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Abstract
Defence Industries Corporation of Nigeria (DICON) has compared the effect of Tungsten Inert Gas (TIG) and Oxy-Acetylene welding methods on
microstructural and some mechanical properties of Armour plate for the modi�cation of military troop carriers. The optical emission spectrometer (OES) at
DICON was used to analyse the chemical composition of the armour plate strip. It was then machined and cut to various test piece dimensions for both
welding processes, following which the weldment samples were subjected to post-weld mechanical tests (tensile, impact, and hardness) and metallographic
examination. The samples were then welded according to the procedure outlined in this study. The fundamental composition of armour plates was
preserved in the samples. When compared to Oxy-Acetylene (OA) welding, Tungsten Inert Gas (TIG) welding produced better results, with an average ultimate
strength (UTS) of 603.52 MPa and an impact strength of 10.53 J. In addition, the TIG analysis hardness strength for the source material, heat affected zone
(HAZ), and weldment sample is 510.3, 502, and 511-HV, respectively. At x200 magni�cation, the micrography of the TIG weldment revealed a small coarse
grain size of ferrite and larger areas of pearlite.

1.0 Introduction
Welds are blamed for a large number of manufacturing failures, either directly or indirectly, due to inhomogeneity on the weldment, stress concentration,
residual stress, presence of contaminants, and other factors that make it the weakest portion [1]. Nonetheless, one of the welding processes is used to
maintain a large number of failed machineries in industries, and its success is determined by a number of factors, including the weldability of the material,
the type of impairment, the availability of an appropriate welding method, the likelihood of performing pre-heating or post-weld heat treatment, and post-
repair inspection using non-destructive testing (NDT) procedures [1]. Welding is a method of joining two or more pieces that are similar to portions of the
same or different materials in order to achieve a broad union. Heat and pressure are frequently used to do this [1, 2].

Armour steel panels have been used in military vehicles in recent years to reduce vehicle weight and improve ballistic performance [3]. These low-alloy steels
have good mechanical properties, such as high strength, increased notch toughness, and moderate hardness, due to the presence of a well-hardened
martensitic structure [4]. In the manufacture of military vehicles, shielded metal arc welding (SMAW) and �ux cored arc welding (FCAW) were commonly
used. The weld and heat-affected zone (HAZ) microstructural features will have a signi�cant impact on the ballistic performance of the joints. The strong
resistance to projectile in�ltration is widely recognized as ballistic ability [5,6]. In general, the tougher the steel, the stronger the in�ltration resistance [7].
Various welding procedures have been effectively produced by a number of researchers [8,9] to prevent joint failure and improve an aim's penetrating
immunity. The ballistic resistance was increased by sandwiching hard-facing alloy in between soft welds using the classical SMAW process, according to
Madhusudhan Reddy et al. [10]. 

Great-hardness quenched and tempered steels are employed in armour applications where projectile resistance is desired [4,5]. Heat-affected-zone (HAZ)
unstiffening occurs when these steels are not protected from weld thermal series, resulting in a loss in ballistic performance. The goal of the weld thermal
series, which is the behaviour of the welding technique, is to determine the degree of unstiffening in the HAZ. The unstiffening properties are based on the
kinetics of the steel's phase shifts and are a function of the steel's chemistry [11-14]. Increased welding heat results in a wider lenient heat-affected zone,
according to Reddy et al. [14], and the ballistic action is inversely proportional to the width of the lenient HAZ [13,14]. While demonstrating the welding
procedure for military armour steel joints using gas metal arc welding (GMAW), David Maszuerarobledo et al [15] noted that while a speci�c grade of armour
plate had been determined to be effective in previous studies by the National University of Colombia, a procedure utilizing a speci�c �ller rod was
recommended due to the special requirement for certi�cation for any welder hoping to undertake this grade of welding. He conducted a welding practice
despite the lack of ballistic tests, demonstrating that arc welding with a speci�ed �ller metal and copper backing is quite suitable for welding a military
armour plate.

