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Abstract
Plant-microbe interactions affect ecosystem function, and plant species in�uence relevant microorganisms.
However, the different genotypes of maize that shape the structure and function of the rhizosphere microbial
community remain poorly investigated. During this study, the structures of the rhizosphere microbial community
among three genotypes of maize were analyzed at the seedling and maturity stages using high-throughput
sequencing and bioinformatics analysis. The results demonstrated that Tiannuozao 60 (N) showed higher bacterial
and fungal diversity in both periods, while Junlong1217 (QZ) and Fujitai519 (ZL) had lower diversity. The bacterial
community structure among the three varieties was signi�cantly different; however, fewer differences were found in
the fungal community. The bacterial community composition of N and QZ was similar yet different from ZL at the
seedling stage. The bacterial networks of the three cultivars were more complex than the fungal networks, and the
networks of the mature stages were more complex than those of the seedling stages, while the opposite was true for
the fungi. FAPROTAX functional and FUNGuild functional predictions revealed that different varieties of maize were
different in functional abundance at the genus level, and these differences were related to breeding characteristics.
This study suggested that different maize genotypes regulated the rhizosphere bacterial and fungal communities,
which would help guide practices.

Introduction
The microbial community is a vital part of the ecological environment (Delmont et al. 2011). The interaction between
plants and microbial communities is an essential link in the functioning of ecosystems (Vivanco et al. 2018) and
can affect agricultural ecosystems (Teste et al. 2017). Many studies have shown that the rhizosphere is a crucial
zone for plant-microbe interactions (Bulgarelli et al. 2015; Müller et al. 2016; Saleem et al. 2016; Zachow et al. 2014).
The rhizosphere microbes can defend plants against pathogens through competition, antagonism, or interference
with host immunity to ascertain a mutualistic association with the host (Bakker et al. 2013; Lu et al. 2018; Agler et al.
2016; Mendes et al. 2013; Mendes et al. 2011; Pozo et al. 2007; Raaijmakers et al. 2016; Reinhold-Hurek et al. 2015;
Ritpitakphong et al. 2016; Yu et al. 2019). They can promote plant growth by increasing nutrient availability,
manufacturing plant hormones, enhancing tolerance to abiotic stresses, and adapting to environmental variations to
enhance host immune functions (Etesami et al. 2014; Haney et al. 2015; Xu et al. 2015; Mansotra et al. 2015; Berg et
al. 2018; Rolli et al. 2015). The structure and function of plant microbiome change with changes in stress and
environmental stimuli (Gardener et al. 2001; Ferrando et al. 2015; Santos-Medellín et al. 2017; Timm et al. 2018).
Plants also affect microbial communities by producing completely different detritus and excretions (Cline et al.
2016; Zhalnina et al. 2018) and have the capacity to vary soil microbiota by secreting bioactive molecules into the
rhizosphere (Schlaeppi et al. 2014; Zgadzaj et al. 2016). Therefore, understanding the interaction between
microbiota and plants has important agronomic signi�cance.

Some studies have demonstrated that plant types change the microbial community under stable environmental
conditions. For example, plant genotypes have speci�c effects on the wheat rhizosphere microbial community
(Simonin et al. 2020). The investigation of the rhizosphere bacterial community of twelve rabbit-eye blueberry (RB)
cultivars demonstrated that the rhizosphere of the plant cultivars affected bacterial association networks (Jiang et
al. 2017). By analyzing the rhizosphere microbial community structure and activity of maize plants, the results
indicated that the rhizosphere microbial community was relevant to the plant genotype (Hou et al. 2018). These
studies demonstrated that plant genotype in�uences microbial community composition in controlled environments.
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Maize (Zea mays L.) is one of the foremost versatile emerging crops with wider adaptability under varied agro-
climatic conditions (Chandel 2018). It is, therefore, essential to understand the microbial communities of maize
interrhizosphere soils. This study investigated the bacterial and fungal communities of three different maize
cultivars using high-throughput sequencing methods. This study aimed to explore the composition, structure, and
interactions of microbial communities from different maize cultivars. We speculated that speci�c differences exist
among different genotypes of maize in regard to rhizosphere microorganisms. We speculated that the plant host
regulated the differences and the changes were related to plant characteristics. We hope that this work can provide
novel insights into the understanding of the microbiological community of maize.

