) colon cancer, colon cancer, clear cell RCC, and LUAD (Lung adenocarcinoma) colon
cancer (Fig. 1c, P<0.001) compared with normal tissues.

We also used the GEPIA2 “Pathological Stage Plot” module to observe the correlation between NF-κB1
expression and tumor pathological stage, including BRCA (Breast invasive carcinoma), KIRC (Kidney renal
clear cell carcinoma) (Fig. 1d, P<0.05).

3.2 Survival analysis data
We divided tumor cases into high expression group and low expression group according to the expression
level of NF-κB1, and mainly studied the correlation between NF-κB1 expression and prognosis of patients
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with different tumors using TCGA and GEO data sets. As shown in Fig. 2a, high expression of NF-κB1 in
TCGA was associated with poor overall OS (Survival) outcomes for CESC (P=0.02), LGG (P=0.019), LUSC
(P=0.033), OV (P=0.026). Data from DFS (disease-free survival) analysis (Fig. 2b) showed that high NF-
κB1 expression was not associated with poor prognosis for all types of tumors. In addition, low NF-κB1
gene expression was associated with poor OS prognosis for ACC(P=0.037), KIRC(P=0.00004), READ
(P=0.035) (Fig. 2a, P=0.012) and DFS prognosis for KIRC (P=0.0014) (Fig. 2b, P=0.014).

Moreover, using Kaplan Meier mapping tool to analyze survival data, it was found that low expression of
NF-κB1 was correlated with breast cancer OS (overall survival) (Fig. S7a, P=0.0000092), DMFS (survival
without distant metastasis) (P=0.000035) and RFS (relapse-free survival) (P<0.001) prognosis. However,
in ER status-IHC (positive and negative), ER status-arry (positive and negative), HER2 status (positive and
negative), Grade2, Intrinsic subtype (Basal, LuminalA, LuminalB) and Pietenpol subtype (basal-like1,
Luminal androgen receptor) breast cancer cases, high expression of NF-κB1 was associated with poor
OS, RFS (relapsion-free survival) and DMFS prognosis (Table S1, P<0.05). Additionally, a low NF-κB1
expression level was associated with PFS (Progression Free Survival) (P=0.0005), prognosis for ovarian
cancer (Fig. S5b). In contrast, high expression levels of NF-κB1was related to poor OS (P=0.019) and PPS
(Post-progression survival) (P=0.0019) prognosis for lung cancer (Fig. S5c), FP (P=0.00083) prognosis
for gastric cancer (Fig. S5d) and PFS (P=0.01) and RFS (P=0.0046) and DSS (P=0.035) prognosis for
liver cancer. We also used the selected clinical factors to carry out a subgroup analysis and observed
different conclusions. (Tables S1-S5). The above data suggested that the expression of NF-κB1 was
different from the prognosis of patients with different tumors.

3.3 Genetic alteration analysis data
We observed genetic alterations in NF-κB1 in different tumor samples from the TCGA cohort. As shown in
Figure 3a, the “mutant” uterine tumor patients had the highest frequency of NF-κB1 change (>6%). The
“ampli�ed” type of CNA was the dominant type of Pheochromocytoma and Paraganglioma, with a
frequency of change of about 1% (Fig. 3a). Figure 3b further shows the types, loci and number of cases
of NF-κB1 gene alteration. We found that missense mutations in NF-κB1 were the main type of genetic
alterations. A520T/V alterations in the ANK_2 domain were detected in 1 UCEC cases, 1BRCA cases and 1
COAD cases (Fig. 3b), which can induce frame shift mutations in NF-κB1 gene, translating 520 NF-κB1
proteins from A (Alanine) to T/V (Threonine/valine), and subsequent NF-κB1 protein truncation. We can
observe the A520T/V site in the 3D structure of NF-κB1 protein (Fig. 3c). In addition, we also explored the
potential association between c gene alterations and clinical survival outcomes in patients with different
types of cancer. The data in Fig. 3d shows that the prognosis of CUEC cases with NF-κB1 alteration is
better in terms of disease-speci�c survival rate (P = 0.0811) and disease-free survival rate (P =0.096) than
that of cases without NF-κB1 alteration. Additionally, we analyzed the association between NF-κB1
expression and TMB (tumor mutation burden)/MSI (microsatellite instability) in all TCGA tumor. As
shown in Fig. S6, we observed that NF-κB1 expression of LUAD, BLCA, LIHC, BRCA, THCA and UVM was
negatively correlated with TMB, while UCEC, COAD, STAD and LGG were positively correlated. The
expression of NF-κB1 was also negatively correlated with PAD, BRCA, SKCM, HNSC, and DLBC (P<0.05),



Page 7/20

and positively correlated with COAD, KIRC, and LAML (P<0.05) (Fig. S7). This result deserves further
investigation.