Almost all of the Nigerian military's troop-carrying vehicles are soft-skinned vehicles with little armour protection. The extent of insurgency and urban warfare
in Nigeria necessitates more protection for combatants. The Defence Industries Cooperation of Nigeria (DICON) is currently working to upgrade some soft-
skinned vehicles to armoured vehicles by replacing body panels with armour plates using available resources and methods. However, the initial effort did not
consider any scienti�c or standard parameters when deciding which welding method to use, but rather did so based on the convenience of the available
equipment. As a result, early failures at the joints occurred frequently, which was not safe enough to protect the crew. The current research examines the
mechanical effectiveness of oxy-acetylene (OA) and tungsten inert gas (TIG) welding on armour plate weld joints in order to improve bullet resistance and
prevent welded joint failure.

2.0 Experimental Procedure
The parent metal composition, heat treatment, welding technique, and metallographic procedures employed are all detailed in the following sections. 

2.1          Parent Metal

The parent metal (Figure 1a) used in this investigation is a quenched and tempered high-strength low-alloy steel with the composition reported in Table 1
(Ballistic Steel Domex type-pro 500 BS Eng. 1522 standard 3x1.5x4 obtained from Columbia). The steel is heat treated by �rst austenitizing it at 900°C, then
air cooling it and tempering it at 250°C. In this stage, the parent metal's microstructure is acicular martensite (Figure 1b). In this situation, the parent metal
has a hardness of 490 to 520 VPN.

 Table 1: Parent metal composition
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Element C Si Mn P S Ni Cr Mo Cu Co Al Pb W Ti V Sn Fe

Weight (%) 1.85 4.79 1.21 0.30 0.15 7.15 2.92 4.17 1.41 0.33 5.73 0.05 4.78 0.09 0.30 0.12 64.70

2.2          Welding

Two welding procedures were tested to see how they affected the degree of HAZ unstiffening and, as a result, the mechanical impact. Oxy-acetylene (OA)
and tungsten inert gas (TIG) welding are the two welding processes employed. A 1.6 mm gauge �ller electrode is among the TIG equipment used. Table 2
shows the �ller wire composition for OA welding as well as the TIG electrode used. Table 3 lists the welding constraints in detail. For both welding processes,
the following procedures and preparations were followed in order: The armour plate strips were chopped into acute angles and �at plates, then chamfered
grooves were added to prepare for double v-butt welding. The samples were edge prepared in order to achieve deep penetration and eliminate welding errors.
To produce exceptionally smooth faces, the bevelled faces were carefully ground and cleaned of all dirt. For stable welding, the plates were set about 2 mm
apart on a �at surface, and the welding was done in the rightward direction (backward techniques). The �ller wire (electrodes) in TIG conducts currents
through an electric holder to fuse the armour plate samples, which are encased in an inert shielding gas—argon—to protect both the electrode and the weld
pool from the harmful effects of ambient air gases. In the case of oxy-acetylene, acetylene gas is combined with oxygen in a gas welding torch and then
burned at the torch tip to create a �ame hot enough to melt the armour plate samples. To �ll the area and bond the two plates together, weld metals from
both processes were employed. A power �le was used to remove the splatters and uneven surfaces. Various mechanical property tests and metallographic
analyses were performed on specimens from both welding procedures. The welded metals for the different welding processes are shown in Figures 2 (a) and
(b).

Table 2: Composition of welding methods accessories 

S/N Specimen Elements and Weight (%)

    C Si Mn P S Ni Cr Mo Cu Co Al Pb W Ti V Sn Fe

1 TIG
Electrode

0.17 3.10 1.63 0.05 0.34 7.76 16.68 2.01 0.11 0.66 0.08 0.05 2.56 0.06 0.01 0.30 64.43

2 Oxy-
Acetylene

Filler
Wire 

0.11 1.50 2.50 0.55 0.50 2.20 4.20 0.02 0.08 0.65 3.6 0.03 0.04 0.07 0.03 0.30 83.62

2.3          Mechanical Testing

2.3.1       Hardness Test

After polishing the samples and placing them on the test bed, which was raised to be closer to the indenter, a speci�c steep pointer was used to indent them
for the Vickers Hardness Test. The load (10 kg) is then placed on the hanger while the lever is engaged, and when the required load is placed, the lever is
released. It is allowed to descend for 15 seconds into the sample before being removed for examination, measurement, and recording. The average diameter
of three imprint diameters taken at right angles was measured, and the average diameter was used to calculate the Brinnel Hardness Number [11]. The HAZ
was used to create these impressions. This equation (1) was used to calculate the BHN [16]:

Where "P" represents the load, "D" represents the indenter's diameter, and "d" represents the average indentation reading. Both welding procedures were
subjected to the same test.