Materials And Methods
Experimental site, crop varieties, and soil physicochemical properties

Experimental soils were collected at a depth of 15 cm from three major genotypes of corn and were set up in a
complete randomized design in Qiqihar, Heilongjiang Province, China (123°74′90.67″ E, 47°40′43.17″ N; altitude: 146
m) on April 18, 2020, and September 13, 2020. The average annual precipitation in this area is 670.8 mm, and the
soil at the study site is sandy loam soil. A total of 54 rhizosphere soil samples (9 treatments × 3 replicates per
treatment × 2 periods) were collected from the Zea mays L rhizosphere. Blank soil physical and chemical properties
are given in Supplementary Table S1. The volumetric method was used to measure the content of organic matter
(SOC), available nitrogen (AN), and total nitrogen (TN). UV–Vis spectrophotometry was used to measure the content
of total phosphorus (TP) and available phosphorus (AP). Total potassium (TK) and available potassium (AK) were
determined by the inductively coupled plasma-atomic emission spectrometry (ICP-AES) method.

The different genotypes included foodstuff-type maize Fujitai519 (ZL), Junlong1217 (QZ), and Tiannuozao60 (N) in
this study. The sample properties are shown in Supplementary Table S2. Rhizosphere samples were collected
unbroken in a sterile bag within an ice-containing box and transported to the laboratory. The soil was removed of all
impurities with tweezers, the rhizosphere soil was gently swept with a brush, and the samples were stored
in a refrigerator at 4 °C( Barillot et al. 2013).

DNA Extraction, PCR Ampli�cation, and Illumina MiSeq Sequencing

In this experiment, a total of 66 samples from two periods were used for sequencing. Microbial community genomic
DNA was extracted from rhizosphere soil samples using the E.Z.N.A.® soil DNA Kit (Omega Bio-Tek, Norcross, GA,
US) according to the manufacturer's instructions. Distinct regions of bacterial 16S rRNA and fungal ITS genes were
ampli�ed using primers. The hypervariable region V3-V4 of the bacterial 16S rRNA gene was ampli�ed with primer
pairs 338F (5'-ACTCCTACGGGAGGCAGCAG-3') and 806R (5'-GGACTACHVGGGTWTCTAAT-3') and the ITS gene was
ampli�ed with primer pairs ITS1F (5'-CTTGGTCATTTAGAGGAAGTAA-3') and ITS2R (5'-GCTGCGTTCTTCATCGATGC-
3') by an ABI GeneAmp® 9700 PCR thermocycler (ABI, CA, USA).

PCR ampli�cation of the 16S rRNA gene was performed as follows (Supplementary Table S3). The PCR product was
extracted from a 2% agarose gel and puri�ed using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union
City, CA, USA) according to the manufacturer's instructions and quanti�ed using a Quantus™ Fluorometer (Promega,
USA). Puri�ed amplicons were pooled in equimolar amounts and paired-end sequenced on an Illumina MiSeq PE300
platform (Illumina, San Diego, USA) according to the standard protocols by Majorbio Bio-Pharm Technology Co., Ltd.
(Shanghai, China).
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Molecular biological analysis and statistical analysis

The raw 16S rRNA and ITS gene-sequencing reads were demultiplexed, quality-�ltered by fastp version 0.20.0 (Chen
et al. 2018), and merged by FLASH version 1.2.7 (Magoč et al. 2011). Operational taxonomic units (OTUs)
with a 97% similarity cutoff (Edgar 2013; Stackebrandt et al. 1994) were clustered using UPARSE version 7.1 (Edgar
2013), and chimeric sequences were identi�ed and removed. The taxonomy of each OTU representative sequence
was analyzed by RDP Classi�er version 2.2 (Wang Q 2007) against the 16S rRNA and ITS databases using a
con�dence threshold of 0.7.