3.4 DNA methylation analysis data
In the TCGA project, we used the MEXPRESS method to study the potential relationship between NF-κB1
DNA methylation and different tumor pathogenesis. For TGCT cases, we observed a signi�cant negative
correlation between DNA methylation and gene expression in NF-κB1 non promoter region, such as
cg06501333 (P<0.001, R=0.527), as shown in Figure S8.

3.5 Protein phosphorylation analysis data
We also compared the phosphorylation levels of NF-κB1 in normal tissues and primary tumor tissues.
CPTAC data sets were used to analyze �ve types of tumors (breast cancer, ovarian cancer, LUAD, UCEC
and clear cell RCC,). Fig. 4a summarizes the NF-κB1 phosphorylation sites and their signi�cant
differences. Compared with normal tissues, S893 within the NF-κB1 DEATH domain showed higher
phosphorylation levels in all primary tumor tissues (Fig. 4a-g, all P <0.05), the next is the increase of
phosphorylation level of S892 locus in the breast cancer death area. (Fig. 4b, P=0.00000049), clear cell
RCC (Fig. 4c, P=0.1), LUAD (Fig. 4d, P=0.033). We also analyzed NF-κB1 phosphorylation identi�ed by
CPTAC using the PhosphoNET database, and found that the NF-κB1 phosphorylation of S893 in cell
cycle was supported by a published article (21).

3.6 Immune in�ltration analysis data
As an important part of tumor microenvironment, tumor in�ltrating immune cells are closely related to
tumor occurrence, progression or metastasis (22, 23). Tumor associated degmacyte in tumor
microenvironment have been reported to be involved in adjusting the function of various tumor soaking
immunocyte (24, 25). Here, we used TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, XCELL,
MCPCOUNTER and EPIC algorithms to investigate the potential relationship between different levels of
immune cell in�ltration and NF-κB1 gene expression in different types of TCGA tumors. Through a series
of analyses, we �nd that the immune in�ltration of CD8+ T cells is negatively correlated with the
expression of NF-κB1 in THYM (Thymoma) (Fig.S9a-b). In addition, we observed that the expression of
NF-κB1 was positively correlated with the invasion value of cancer-associated �broblasts in TCGA tumors
of LGG, LIHC, LUSC, RAAD and TGCT (Fig. 5). The above tumor scatter plot data obtained by an algorithm
are shown in Fig. 5 and Fig. S9. For instance, because of the MCPCOUNTER algorithm, expression levels
NF-κB1 in TGCT is positively correlated with the in�ltration level of cancer-associated �broblasts (Fig. 5,
Rho= -0.621, P=5.12E-17)

3.7 Enrichment analysis of NF-κB1-related partners
In order to better understand the molecular mechanism of NF-κB1 gene in tumorigenesis. Through a
series of pathway enrichment analysis, we tried to screen the target proteins bound to NF-κB1 and the
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related genes expressed by NF-κB1. We used the string tool to obtain a total of 50 NF- κB1 binding protein
was sustained by experimental evidence. The interaction network between these proteins is shown in
Figure 6a. Using GEPIA2 tool in combination with all tumor expression data of TCGA, we obtained the
�rst 100 genes expressed by NF- κB1. In Fig. 6b, the expression level of NF- κB1 was positively correlated
with UBE2D3 (R=0.63), IRF2 (R=0.63), ELF1 (R=0.58), ERAP1 (R=0.56), SMNDC1 (R=0.56) genes (all
P<0.001). The corresponding heat map data also demonstrated that NF-κB1 was positively correlated
with the above 5 genes in most explicit cancer types (Fig. 6c). By cross analysis, the two groups had 6
members, namely UBE2D3, SP1, STAT3, TNFAIP3, CNOT6L, RIPK1 (Fig. 6d).

We combined these two data sets for KEGG and GO enrichment analysis. The KEGG data in Figure 6e
suggest that “endoplasmic reticulum protein processing” and “metabolic pathway” may be participated in
NF-κB1 effect on tumor etiopathogenesis.