Table 3: Welding constraints
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Tungsten Inert Gas Welding process

Welding current (A)   

Arc Voltage (V)                           

Welding speed (mm-1 min-1)

Electrode

Electrode Polarity

Welding technique

Arc gap (mm)

Shield gas

Preheat

 

Oxy-acetylene welding process

Temperature

Gas

Arc gap (mm)

Preheat

 

250

220

60

W-2% Thorium

DCSP

Backward

2

Argon

None

 

 

3100oC 

Oxygen and acetylene

2

None

2.3.2       Impact Test

The machined specimen (sub-size plate 70mm long, 10mm wide, 5mm thick, and 2mm deep notch (ISTM A370)) was supported horizontally on an anvil at
its two ends and struck on the opposite face of the notch by a pendulum in the Izod test. At the same temperature, the three specimens were tested, and the
�ndings were averaged and reported [17-19].

2.3.3       Tensile Test

The test begins with the test specimen being clamped in the clamping chuck and the measuring gauge being preloaded by a few millimetres. Turning the
crank handle while watching the gauge's indicator as the specimen slowly stretches till it breaks produces force. Data was gathered and computations were
performed. The specimen was cut into a rectangular segment along the gauge length of both ends, with enough length and a smooth surface to be grasped
securely throughout the testing process. The speci�cations employed were 110mm in length and 15mm in width, as per International Standard Test Methods
for Tensile Testing of Metallic Materials (ISTM) [20,21]. The formula for calculating the Ultimate Tensile Strength is given by equation 2 [22]:

2.4          Metallographic Analysis

Each metallographic sample's surface was ground with silicon carbide grinding paper grits of 120 to 300 and polished with a polymate polishing machine
by wetting the polishing cloth resting on the polishing wheel with alumina polishing powder dissolved in distilled water. Following that, the samples were
etched with 2 percent picral (2gram picric acid in 100 ml ethyl alcohol) and then washed under running water with cotton wool to remove any contaminants
from the surface of the manufactured samples. The microstructure of the sample was investigated using a photographic visual metallurgical microscope,
model number NJF-120A, after it was dried with a blower and placed on the stage for analysis. 

3.0 Results And Discussions
The microstructure, mechanical tests, and metallographic analysis results are presented in the following sections.

3.1          Metallographic

At x200 magni�cation, the parent metal micrography consists of ferrite in a pearlite matrix with a �ne grain size (Figure 1). At x200 magni�cation, the
micrography of the TIG welding method's heat affected zone (HAZ) has a coarse grain size of ferrite with small patches of pearlite (Figure 3a), whereas the
micrography of the TIG weld region has a small coarse grain size of ferrite and more patches of pearlite (Figure 3b). 

At x200 magni�cation, the micrography of the heat affected zone (HAZ) of the Oxy-Acetylene welding method shows pearlite distributed evenly in the ferrite
matrix in a fairly coarse grain size (Figure 3c), whereas the micrography of the oxy-acetylene weldment shows pearlite in the ferrite matrix with a coarser
grain size (Figure 3d). 
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The percentage composition of the principal components contained in the TIG weldment is as follows, according to the results of the chemical analysis:
3.97 % W, 0.13 % Ti, 0.33 % V, 0.14% Sn, 57.62% Fe, 2.01 % C, 5.87 % Si, 1.39 % Mn, 0.29 % P, 0.15 % S, 7.59 % Ni, 6.56% Cr, 4.79 % Mo, 1.48 % Cu, 7.37 % Al,
0.07 % Pb. As a result, a low-carbon steel alloy was utilized as the tungsten electrode [23-25]. When alloying elements such as Nikel, Chromium, and
Molybdenum are employed for welding, the chemical characteristics of the weldments increase. As a result, the weldment has high temperature resistance,
toughness, wear resistance, and hardness due to the combination of Nikel, Chromium, and Molybdenum [24]. The impact and tensile strengths of the
weldments are improved as a result as well as projectile resistance according Ref [12].