Analysis of alpha diversity and beta diversity of the normalized dataset was performed using R (version 3.2.5, USA)
and the Vegan package (published by Philip Dixon, 2003). Nonmetric multidimensional scaling (NMDS) was used to
visualize the dissimilarities(Taguchi et al. 2005). Differentially abundant features were analyzed using Metastat
analysis in R (version 3.2.5, USA). Microbial diversity and the relative abundance of different microbial taxonomic
levels were assessed for differences between different groups with one-way ANOVA, a t test, or a Kruskal–Wallis H
test using SPSS software (SPSS, Chicago, IL, USA). Graphical representations were generated with GraphPad Prism
5 (GraphPad Software, Inc., La Jolla, CA, USA).

Co-occurrence network and functional prediction analysis

Phylogenetic molecular ecological networks (pMENs) from the three cultivars were constructed to investigate
microbial interactions. The process was performed using the molecular ecological network analysis pipeline (MENA,
http://ieg4.rccc.ou.edu/mena/login.cgi) (Deng et al. 2012). The co-occurrence network is based on all genus levels.
Correlation networks were visualized using Gephi software (Brughmans 2013). To visualize the associations in the
network, we constructed a correlation matrix by calculating the possible pairwise Spearman's rank correlations
(Junker et al. 2010). FAPROTAX and FunGuild software (https://github.com/UMNFuN/FUNGuild) were used to
predict the metabolic function of the microbial �ora(Nguyen et al. 2016; Zhou et al. 2020)based on the literature on
cultured representatives. All raw sequence data are accessible in the NCBI Sequence Read Archive (SRA) database
under BioProject number PRJNA775859.

Results
Analysis of alpha diversity and beta diversity of the microbial community

In total, 12 bulk soil (CK) and 54 rhizosphere soil samples were sequenced in the experiment; a pro�le of bacterial
and fungal communities was achieved to reveal the microbial community structure of the maize rhizosphere. For the
entire sampling set, a total of 3,787,073 raw bacterial sequences with an average length of 415 bp and 3,458,212
fungal sequences with an average length of 233 bp were identi�ed using Illumina MiSeq analysis. After a series of
preprocessing steps, 1,616,406 bacterial and 2,067,318 quali�ed fungal reads were classi�ed into 6632 bacterial and
1671 fungal OTUs. All sampling efforts reached the saturation plateau using rarefaction analysis. They effectively
covered the total extent of almost a majority of the bacterial and fungal diversity, consistent with 97 sequence
similarities in the rank abundance curve approach (Supplementary Fig. S1).

The alpha diversity of bacterial communities of different species was re�ected by the Shannon index, Simpson
index, and Chao 1 index and is presented in Dataset S3. The results showed that the alpha diversity (Chao) at the
seedling stage of the bacterial communities in CK was signi�cantly lower than that in N and ZL (P ≤ 0.05). However,
there was no signi�cant difference in the Shannon and Simpson indices. There was a substantial difference in the
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alpha diversity at the maturity stage of bacterial communities (P ≤ 0.05) (Fig. 1a). For fungi, the alpha diversity
(Simpson and Shannon) in the rhizosphere soil of all three genotypes of maize was completely different compared
with CK at the seedling and maturity stages; Simpson index values of ZL and N were signi�cantly different in both
periods of the fungus (P ≤ 0.05) (Fig. 1d). Cultivar N showed higher bacterial and fungal diversity in both periods.

NMDS analysis was conducted based on Bray–Curtis distances to visualize the differences in community
composition. The overall bacterial community composition was separated from before planting at the seedling and
maturity stages (stress=0.078; stress=0.079). The bacterial community was separated into cultivar groups. However,
it was not as distinct as CK (Fig. 1b,c). For fungi, four treatments were also clearly separated (stress=0.069;
stress=0.080) (Fig. 1e,f), and bacterial communities were less distinct than fungal communities (Fig. 1b,c,e,f). The
results indicated that obvious differences existed in the microbial community structure of the rhizosphere among
genotypes of maize. 