4 Discussion
NF-κB1 has been reported in almost all animal cell types and is an important regulator of autoimmune
diseases, cell proliferation, apoptosis and stress response (26). In this study, our “HomoloGene” and
phylogenetic tree analysis data also showed that NF-κB1 protein structure was conserved among
different species, indicating that there may be a similar mechanism for the normal physiological function
of NF-κB1. Newly published publications report a functional association between NF-κB1 and clinical
diseases, especially tumors (11–13, 27–29). It is not clear whether NF-κB1 plays a role in the
pathogenesis of different tumors through some common molecular mechanisms. Through the search of
network literature, we were unable to retrieve any publications that performed pan-cancer analysis of NF-
κB1 from the perspective of the whole tumor. Therefore, based on TCGA, CPTAC and GEO database data,
we combined the molecular characteristics of gene expression, gene alteration, DNA methylation or
protein phosphorylation to comprehensively detect NF-κB1 gene in 33 different tumors.

NF-κB1 is highly expressed in most tumors. However, NF-κB1 gene survival analysis data have yielded
different conclusions for different tumors. For liver cancer, we performed a set of survival analyses using
the Kaplan Meier mapping method (30), including liver cancer cases in the GSE20017/GSE9843 cohort.
The high expression of NF-κB1 is related to the clinical prognosis of overall survival, progression free
survival, relapse free survival and Disease speci�c survival. However, the role of NF-κB1 expression on
clinical prognosis of hepatocellular carcinoma needs more clinical big data to con�rm.

With regard to lung cancer, we analyzed the data sets of TCGA-LUSC (n=483) and TCGA-LUAD (n=483)
projects and found that NF-κB1 over-expression was associated with poor overall survival and prognosis
in lung squamous cell carcinoma (P=0.033), but not in lung adenocarcinoma (Fig. 2a). However, after
analyzing 1926 lung cancer cases of CAARRAY, GSE14814, GSE19188, and GSE29013, NF-κB1 over-
expression was associated with overall survival, �rst progression, and post-progression survival
prognosis, especially in lung adenocarcinoma cases (Table S2). Consequently, a larger sample capacity
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is demanded to con�rm the role of NF-κB1 in the subsist and prognosis of patients with different types of
carcinoma of the lungs.

In ovarian cancer, based on GEO data (GSE14764, GSE15622, GSE18520, GSE19829, etc.), we have
observed that low NF-κB1 expression was associated with adverse clinical outcomes in progression-free
survival of ovarian cancer, especially in “stage3/4”, “grade 3”, “TP53 mutation Mutated” and “Debulk”
(Table S3). Similarly, it has been reported that NF-κB1 can advance the invasion and remove of cervical
cancer cells (31). Our survival analysis based on TCGA shows that the low expression of NF-κB1 is
associated with adverse clinical prognosis of cervical cancer. Since the TCGA-TCGT cohort only contains
tumor data, we used normal testicular tissues from GTEx data set as controls and found that the level of
NF-κB1 in TGCT tissues was higher than that in normal tissues. However, NF-κB1 overexpression seems
to be associated with good clinical outcomes in patients with TGCT.

Some studies have reported the role of high expression of NF-κB1 in regulating the occurrence of breast
cancer (11, 12, 32, 33). Surprisingly, survival data of Kaplan-Meier plotters based on Affymetrix HGU133A
and HGU133+2 microarrays (34). we discover that the low expression of NF-κB1 was interrelated with
poor overall survival, distance metastasis free survival and recurrence free survival of mammary gland
cancer patients.

In this study, we present for the �rst time evidence of a potential association between NF-κB1 expression
and TMB or MSI in all TCGA tumors. In addition, we integrated information on NF-κB1 combine
ingredients and NF-κB1 expression related genes in all tumors. Then a series of enrichment analyses
were carried out to determine the potential effects of "metabolic pathway", "endoplasmic reticulum
protein processing" and RNA metabolism in tumor etiology or pathogenesis. Through a variety of immune
deconvolution methods, we observed that there was a statistically negative correlation between the level
of CD8+ T cell in�ltration and the expression of NF-κB1 in thymic tumors. Our results suggest for the �rst
time that the expression of NF-κB1 is relevant to the level of tumor in�ltrating �broblasts in some tumors.
In order to explain the difference of NF-κB1 overexpression in the above-mentioned tumors, in contrast,
this high expression status is related to the favorable prognosis of the patients. First of all, it is
noteworthy that the NF-κB1 high expression group and NF-κB1 low expression group, including TGCT and
UCEC, did not exceed 100 cases. A larger sample may be needed to testify the above-mentioned
conclusion. Second, further molecular experimental evidence is needed to judge whether the high
expression of NF-κB1 plays an important role in the occurrence of these tumors, or whether it is only the
result of tumor drug resistance in normal tissues.