The following percentage composition of main elements is revealed by chemical analysis of the oxy-acetylene weldment: 1.99%C, 3.95%Si, 1.90%Mn,
0.60%P, 0.40%S, 3.37%Si, 3.06%Cr, 1.96%Mo, 1.36%Cu, 4.27%Al, 0.06%Pb, 2.98%W, 0.13%Ti, 0.34%V, 0.14%Sn, 73.33%Fe. Because the carbon content of this
weldment is smaller than that of a TIG weldment, the weldment has a lesser hardness and toughness. Furthermore, the presence of substantially higher
phosphorus and sulphur, which have strong embrittling in�uences that cause metal to split when forged, e.g. manganese sulphide (Mn S) or ferrous sulphide
(Fe S), has a melting point, resulting in heated and cooled shortness. Because of its poor resistance to indentation, the weldment's mechanical qualities,
such as impact and tensile strength, are weakened, and it absorbs a smaller amount of energy to fracture [21,24,26].

The major alloying element that controls the hardness of steel alloys is carbon. When the carbon content of the armour steel is greater than 0.37 wt percent
C, a hardness greater than 500 VHN can be achieved [6]. The silicon content of the steel has a signi�cant impact on the martensite's stability during
tempering, as it prevents the martensite from softening at higher temperatures. It also appears to improve the cementite's resistance to dynamic coarsening
under ballistic impact [34]. The chemical activity of carbon is reduced by silicon, which increases the stability of martensite [35].

3.2          Tensile Tests Results

The weldment and tensile crack specimens for both welding methods respectively are shown in Figures (3a) – (d). 

The TIG weldment's average ultimate tensile strength (UTS) was 603.52 MPa (Table 4a), which is quite strong. As a result, this is a hint that this welding
method has a high toughness, which will help the joint last longer before failing. According to Refs [27-29], this UTS complies with the most recent criteria for
military and security applications. The average ultimate tensile strength (UTS) of the oxy-acetylene weldment was 261.44 MPa (Table 4b), which is low and
suggests a shorter time to failure at the weldment, which translates to low toughness. Welding temperature or duration may be to blame for the lower value.
This number falls short of the most recent minimum tensile criterion for military uses. As a result, TIG welding is recommended for this application. Dikshit
et al. [30] found that the effect of a plate's hardness on its ballistic behaviour was dependent on whether the stress condition was primarily plane strain or
plane stress, whereas Sorensen et al. [31] discovered that, despite their lower hardness, nitrogen alloyed austenitic steels had similar ballistic behaviour to
high strength armour steel. As a result, the effect of hardness on the ballistic behaviour of armour steels is not always clear. It is dependent on the role of the
impact velocity and the armour plate thickness. So, in the case of a thinner plate's behaviour under high strain rates, the ability to counteract ballistic
damage is based on hardness in the �rst instance, but the ability to distort plastically in a large volume around the effect zone develops the cause [6].

Table 4a: Tensile test results for TIG welding method

Samples  Width (mm) Thickness (mm) Area (mm2) Load 

(KN)

Load 

(N)

Gauge Length (mm) UTS

(MPa)

Average

UTS (MPa)

 

1 10.2 6.2 63.24 28.5 28500 60 450.66 603.52

2 10.2 6.2 63.24 41.50 41500 60 656.23

3 10.2 6.2 63.24 44.50 44500 60 703.67

Table 4b: Tensile test results for OA welding method

Samples  Width (mm) Thickness (mm) Area (mm2) Load 

(KN)

Load 

(N)

Gauge Length (mm) UTS

 (MPa)

Average UTS (MPa)

 

1 10.2 6.2 63.24 11.2 11200 60 177.10 261.44

2 10.2 6.2 63.24 18.4 18400 60 290.96

3 10.2 6.2 63.24 20.0 20000 60 316.26

3.3          Impact Strength Results

Figures 4 (a) – (c) illustrate the impact crack outcomes on the parent metal, TIG welded joint, and OA welded joint specimens for both welding procedures
(c).

For each welding method, three impact loading results were taken. The average impact energy for the parent metal, TIG, and Oxy-acetylene weldment was
15.70 J, 10.53 J, and 6.46 J, respectively. According to these �ndings, the TIG weldment impact energy is similar to that of the parent metal (control),
implying that TIG welding has more weldment toughness to absorb projectile impact than OA welding. The armour plate material's average impact loading
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S/N Specimen  1st Indentation (Hv) 2nd Indentation (Hv) 3rd Indentation (Hv) Average Indentation (Hv)

1 Parent Metal 379 244 531 386.7

2 HAZ 379 264 443 393.7

3 Weldment 404 266 527 399

energy of 15.70J demonstrates that it is an appropriate material for use in the fabrication of armoured vehicle body panels [32]. The impact strength results
are shown in Tables 5 (a) – (c). Figures 6 (a) and (b) is the graphical comparison of the UTS and Hv results. From the graphs, the TIG welding showed better
results than OA welding method.