Microbial community composition of different maize cultivars

The soil bacterial sequences were assigned to 8 phyla (others<0.01) in 95% of corn cultivar samples and
included the phyla Actinobacteria, Proteobacteria, Acidobacteriota, Chloro�exi, Firmicutes, Bacteroidota,
Gemmatimonadota, and Myxococcota. Actinobacteria accounted for the most signi�cant proportion, 35.58%-43.86%
of all OTUs, while Proteobacteria and Acidobacteria were also the main bacteria in the soil, with amounts of
17.54%-21.78% and12.73%-17.84%, respectively (Fig. 2a). There was a difference in relative bacterial abundance
before and after planting, both at the seedling and maturity stages, with a signi�cant increase in Actinobacteria and
a substantial decrease in Proteobacteria in the three cultivar groups compared with CK (Fig. 2a, Supplementary Fig.
S2a). Some phyla, such as Actinobacteria, Acidobacteriota, and Gemmatimnadota, had signi�cantly different
relative abundances between cultivars. Actinobacteria differed among cultivars at the seedling stage but not
signi�cantly at maturity. Acidobacteriota of cultivar ZL differed from other cultivars at the seedling stage;
Gemmatimnadota differed among cultivars at the maturity stage. In comparing different periods of the same
cultivar, differences were found in Actinobacteria and Bacteroidota at both seedling and maturity stages (ANOVA. P <
0.05) (Fig. 2a, Supplementary Fig. S2a). For fungi, compared with CK, the Ascomycota and Mortierellomycota in the
cultivar groups showed a signi�cant increase in both periods. In contrast, the Basidiomycota phylum showed a
considerable decrease, most signi�cantly in the N cultivar (ANOVA. P < 0.05) (Fig. 2b, Supplementary Fig. S2b).

The soil community composition at the genus level was also different among cultivars. In the top 50 genera, the
bacterial community was dominated by Arthrobacter, Rubrobacter, and Blastococcus. Sphingominas,
Microlunatus, and Rubrobacter had lower abundances in the CK group, while RB41, Paenibacillus,
Streptomyces, and Pseudonocardia had lower abundances after planting. Comparison between seedling and
maturity stages also revealed that Gaiella, Nocardioides, Pseudoncardia, and Blastococcus were generally less
abundant at the seedling stage (Fig. 3a). There were 20 dominant species at the seedling stage and 22 dominant
species at the maturity stage (average abundance >1%). By comparing the dominant species of the two varieties
during the same period, further analysis showed that the bacterial community composition of cultivars N and QZ
was similar but different from that of cultivar ZL at the seedling stage. At the seedling stage, the abundance of
Pseudonocardia and Blastococcus was signi�cantly higher (P < 0.05) in N and QZ compared with that in ZL (Fig.
3a,c); Streptomyces and Nocardioides in cultivar N were signi�cantly higher (P < 0.05) compared with those in ZL 9
(Fig. 3a,c). At maturity, Blastococcus and Microvirga were signi�cantly higher (P < 0.05) in cultivar N than in cultivar
QZ, while the relative abundance of Rubrobacter and RB41 was relatively higher (P < 0.05) in cultivar ZL (Fig. 3a,d).
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The fungal community composition at the genus level varied among cultivars at different periods. By analyzing the
relative abundance of fungi at the genus level, the community was dominated by Tausonia, Gibberella,
Pseudombrophila, Schizothecium and Mortierella (Fig. 3b). There were 12 dominant genera at the seedling stage
and 14 dominant genera at the maturity stage (average abundance >1%). Comparisons indicated that Gibellulopsis,
Monondicty, Sporoirmia, and Tausonia decreased after planting, especially in cultivar N (Fig. 3b), while the
abundance of Pseudombrophila increased signi�cantly (p<0.05) (Fig. 3b,f). Tausonia had a higher relative
abundance in cultivar ZL, while Monocillium and Coprinopsis had a higher relative abundance in cultivar QZ (Fig.
3b). However, further analysis showed that the bacterial community composition of dominant genera in cultivars N
and QZ was similar at the seedling stage (Fig. 3e). At maturity, the abundance of Rhizoctonia was signi�cantly
higher (p<0.05) in cultivars (Fig. 3b); the relative abundances of Gibberalle and Chaetomium differed signi�cantly
(p<0.05) between cultivars ZL and QZ (Fig. 3f). Compared with bacteria, the fungal differences were not particularly
signi�cant. 

Topological properties of the bacterial and fungal co-occurrence network

Co-occurrence networks were built to construct high-throughput sequencing data at the genus level. Network plots
revealed that the three cultivars had different microbial co-occurrence network structures. The modular
architecture was used as the coloring unit to visualize the ecological network of bacteria and fungi. Modules with
less than 1% of nodes are shown in gray, with the node size proportional to the corresponding relative abundance.
The same module represents the same trend of change. The red edges represent positive correlations, and the blue
and green edges represent negative correlations.

