1. Claesson-Welsh, L., Dejana, E. & McDonald, D.M. Permeability of the Endothelial Barrier: Identifying and Reconciling Controversies. Trends Mol Med 27, 314-331 (2021).
2. Komarova, Y.A., Kruse, K., Mehta, D. & Malik, A.B. Protein Interactions at Endothelial Junctions and Signaling Mechanisms Regulating Endothelial Permeability. Circ Res 120, 179-206 (2017).
3. Wettschureck, N., Strilic, B. & Offermanns, S. Passing the Vascular Barrier: Endothelial Signaling Processes Controlling Extravasation. Physiol Rev 99, 1467-1525 (2019).
4. Nitta, T. et al. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161, 653-660 (2003).
5. Honkura, N. et al. Intravital imaging-based analysis tools for vessel identification and assessment of concurrent dynamic vascular events. Nat Commun 9, 2746 (2018).
6. Corada, M. et al. Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci U S A 96, 9815-9820 (1999).
7. Allingham, M.J., van Buul, J.D. & Burridge, K. ICAM-1-mediated, Src- and Pyk2-dependent vascular endothelial cadherin tyrosine phosphorylation is required for leukocyte transendothelial migration. J Immunol 179, 4053-4064 (2007).
8. Turowski, P. et al. Phosphorylation of vascular endothelial cadherin controls lymphocyte emigration. J Cell Sci 121, 29-37 (2008).
9. Schulte, D. et al. Stabilizing the VE-cadherin-catenin complex blocks leukocyte extravasation and vascular permeability. EMBO J 30, 4157-4170 (2011).
10. Wessel, F. et al. Leukocyte extravasation and vascular permeability are each controlled in vivo by different tyrosine residues of VE-cadherin. Nat Immunol 15, 223-230 (2014).
11. Hayer, A. et al. Engulfed cadherin fingers are polarized junctional structures between collectively migrating endothelial cells. Nat Cell Biol 18, 1311-1323 (2016).
12. Cao, J. et al. Polarized actin and VE-cadherin dynamics regulate junctional remodelling and cell migration during sprouting angiogenesis. Nat Commun 8, 2210 (2017).
13. Nanes, B.A. et al. p120-catenin binding masks an endocytic signal conserved in classical cadherins. J Cell Biol 199, 365-380 (2012).
14. Adam, A.P. Regulation of Endothelial Adherens Junctions by Tyrosine Phosphorylation. Mediators Inflamm 2015, 272858 (2015).
15. Potter, M.D., Barbero, S. & Cheresh, D.A. Tyrosine phosphorylation of VE-cadherin prevents binding of p120- and beta-catenin and maintains the cellular mesenchymal state. J Biol Chem 280, 31906-31912 (2005).
16. Wallez, Y. et al. Src kinase phosphorylates vascular endothelial-cadherin in response to vascular endothelial growth factor: identification of tyrosine 685 as the unique target site. Oncogene 26, 1067-1077 (2007).
17. Orsenigo, F. et al. Phosphorylation of VE-cadherin is modulated by haemodynamic forces and contributes to the regulation of vascular permeability in vivo. Nat Commun 3, 1208 (2012).
18. Conway, D.E. et al. VE-Cadherin Phosphorylation Regulates Endothelial Fluid Shear Stress Responses through the Polarity Protein LGN. Curr Biol 27, 2727 (2017).
19. Li, X. et al. VEGFR2 pY949 signalling regulates adherens junction integrity and metastatic spread. Nat Commun 7, 11017 (2016).
20. Owen-Woods, C. et al. Local microvascular leakage promotes trafficking of activated neutrophils to remote organs. J Clin Invest 130, 2301-2318 (2020).
21. Smith, R.O. et al. Vascular permeability in retinopathy is regulated by VEGFR2 Y949 signaling to VE-cadherin. Elife 9 (2020).
22. Arif, N. et al. PECAM-1 supports leukocyte diapedesis by tension-dependent dephosphorylation of VE-cadherin. EMBO J 40, e106113 (2021).
23. Nawroth, R. et al. VE-PTP and VE-cadherin ectodomains interact to facilitate regulation of phosphorylation and cell contacts. EMBO J 21, 4885-4895 (2002).
24. Grazia Lampugnani, M. et al. Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148. J Cell Biol 161, 793-804 (2003).
25. Juettner, V.V. et al. VE-PTP stabilizes VE-cadherin junctions and the endothelial barrier via a phosphatase-independent mechanism. J Cell Biol 218, 1725-1742 (2019).
26. Schimmel, L. et al. c-Src controls stability of sprouting blood vessels in the developing retina independently of cell-cell adhesion through focal adhesion assembly. Development 147 (2020).
27. Reynolds, A.B. et al. SRChing for the substrates of Src. Oncogene 33, 4537-4547 (2014).
28. Werdich, X.Q. & Penn, J.S. Src, Fyn and Yes play differential roles in VEGF-mediated endothelial cell events. Angiogenesis 8, 315-326 (2005).