Table 5a: Impact strength results for the parent metal

Samples  Width (mm) Thickness (mm) Area (mm2)  Notch (mm) Energy

 (ft lb)

Energy (J) Average Energy (J)

1 15.0 6.2 93 5.5 11.6 15.7 15.7

2 15.2 6.2 94.2 5.5 11.7 15.8

3 15.5 6.2 96.1 5.5 11.5 15.6

Table 5b: Impact strength results for the TIG welding

Samples Width (mm) Thickness (mm) Area (mm2) Notch (mm) Energy 

(Ft Lb)

Energy (J) Average Energy (J)

1 14.5 6.2 89.9 5.5 8.0 10.85 10.53

2 15.5 6.2 96.1 5.5 7.5 10.17

3 15.7 6.2 97.3 5.5 7.8 10.58

 Table 5b: Impact strength results for the OA welding

Samples  Width (mm) Thickness (mm) Area (mm2)  Notch (mm) Energy

 (ft lb)

Energy (J) Average Energy (J)

1 15.2 6.2 94.24 5.5 4.5 6.10 6.46

2 15.9 6.2 98.58 5.5 5.0 6.78

3 15.8 6.2 97.96 5.5 4.8 6.51

3.4          Vickers Hardness Analysis (Hv)

The hardness properties for the both welding methods are presented in Tables 6 (a) and (b). The TIG weldment had an average hardness value of 511Hv,
while the Oxy-Acetylene weldment had an average hardness value of 399Hv. The TIG weldment has good indentation resistance, whereas the OA weldment
has poor indentation resistance.

Table 6a: Hardness results for the TIG welding

S/N Specimen 1st Indentation (Hv)  2nd Indentation (Hv) 3rd Indentation (Hv) Average Indentation (Hv)

1 Parent metal 508 527 499 510.3

2 HAZ 490 502 514 502

3 Weldment 514 514 505 511

Table 6b: Hardness results for the OA welding

Hv = Vicker’s hardness value

Gross cracking occurred at plate
hardness of 510 HV or above for
ballistic performance of carbon
steel welded joints against 7.62
mm bullets, whereas all

assemblies suffered from HAZ with a hardness greater than 500 HV [33]. Where there are no welds, Edwards and Mathewson concluded that an improvised
armour can be made from a viable tool steel if the hardness is kept to 380 HV, and better improvised armours could be formed from other saleable low-alloy
steel plates of lower carbon material, heat treated to 380 HV, where welding would be easier [33]. As a result, in this study, TIG welding with hardnesses of
510.3, 502, and 511 for parent metal, HAZ, and weldment can be used to weld armour plate bodies to provide protection for the troops. 

Conclusion
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(1) The TIG welding process has been found to provide the best resistance in the HAZ zone.

(2) The impact energy of the TIG weldment is similar to that of the parent metal (control), indicating that TIG welding has a greater weldment toughness to
absorb projectile impact than OA welding. 

(3) The micrography of the TIG weldment revealed a small coarse grain size of ferrite and bigger patches of pearlite at x200 magni�cation. Wider HAZ's OA
welding method is anticipated to have poor ballistic performance.

Declarations
Funding statement

This research did not receive any speci�c grant from funding agencies in the public, commercial, or not-for-pro�t sectors.

Acknowledgements

The authors acknowledge the Mechanical Engineering Department Nigerian Defence Academy, PMB 2109 Kaduna, Nigeria, Mechanical Engineering, at
Ahmadu Bello University, Zaria, 810212 Samaru Zaria, Kaduna State, Nigeria, and Defence Industries Corporation of Nigeria (DICON) for providing facilities
to carry out this study. In addition, we acknowledge the support of Staff of the Mechanical Department of the Research and Development, DICON.

Data availability 

The data and materials in this manuscript came from the test and calculation as reported in the manuscript.

Con�ict of Interest Statement

We, the authors of the manuscript titled “Mechanical and Micrography Analysis of Armour Plate Weldment Using Tungsten Inert Gas and Oxy-Acetylene
Welding Methods”, hereby wish to submit the manuscript for your kind attention. We hereby declare no con�ict of interest.