The complexity of the co-occurrence network varied depending on both the variety and period. Different R2 values for
all groups indicate that the networks formed possessed scale-free properties (Table 1). The network was looser at
the seedling stage than at the maturity stage, suggesting that the network was more consistent at maturity (Fig. 4a).
Fungal communities were compact at the seedling stage but loose at maturity (Fig. 4b). The network was dominated
by red lines in the bacterial and fungal networks, indicating that positive interactions were higher than negative
interactions. However, this was not the case for fungi in the mature stage of the N species (Fig. 4a,b).

Moreover, the average clustering coe�cients, average path distance, and other parameters were also different
between the twelve networks (Table 1). Comparing the three bacterial networks at the seedling stage, we discovered
that the average path length (GD) of the ZL network was longer than those of the N and QZ networks, while the
average connectivity and clustering coe�cients (avgCC) of the N network were relatively higher. QZ had a higher
average degree (avgK) and a shorter average path distance (GD) (Table 1). However, in regard to maturity, the
opposite was true (Fig. 4a, Table 1). For fungi, the network of the QZ cultivar was the tightest in the two periods (Fig.
4a, Table 1). Overall, network analyses indicated higher stability properties in the bacterial networks than in the
fungal networks (Fig. 4a, Table 1).

Centrality is a concept commonly used in network analysis to express how each point in a network is related to other
issues in the network. The nodes of maximum stress centrality were also different in all groups, such as Aridibacter,
Phyllobacterium, and Pedomicrobium; none of these genera were found in the top 50 genera (Table 1). The degree of
a node indicates the number of nodes in the network that are directly connected to that node, with higher
connectivity indicating higher importance of the node in the overall network. The nodes with a maximum degree also
varied in different cultivars, but the virtual nodes in the same cultivar in different periods always had consistency
(Table 1).
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Different nodes may play distinctly different topological roles in a network, which is shown in Supplementary Table
S4 in our experiment. Different cultivars had different key nodes at different periods. At the seedling stage, the
connector found in cultivar N was Herbinix, and the module hubs were Bacillus, Gaiella, RB41, and so on. In cultivar
QZ, Bacillus and Phyllobacteria were the module hubs. Halocella and Psychrobacillua (a kind of bacillus) were the
module hubs in cultivar ZL (Supplementary Table S4). At maturity, the connector found in cultivar N was
Rhpdpcytophage; the module hubs were Asanoa, Conexobacter, and Sporosarina. In cultivar QZ, Microbacterium and
Nannocystis were the module hubs. Galella, Herpetosiphon, and Bdellourbrio were the module hubs and connectors
in cultivar ZL (Supplementary Table S5). Similar results were found for the Z-P table of fungi, with different cultivars
having different key nodes (Supplementary Tables S6, S7). 

Table 1. Topological properties of co-occurring bacterial and fungal networks of two periods obtained among the
rhizosphere.

  Community Total
nodes

Total
links

R2

square
of
power-
law

Average
degree
(avgK)

Average
clustering
coe�cient
(avgCC)

Average
path
distance
(GD)

