

Green Phellodendri Chinensis Cortex-based Carbon Dots for Ameliorating Imiquimod-induced Psoriasis-like Inflammation in Mice

Meiling Zhang

Beijing University of Chinese Medicine

Jinjun Cheng

Beijing University of Chinese Medicine

Jie Hu

Beijing University of Chinese Medicine

Juan Luo

Beijing University of Chinese Medicine

Yue Zhang

Beijing University of Chinese Medicine

Fang Lu

Beijing University of Chinese Medicine

Hui Kong

Beijing University of Chinese Medicine

Huihua Qu

Beijing University of Chinese Medicine

Yan Zhao (**■** zhaoyandr@163.com)

School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China;

Research

Keywords: Phellodendri Chinensis Cortex -base carbon dots, Psoriasis, Protective effect, Proinflammatory cytokines, Imiquimod

Posted Date: December 4th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-118225/v1

License: © 1 This work is licensed under a Creative Commons Attribution 4.0 International License.

Read Full License

Version of Record: A version of this preprint was published at Journal of Nanobiotechnology on April 15th, 2021. See the published version at https://doi.org/10.1186/s12951-021-00847-y.

Abstract

Background: Carbon dots with multifaceted advantages have been provided hope for development brandnew nanodrug for treating thorny diseases. This study developed a green and simple calcination method to prepare novel cardon dots (CDs) as promising drug for psoriasis treatment. The as-prepared CDs using Phellodendri Chinensis Cortex (PCC) as sole precursor were characterized by a series of methods, mainly including electron microscopy, optical technology and X-ray photoelectron spectroscopy (XPS).

Results: Results displayed that fluorescence (Quantum yield = 5.63%) and nontoxic PCC-based CDs (PCC-CDs) with abundant chemical groups exhibited solubility and tiny sizes at average of (1.93 \pm 0.53) nm, which may be beneficial for its inherent biological activity. Moreover, by using the typical imiquimod (IMQ) – induced psoriasis-like skin mouse model, we firstly demonstrated the pronounced anti-psoriasis activity of as-prepared PCC-CDs on ameliorating the appearance, psoriasis area and severity index (PASI) scores as well as histopathological morphology of both back tissues and right ears in IMQ-induced mouse. Further potential mechanisms behind the anti-psoriasis activities may be related to the anti-inflammation effects of PCC-CDs by descending the serum levels of proinflammatory cytokines (TNF- α , IL-6 and IL-17A).

Conclusion: These results suggested that PCC-CDs have potential to be an anti-psoriasis candidate for clinical applications to treat psoriasis, which not only provided an evidence for further broadening the biological application of CDs, but also provided a potential hope for application nanodrugs to treat thorny diseases.

Full Text

This preprint is available for download as a PDF.

Figures

Figure 1

Illustration for as-prepared Phellodendri Chinensis Cortex - based carbon dots (PCC-CDs) by one-step calcination method.

Figure 2

Morphological and optical characterizations of Phellodendri Chinensis Cortex - based carbon dots (PCC-CDs) prepared at 400 °C. (A) Transmission electron microscopy (TEM) images. Inset: particle size distribution histogram. (B) High-resolution transmission electron microscopy (HRTEM), Inset: magnification figure. (C) Ultraviolet and visible spectrum and (D) Fluorescence spectra.

Figure 3

Functional groups and element analysis of Phellodendri Chinensis Cortex - based carbon dots (PCC-CDs). (A) Fourier transform infrared spectroscopy spectrum (FT-IR). X-ray photoelectron spectroscopy (XPS) spectrum including (B) full survey spectrum and (C) C 1s, (D) O 1s and (E) N 1s high-resolution survey spectrum.

Figure 4

Cytotoxic effects of Phellodendri Chinensis Cortex - based carbon dots (PCC-CDs) at increasing concentrations on L02 and 293T cells via CCK-8 assay for 24h.

Figure 5

Effects of Phellodendri Chinensis Cortex - based carbon dots (PCC-CDs) on appearance of the dorsal skin and right ears tissues in imiquimod (IMQ) -induced psoriasis-like mice on day 7. (A-F) Presentation of phenotype of animal entirety, (a-f) Magnification of dorsal skin and [a)-f)] right ear tissues. Mouse were assigned into six groups: control (Normal saline [NS], 0.5 mL), IMQ (NS,0.5 mL), methotrexate [MTX] (1.0 mg/kg), different doses of PCC-CDs groups (High[H]:0.86 mg/kg; Medium[M]:0.43 mg/kg; Low[L]:0.22 mg/kg). Expect for control group, IMQ and drug-treated group were received a daily application of IMQ.

Figure 6

Effects of Phellodendri Chinensis Cortex - based carbon dots (PCC-CDs) on PASI scores (Erythema, scales, infiltration and total scores) of (A-D) skin and (E-H) right ears, (I) weight ratio of spleen to body [Spleen/body wt %], (J) size of spleen organ and (K) body weight loss (\triangle weight). Mouse were assigned into six groups: control (Normal saline [NS], 0.5 mL), imiquimod [IMQ] (NS,0.5 mL), methotrexate [MTX] (1.0 mg/kg), different doses of PCC-CDs groups (High[H]:0.86 mg/kg; Medium[M]:0.43 mg/kg; Low[L]:0.22 mg/kg). Expect for control group, IMQ and drug-treated group were received a daily application of IMQ. Data were expressed as means \pm standard deviation (SD). *P < 0.05 and **P < 0.01 vs. control group, #P < 0.05 and ##P < 0.01 vs. IMQ group.

Figure 7

Effects of Phellodendri Chinensis Cortex - based carbon dots (PCC-CDs) on the serum levels of TNF- α , IL-6 and IL-17A. Control: control group; imiquimod (IMQ): IMQ-treated model group; MTX: methotrexate-treated positive group; H, M, L: high-, medium- and low doses of PCC-CDs group. Data were expressed as means \pm standard deviation (SD). *P < 0.05 and **P < 0.01 vs. control group, #P < 0.05 and ##P < 0.01 vs. IMQ group.

Figure 8

Representative microphotographs and epidermal thickness of (A, B,E) dorsum skin and (C, D,F) right ear tissues of mouse. Animals were divided into control, model (only treated with imiquimod [IMQ]), positive (treated with methotrexate [MTX]), Phellodendri Chinensis Cortex - based carbon dots (PCC-CDs) at high[H]- (0.86 mg/kg), medium[M]- (0.43 mg/kg) and low[L] (0.22 mg/kg) doses groups (A and C: H & E staining; magnification×5; B and D: H & E staining; magnification×10). Data were expressed as means \pm

standard deviation (SD). $^{*}P < 0.05$ and $^{**}P < 0.01$ vs. control group, $^{\#}P < 0.05$ and $^{\#}P < 0.01$ vs. IMQ group.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- GraphicalAbstract.pdf
- Supplementarymaterial.pdf