29. Eliceiri, B.P. et al. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 4, 915-924 (1999).
30. Bernabeu, M.O. et al. PolNet: A Tool to Quantify Network-Level Cell Polarity and Blood Flow in Vascular Remodeling. Biophys J 114, 2052-2058 (2018).
31. Wang, Y. et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483-486 (2010).
32. Xu, C. et al. Arteries are formed by vein-derived endothelial tip cells. Nat Commun 5, 5758 (2014).
33. Friedl, P. & Mayor, R. Tuning Collective Cell Migration by Cell-Cell Junction Regulation. Cold Spring Harb Perspect Biol 9 (2017).
34. Cao, J. & Schnittler, H. Putting VE-cadherin into JAIL for junction remodeling. J Cell Sci 132 (2019).
35. Levinson, A.D., Oppermann, H., Levintow, L., Varmus, H.E. & Bishop, J.M. Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein. Cell 15, 561-572 (1978).
36. Erikson, R.L., Collett, M.S., Erikson, E. & Purchio, A.F. Evidence that the avian sarcoma virus transforming gene product is a cyclic AMP-independent protein kinase. Proc Natl Acad Sci U S A 76, 6260-6264 (1979).
37. Rohrschneider, L.R. Adhesion plaques of Rous sarcoma virus-transformed cells contain the src gene product. Proc Natl Acad Sci U S A 77, 3514-3518 (1980).
38. Azarnia, R., Reddy, S., Kmiecik, T.E., Shalloway, D. & Loewenstein, W.R. The cellular src gene product regulates junctional cell-to-cell communication. Science 239, 398-401 (1988).
39. Ferrando, I.M. et al. Identification of targets of c-Src tyrosine kinase by chemical complementation and phosphoproteomics. Mol Cell Proteomics 11, 355-369 (2012).
40. Steed, E., Rodrigues, N.T., Balda, M.S. & Matter, K. Identification of MarvelD3 as a tight junction-associated transmembrane protein of the occludin family. BMC Cell Biol 10, 95 (2009).
41. Martin, N.G., McAndrew, P.C., Eve, P.D. & Garrett, M.D. Phosphorylation of cyclin dependent kinase 4 on tyrosine 17 is mediated by Src family kinases. FEBS J 275, 3099-3109 (2008).
42. Lee, S.W. et al. CD46 is phosphorylated at tyrosine 354 upon infection of epithelial cells by Neisseria gonorrhoeae. J Cell Biol 156, 951-957 (2002).
43. Varrin-Doyer, M. et al. Phosphorylation of collapsin response mediator protein 2 on Tyr-479 regulates CXCL12-induced T lymphocyte migration. J Biol Chem 284, 13265-13276 (2009).
44. Takeda, H. et al. Comparative analysis of human SRC-family kinase substrate specificity in vitro. J Proteome Res 9, 5982-5993 (2010).
45. Tabula Muris, C. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367-372 (2018).
46. Frye, M. et al. Interfering with VE-PTP stabilizes endothelial junctions in vivo via Tie-2 in the absence of VE-cadherin. J Exp Med 212, 2267-2287 (2015).
47. Richards, M. et al. Intra-vessel heterogeneity establishes enhanced sites of macromolecular leakage downstream of laminin alpha5. Cell Rep 35, 109268 (2021).
48. Schmidt, T.T. et al. Conditional deletion of FAK in mice endothelium disrupts lung vascular barrier function due to destabilization of RhoA and Rac1 activities. Am J Physiol Lung Cell Mol Physiol 305, L291-300 (2013).
49. Chen, X.L. et al. VEGF-induced vascular permeability is mediated by FAK. Dev Cell 22, 146-157 (2012).
50. Kasahara, K. et al. Rapid trafficking of c-Src, a non-palmitoylated Src-family kinase, between the plasma membrane and late endosomes/lysosomes. Exp Cell Res 313, 2651-2666 (2007).
51. Sato, I. et al. Differential trafficking of Src, Lyn, Yes and Fyn is specified by the state of palmitoylation in the SH4 domain. J Cell Sci 122, 965-975 (2009).
52. Hatanaka, K., Simons, M. & Murakami, M. Phosphorylation of VE-cadherin controls endothelial phenotypes via p120-catenin coupling and Rac1 activation. Am J Physiol Heart Circ Physiol 300, H162-172 (2011).
53. Grimsley-Myers, C.M. et al. VE-cadherin endocytosis controls vascular integrity and patterning during development. J Cell Biol 219 (2020).
54. Nanes, B.A. et al. p120-catenin regulates VE-cadherin endocytosis and degradation induced by the Kaposi sarcoma-associated ubiquitin ligase K5. Mol Biol Cell 28, 30-40 (2017).
55. Dejana, E. & Orsenigo, F. Endothelial adherens junctions at a glance. J Cell Sci 126, 2545-2549 (2013).