References
[1] Bhaduri AK, Albert SK, Ray SK, Rodriguez P. Recent trends in repair and refurbishing of steam turbine components Sadhana 3(2003) 395-
408.  https://doi.org/10.1007/BF02706440.

[2] Jindal S, Rahul C, Mehta NP. Investigation on �ux design for submerged arc welding of high-strength low-alloy steel. Proceedings of the Institution of
Mechanical Engineers, Part B: J Eng Manufact 227(2013) 383-395. https://doi.org/10.1177/0954405412468993.

[3] Nanavati P K. Studies on Effect of Welding Parameters on Corrosion and Mechanical Behaviour of Duplex Stainless-Steel Welds. PhD diss., Maharaja
Sayajirao University of Baroda (India), 2018.

[4] Ade F. Ballistic quali�cation of armor steel weldments. Welding Journal 70(1991) 53-58.

[5] Crouch IG. Metallic Armor-form Cast Aluminum alloys to High-Strength Sheets. In Materials Forum 12(1988) 31-37. NII Article ID (NAID):80004503385.

[6] Maweja K, Stumpf W. The design of advanced performance high strength low-carbon martensitic armour steels: Microstructural considerations. Materials
Science and Engineering: A 480(2008) 160-6. 

https://doi.org/10.1016/j.msea.2007.07.078.

[7] Jena PK, Kumar KS, Krishna VR, Singh AK, Bhat TB. Studies on the role of microstructure on performance of a high strength armour steel. Engineering
Failure Analysis 15(2008) 1088-96. https://doi.org/10.1016/j.engfailanal.2007.11.011.

[8] Hu CJ, Lee PY, Chen JS. Ballistic performance and microstructure of modi�ed rolled homogeneous armor steel. J Chinese Institute of Engineers. 25(2002)
99-107. https://doi.org/10.1080/02533839.2002.9670684.

[9] Sangoy L, Meunier Y, Pont G. Steels for ballistic protection. Israel journal of technology 24(1988) 319-26.

[10] Reddy GM, Mohandas T, Papukutty K. Enhancement of ballistic capabilities of soft welds through hardfacing. Inter J Impact Eng 22(1999) 775-
91. https://doi.org/10.1016/S0734-743X(99)00020-2.

[11] Reddy GM, Mohandas T, Papukutty KK. Effect of welding process on the ballistic performance of high-strength low-alloy steel weldments. J Maters
Process Tech 74(1998) 27-35. 

https://doi.org/10.1016/S0924-0136(97)00245-8

[12] Reddy GM, Mohandas T. Ballistic performance of high-strengh low-alloy steel weldments. J Maters Process Techn 53(1996) 23-
30. https://doi.org/10.1016/0924-0136(95)02041-1.



Page 8/11

[13] Mohandas T, Reddy GM, Kumar BS. Heat-affected zone softening in high-strength low-alloy steels. J Maters Process Tech 88(1999) 284-
94. https://doi.org/10.1016/S0924-0136(98)00404-X.

[14] Lundin CD, Gill TP, Qiao CY. Heat affected zones in low carbon microalloyed steels. ASM International. 2(1990) 249-56.

[15] Mazuera Robledo D, Suarez Gomez JA, Giraldo Barrada JE. Development of a welding procedure for mil a 46100 armor steel joints using gas metal arc
welding. Dyna. 78(2011) 65-71.

Print version ISSN 0012-7353On-line version ISSN 2346-2183

[16] Richmond O, Morrison HL, Devenpeck ML. Sphere indentation with application to the Brinell hardness test. Inter J Mech Sci 16(1974) 75-
82. https://doi.org/10.1016/0020-7403(74)90034-4.

[17] Choudhary S, Singh PK, Khare S, Kumar K, Mahajan P, Verma RK. Ballistic impact behaviour of newly developed armour grade steel: An experimental and
numerical study. Inter J Impact Eng 140(2020) 103557. https://doi.org/10.1016/j.ijimpeng.2020.103557.

[18] Banerjee A, Dhar S, Acharyya S, Datta D, Nayak N. Determination of Johnson cook material and failure model constants and numerical modelling of
Charpy impact test of armour steel. Maters Sci and Eng: A 640(2015) 200-9. https://doi.org/10.1016/j.msea.2015.05.073.