Nodes
with
max
degree

Nodes
with max
stress
centrality

Bacteria N 471 867 0.914 3.682 0.222 8.062 OTU838 OTU392

QZ 465 857 0.894 3.686 0.21 6.037 OTU509 OTU402

ZL 551 808 0.878 2.933 0.206 10.222 OTU604 OTU900

N2 469 762 0.926 3.249 0.17 8.361 OTU838 OTU58

QZ2 498 716 0.833 2.876 0.18 8.926 OTU319 OTU984

ZL2 445 1010 0.865 4.539 0.176 7.925 OTU604 OTU248

Fungi N 152 448 0.835 5.895 0.289 3.517 OTU195 OTU56

QZ 139 375 0.781 5.396 0.253 3.377 OTU356 OTU356

ZL 180 284 0.802 3.156 0.172 6.683 OTU104 OTU104

N2 210 314 0.709 2.99 0.186 6.691 OTU150 OTU150

QZ2 155 288 0.831 3.716 0.19 4.525 OTU6 OTU6

ZL2 177 226 0.869 2.554 0.131 7.36 OTU202 OTU324

We constructed Spearman's analysis of the top 50 genera of well-functioning bacteria and pathogen-associated
fungi to �nd the relationships between different bacteria and fungi (Fig. 4c). We discovered that Blastococcus RB41
was signi�cantly positively (P ≤ 0.05) correlated with Bacillus and negatively correlated with Rhizoctonia; Gaiella
was signi�cantly negatively correlated (P ≤ 0.05) with Elin6055; and Microvirga was signi�cantly negatively (P ≤
0.05) correlated with Gribberella (Fig. 4c). Bacillus was the key node in both cultivars. In contrast, nodes in fungi with
the maximum degree and stress centrality converged in the same cultivar; therefore, we compared the two and found
more associations between key fungi than with Bacillus (Supplementary Fig. S3). Fungi and bacteria were in a state
of mutual constraint and interdependence, and interestingly, pathogenic bacteria in fungi did not all show a negative
correlation (Supplementary Fig. S4).

FAPROTAX functional and FUNGuild function predictions
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FAPROTAX functional predictions were made for bacteria in the soil at different periods, with the highest abundance
of bacteria related to chemoisotropy and aerobic-chemoheterotrophy (Fig. 5a, Supplementary Fig. S5), indicating
that the microorganisms were closely related to plant metabolism. Microorganisms related to the degradation of
aromatic compounds and cellulose decomposition were more abundant in N, microorganisms related to nitrogen
�xation, and microorganisms related to lignin degradation were more abundant in QZ (Fig. 5a). In the seedling stage,
ZL was closely related to nitrate reduction and nitrate respiration, and microorganisms related to photoautotrophy
were less abundant at maturity than at the seedling stage, a phenomenon in contrast to cultivar N (Fig. 5a,
Supplementary Fig. S5). FUNGuild function predictions for fungi at both periods revealed that the QZ and N cultivars
had fewer fungi associated with plant pathogens at maturity with QZ. Cultivars had the fewest fungi associated with
plant pathogens at maturity (Fig. 5b,c).

Discussion
The interaction between plants and microorganism communities is a critical driving issue for ecosystem
functions(Graham et al. 2014; Wu et al. 2019). Soil microorganisms play a signi�cant role in the decomposition of
organic matter (Collado et al. 2019), nutrient acquisition (Chibucos 2009), and soil nutrient dynamics (Hou et al.
2018). Many studies have shown a direct relationship between crop genotype and interroot microbes. Consistent
with previous studies, our study also ascertained these patterns. We conjectured that differences in microbial
community structure in maize at different times might be related to genotype and designed experiments to test this
hypothesis. We conducted 16S rRNA gene and ITS gene amplicon sequencing to detect the diversity and structure of
the maize rhizosphere microbiota.

By analyzing the α diversity and β diversity of the microbial community, the results demonstrated that the microbial
composition of maize soils differed among the three genotypes and was con�rmed in both periods. N had the
highest alpha diversity index (Fig. 1a,d), which may have a better degree of stability in the ecosystem(Xun et al.
2021). This suggested that the host genotype contributed to a considerable portion of the variation in maize
rhizosphere microbial α and β diversity (Fig. 1b-c,e-f) (Peiffer et al. 2013).

To further explore the main manifestations of these differences, we analyzed the horizontal composition of the
microbiota in the interroot microbial community structure of different maize genotypes. In all soil samples (Fig. 2a),
Proteobacteria and Actinobacteria were the dominant phyla in soils, consistent with previous generation-sequencing
studies on maize cultivated soils (Kong et al. 2020).