In TGCT patients of TCGA, we observed a potential correlation between the decrease of DNA methylation
status and the high expression of NF-κB1 in the non-promoter region. Different methylation sites also
have NF-κB1 methylation differences in TGCT tissue matching normal tissue. More evidence is needed
for the potential role of DNA methylation of NF-κB1 in the pathogenesis of TGCT.
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We �rst studied the molecular mechanism of NF-κB1 protein in breast cancer, lung adenocarcinoma,
endometrial carcinoma, ovarian cancer and clear cell renal cell carcinoma from the perspective of total
protein and phosphoprotein by CPTAC data set. The results of this study showed that compared with
normal controls, the expression level of total NF-κB1 protein was higher in primary tumors, and the
phosphorylation level of S893 in the DEATH domain was higher. However, we still cannot rule out that the
high-level phosphorylation of S893 NF-κB1 is a by-product indicated by tumor cells and has no functional
meaning in tumor cells. The role of NF-κB1 phosphorylation at S893 site and its related cell cycle
regulation in tumorigenesis needs to be further studied.

In conclusion, our �rst pan cancer analysis of NF-κB1 showed that NF-κB1 expression was signi�cantly
correlated with clinical prognosis, DNA methylation, protein phosphorylation, immune cell in�ltration,
tumor mutation burden or microsatellite instability in a variety of tumors. This helps to understand the
role of NF-κB1 in tumorigenesis from the perspective of clinical tumor samples.
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Figure 1

Expression level of NF-κB1 gene in different tumors and pathological stages. (a) The expression of NF-
κB1 gene in speci�c cancer subtypes or different cancers was analyzed through TIMER2. * P<0.05; **
P<0.01; *** P<0.001. (b) For the type of CHOL, DLBC, GBM, LAML, PAAD, THYM and THYM in the TCGA
project, the corresponding normal tissues in the GTEx database were used as controls. Provide box chart
data. ** P <0.01. (c) Based on the CPTAC dataset, we also analyzed the expression level of NF-κB1 total
protein between normal tissue and primary tissue of breast cancer, ovarian cancer, colon cancer, clear cell
RCC and UCEC. *** P<0.001. (d) According to TCGA data, the expression level of NF-κB1 gene was
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analyzed by the major pathological stages (I, II, III, IV) of BRCA and KIRC. Log2 (TPM+1) was used for
logarithmic scale.

Figure 2

Relationship between NF-κB1 gene expression and tumor survival prognosis in TCGA. We used the
GEPIA2 tool to analyze overall survival (a) and disease-free survival (b) of different tumors in TCGA by
NF-κB1 gene expression. Survival graphs and Kaplan-Meier curves of positive results are given.
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Figure 3

Mutation characteristics of NF-κB1 in different tumors of TCGA. We used the cBioPortal tool to analyze
the mutation characteristics of NF-κB1 in TCGA tumors. Displays the frequency of mutation type (a) and
mutation site (b). 3D structure of NF-κB1 (c). We also analyzed the potential association between mutat
status and overall, disease-speci�c, disease-free and progression-free survival of UCEC (d) using the
cBioPortal tool.
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Figure 4

Phosphorylation analysis of NF-κB1 protein in different tumors. Based on the CPTAC dataset, the
expression levels of NF-κB1 phosphorylated protein (NP_001158884.1,851, S892, S893, S903, S907,
T939 and S944 sites) in normal tissue and primary tissue were analyzed by UALCAN. The phosphorylated
protein sites with positive results are shown in NF-κB1 protein schematic map(a). We also provided the
box maps for different cancers, including breast cancer (b), clear cell RCC (c), LUAD (d), ovarian cancer(e),
UCEC (f), and colon cancer (g).
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Figure 5

Correlation analysis of NF-κB1 expression and immune in�ltration in cancer-associated �broblasts. The
potential correlation between the expression level of NF-κB1 gene in TCGA and the in�ltration level of
cancer-associated �broblasts in all types of cancer was investigated using different algorithms.
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Figure 6

NF-κB1-related gene enrichment analysis. (a) We �rst obtained a usable experimentally determined NF-
κB1 binding protein using the STRING tool. (b) The �rst 100 NF-κB1 related genes in TCGA project were
obtained by GEPIA2 method, and the expression correlation of NF-κB1 with selected target genes TBL2,
Plod3, CALU, GCC1 and MyBBP1A was analyzed. (c) Displays heat map data corresponding to detailed
cancer types. (d) NF-κB1 binding and related genes were cross-analyzed. (e) KEGG pathway analysis was
performed based on NF-κB1 binding and interacting genes. (f) The circle plot of the molecular function
data in GO analysis.
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