[19] Barsom JM, Rolfe ST. Correlations between K IC and Charpy V-notch test results in the transition-temperature range. In Impact testing of metals 1970.
ASTM International. DOI: 10.1520/STP32067S

[20] ASTM American Society for Testing and Materials. Standard test methods for tension testing of metallic materials. ASTM international 2009.

[21] Chen C, Zeng S, Su L. Strain energy based method for metal magnetic memory effect of tensile tested structures. J Nondestructive Evaluation 38(2019)
1-2. https://doi.org/10.1007/s10921-019-0579-4

[22] Mathers G. Mechanical Testing-Notched Bar or Impact Testing. The Welding Institute 2016.

[23] Boumerzoug Z, Derfouf C, Baudin T. Effect of welding on microstructure and mechanical properties of an industrial low carbon steel. Engineering.
2(2010) 502. doi:10.4236/eng.2010.27066

[24] Grange RA. The rapid heat treatment of steel. Metallurgical transactions 2(1971) 65-78.

https://doi.org/10.1007/BF02662639

[25] Digges TG, Rosenberg SJ, Geil GW. Heat treatment and properties of iron and steel. NATIONAL BUREAU OF STANDARDS GAITHERSBURG MD; 1966.
Accession Number:ADA361141.

[26] Rao GK, Panchanathan V. Application of chills to the production of sound castings. Production Engineer 53(1974) 79-84. DOI:  10.1049/tpe.1974.0021

[27] Laible RC. Ballistic Materials and Penetration Mechanics. Amer J Forensic Med and Path. 3(1982) 190. 

[28] Roylance D, Wang SS. Penetration mechanics of textile structures. Access Number:ADA089445 

[29] Gurjar BR, Van Aardenne JA, Lelieveld J, Mohan M. Emission estimates and trends (1990–2000) for megacity Delhi and implications. Atmospheric
Environment 38(2004) 5663-81.

https://doi.org/10.1016/j.atmosenv.2004.05.057

[30] Dikshit SN, Kutumbarao VV, Sundararajan G. The in�uence of plate hardness on the ballistic penetration of thick steel plates. Inter J Impact Eng
16(1995) 293-320. https://doi.org/10.1016/0734-743X(94)00041-T

[31] Sorensen BR, Kimsey KD, Silsby GF, Sche�er DR, Sherrick TM, De Rosset WS. High velocity penetration of steel targets. Inter J Impact Eng 11(1991) 107-
19. https://doi.org/10.1016/0734-743X(91)90034-D.

[32] Hani AR, Roslan A, Mariatti J, Maziah M. Body armor technology: a review of materials, construction techniques and enhancement of ballistic energy
absorption. In Advanced Materials Research 488(2012) 806-812). https://doi.org/10.4028/www.scienti�c.net/AMR.488-489.806.

[33] Edwards MR, Mathewson A. The ballistic properties of tool steel as a potential improvised armour plate. Inter J Impact Eng 19(1997) 297-
309. https://doi.org/10.1016/S0734-743X(97)83210-1.

[34] Maweja K, Stumpf W. Fracture and ballistic-induced phase transformation in tempered martensitic low-carbon armour steels. Maters Sci and Eng: A
432(2006) 158-69. 

https://doi.org/10.1016/j.msea.2006.06.033

[35] Bhadeshia HK. Carbon content of retained austenite in quenched steels. Metal Sci 17(1983) 151-2. https://doi.org/10.1179/030634583790421087



Page 9/11

Figures

Figure 1

a: Parent Metal 

 b: Microstructure of the parent metal

Figure 2

a: Oxyacetylene method welded joint 

b: Tungsten method welded joint
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Figure 3

(A) Micrography of TIG weld HAZ (B) Micrography of TIG weld joint 

(C) Micrography of OA weld HAZ (D) Micrography of OA weld joint

Figure 4

(a) Welded joint of OA welding, (b) Welded joint of TIG welding, (c) tensile test structure of OA welding and (d) tensile test structure of OA welding 
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Figure 5

(a) Impact behaviour of the parent metal, (b) Impact behaviour of the TIG welding, (c) Impact behaviour of the OA welding 

Figure 6

Mechanical testing comparison (a) Ultimate tensile strength (b) Vickers Hardness