While many taxa were shared between different genotypes and soils, we also observed microbial taxa in which the
soil community composition at the genus level was also different among cultivars (Fig. 3). For example, in the
seedling stage, Blastococcus and Pseudonocardia were signi�cantly higher (P≤0.05) in N and QZ (Fig. 3c), and
Pseudonocardia was reported to be mainly related to synthetic antibiotics (Caldera et al. 2019). In the maturity stage,
Blastococcus, Pseudonocardia, and Microvirga were signi�cantly higher (P≤0.05) in N than in QZ, while RB41 was
signi�cantly higher (P≤0.05) in ZL (Fig. 3d). A previous study showed that the abundance of Blastococcus and
RB41 in soil changed with salt stress. We suggested that the abundance of genera in ZL was more variable and that
the cause of the variation in the abundance of ZL may be related to salt stress (Kloepper et al. 1980; Wang et al.
2019).
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Interestingly, we found that Blastococcus was positively correlated with Pseudonocardia, RB41, and Bacillus.
Microviga was positively correlated with Springomonas(Zhou et al. 2016) but not with some genera
(Pseudonocardia, RB41, and Bacillus) (Fig. 4c), probably because the association between the genera was in
different patterns. We therefore hypothesized that different genotypes would lead to changes in the abundance of
genera in the microbial community and might be more inclined to recruit microbes with the same trend required by
the plant host. The fungal community was not as signi�cant as the bacterial community in different cultivars
(Fig. 3e,f). We believe that genotype had a greater effect on the microbial community bacteria than fungi.

To further con�rm our hypothesis, we conducted a co-occurrence network (Fig. 4a). Network analysis was performed
to realize an integrated understanding of the bacterial community assembly rules re�ecting ecological processes
within the rhizosphere, such as cooperation, competition, and niche partitioning (Layeghifard et al. 2017). Moreover,
correlation-based networks offered new insights into the characteristics of advanced bacterial network structures
and keystone populations (Barberán et al. 2012). Bacterial and fungal networks differed across genotypes, which
was con�rmed in both periods. For example, QZ responded more quickly to changes in external environmental
conditions and was more susceptible to changes in the external environment and less resistant to interference than
ZL, which had an excellent buffering capacity for changes in environmental conditions (Fig. 4a,c) (Zhan et al. 2021).
This suggested that different genotypes build their own unique microbial communities. The nodes with a maximum
degree also varied in different cultivars, but in the same cultivar of different periods, they always had consistency
(Table 1). This reinforced the idea that genotype mediates microbial changes.

We found different genotypes of connectors and module hubs and differences between periods. In the seedling
stage, the connectors found in N were all related to functions such as cellulose degradation and plant growth and
development (Koeck et al. 2016; Zhang et al. 2020). The connector found in QZ was related to bacterial
exopolysaccharides (EPSs), which can provide the host plant with antioxidants and protection from corrosive
pathogens (Supplementary Table S4) (Bouchotroch et al. 2000; Chi et al. 2019). The connector found in ZL was
closely related to salt stress (Heng et al. 2019). Bacillus is a module hub in two cultivars. At maturity, the connectors
found in cultivars were very different from seedlings (Supplementary Table S5). Therefore, we speculated that
different genotypes of maize might build their unique microbial communities based on the unique characteristics of
this variety. Notably, Blastococcus was less abundant in ZL than in the other two species but was an important node
(Fig. 3c, Supplementary Table S5). None of the nodes of maximum stress centrality were found in the top 50 genera
(Table 1). Some nodes with essential roles in the network are not dominant genera, revealing the vital role of rare
species in the network (Deng et al. 2016; Feng et al. 2017). However, for fungi, many nodes with the maximum
degree overlap with stress centrality; therefore, it is speculated that the fungal and bacterial communities may be in
two different modes (Fig. 4c). We also found that fungi and bacteria were in a state of mutual constraint and
interdependence, and interestingly, pathogenic in fungi did not all show a negative correlation with bacteria(Fig. 4c).

A variety of experimental studies have demonstrated the importance of biodiversity for system functioning (Delgado-
Baquerizo et al. 2016; Hector et al. 2007; Wagg et al. 2014). The highest abundance of bacteria was related to
chemoisotropy and aerobic chemoheterotrophy (Fig. 5a, Supplementary Fig. S5), indicating that microorganisms are
closely related to plant metabolism. The variations in root exudates explained how these corn cultivars managed
their rhizosphere bacterial ecosystems together with the core and cultivar-speci�c microbiota (Fig. 5a,
Supplementary Fig. S5)(Mendes et al. 2014). Ecological function predictions support network analysis, con�rming a
preference trend for plant-mediated microbial community change. Plant hosts of maize genotypes all prefer their
corresponding ecological functions and recruit their speci�c interrooted microbes according to their preferences
(Fig. 5a, Supplementary Fig. S5). Bacteria associated with plant pathogens were more abundant at the seedling



Page 10/17

stage but less abundant at maturity (Fig. 5b-c). Several recent studies have provided proof of this strategy in which
surface pathogen infection can induce the assemblage of a plant-bene�cial bacterial consortium in the root
microbiome (Berendsen et al. 2018; Yuan et al. 2018). We therefore believe that young seedlings are more
susceptible to pathogens than mature plants. Plants secrete interroot secretions that are involved in a 'call for help'
strategy and actively engage their microbes to maximize their survival and growth when affected by external
stresses, leading to an enrichment of bene�cial bacteria that become essential members of the dominant network
(Liu et al. 2019), and these also closely related to the characteristics of the plant.

Conclusions
In summary, our evidence suggested that different genotypes of maize regulated the rhizosphere microbial
community structure in both periods, with secreting root exudates to build their unique microbial communities,
depending on species unique characteristics. Genotype had a greater effect on the microbial community bacteria
than fungi. The fungal and bacterial communities might be in two different modes and a state of
interconnectedness. Our study further con�rms the pattern of genotype-induced microbial community assembly.
These �ndings offer a framework for the more development of methods aiming at engineering useful plant
microbiomes via changes. By better understanding the causal relationship between genotypes and microbial
communities and the relationship with species unique characteristics, we will probably be able to better inform
methods for prospective designs, manipulate the structure, functioning of plant-associated microbiomes and provide
a guiding direction for the subsequent construction of rhizosphere microbial communities relevant to maize growth
and development.
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Figures

Figure 1

Alpha diversity and beta diversity of bacterial and fungal communities for three cultivars in two growth periods. (a),
Simpson diversity, Shannon diversity, and the Chao1 diversity of the bacterial level at the seedling and maturity
stage; and (d), Simpson diversity, Shannon diversity, and the Chao1 diversity of the fungal level at the seedling and
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maturity stage. NMDS analysis of the bacterial and fungal community composition at the genus level based on
Bray–Curtis distance. (b), NMDS analysis of bacterial level at the seedling stage; (c), NMDS analysis of bacterial
level at the maturity stage; (e), NMDS analysis of fungal level at the seedling stage; and (f), NMDS analysis of fungal
level at the maturity stage. Signi�cances between different groups were compared using Wilcoxon’s test, with the
results indicated on the top (P ≤ 0.05 is marked as *, P ≤ 0.01 is marked as **, and P ≤ 0.001 is marked as ***). The
abscissa is the group name, and the ordinate is the average value of the index.

Figure 2

Taxonomic assignments and percent of community abundance at the phylum level in the rhizosphere soil of
different cultivars. (a) The average relative abundance of the bacterial community. (b) The average relative
abundance of the fungal community.

Figure 3

Taxonomic assignments and percent of community abundance at the genus level in the rhizosphere soil of different
cultivars. (a, b) Heatmap of the soil bacterial groups and fungal groups of the top 50 genera. (c-f) Signi�cance test
of differences between three different rhizosphere maize groups with dominant species based on Student's t test at
the genus level (P ≤ 0.05 is marked as *, P ≤ 0.01 is marked as **, and P ≤ 0.001 is marked as ***).

Figure 4

Ecological networks of fungal and bacterial communities and topological properties. (a) Ecological networks of
bacterial communities. (b) Ecological networks of fungal communities. Every node signi�es a genus. Nodes area
unit colored by modules. Blue and green lines indicate positive relationships between two individual nodes, and red
lines indicate negative relationships. (c) Spearman analysis of well-functioning bacteria and pathogen-associated
fungi at the level of the �rst �fty genera (P ≤ 0.05 is marked as *, P ≤ 0.01 is marked as **, and P ≤ 0.001 is marked
as ***).

Figure 5

FAPROTAX functional and FUNGuild functional predictions of different cultivars. (a) FAPROTAX function of three
cultivars of two periods. (b) FUNGuild function predictions for fungi of two periods. (c) Analysis of the plant
pathogen of three cultivars in fungi based on Student's t test (P ≤ 0.05 is marked as *, P ≤ 0.01 is marked as **, and
P ≤ 0.001 is marked as ***).
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