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Abstract 24 

 25 

Recent advances in spatial transcriptomics technologies have enabled comprehensive characterization of 26 

gene expression patterns in the context of tissue microenvironment. To elucidate spatial gene expression 27 

variation, we present SpaGCN, a graph convolutional network approach that integrates gene expression, 28 

spatial location and histology in spatial transcriptomics data analysis. Through graph convolution, SpaGCN 29 

aggregates gene expression of each spot from its neighboring spots, which enables the identification of 30 

spatial domains with coherent expression and histology. The subsequent domain guided differential 31 

expression analysis then detects genes with enriched expression patterns in the identified domains. 32 

Analyzing five spatially resolved transcriptomics datasets using SpaGCN, we show it can detect genes with 33 

much more enriched spatial expression patterns than existing methods. Furthermore, genes detected by 34 

SpaGCN are transferrable and can be utilized to study spatial variation of gene expression in other 35 

datasets. SpaGCN is computationally fast, making it a desirable tool for spatial transcriptomics studies. 36 
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Introduction 37 

 38 

Recent advances in spatial transcriptomics technologies have enabled gene expression profiling with 39 

spatial information in tissues1. Knowledge of the relative locations of different cells in a tissue is critical 40 

for understanding disease pathology because spatial information helps in understanding how the gene 41 

expression of a cell is influenced by its surrounding environment and how neighboring regions interact at 42 

the gene expression level. Experimental methods to generate spatial transcriptomics data can be broadly 43 

classified into two categories: 1) single-molecule fluorescence in situ hybridization (smFISH) based 44 

techniques, such as MERFISH2 and seqFISH3, which measure expression level for hundreds of genes with 45 

subcellular spatial resolution in a single cell; and 2) spatial barcoding followed by next generation 46 

sequencing based techniques, such as SLIDE-seq4 and 10X Genomics Visium, which measure the 47 

expression level for thousands of genes in captured locations, referred to as spots. These different spatial 48 

transcriptomics techniques have made it possible to uncover the complex transcriptional architecture of 49 

heterogenous tissues and enhanced our understanding of cellular mechanisms in diseases5,6.  50 

 51 

In spatial transcriptomics studies, an important step is identifying spatial domains defined as regions that 52 

are spatially coherent in both gene expression and histology. Identifying spatial domains requires methods 53 

that can jointly consider gene expression, spatial location, and histology. Traditional clustering methods 54 

such as K-means and Louvain’s method7 can only take gene expression data as input, and the resulting 55 

clusters may not be contiguous due to the lack of consideration of spatial information and histology. To 56 

account for spatial dependency of gene expression, new methods have been developed. For example, 57 

stLearn8 uses features extracted from histology image as well as expression of neighboring spots to 58 

spatially smooth gene expression data before clustering; BayesSpace9 employs a Bayesian approach for 59 

clustering analysis by imposing a prior that gives higher weight to spots that are physically close; Zhu et 60 
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al.10 uses a Hidden-Markov random field approach to model spatial dependency of gene expression. 61 

Although these methods can cluster spots or cells into distinct groups, they do not provide biological 62 

interpretations of the identified spatial domains.  63 

 64 

To link spatial domains with biological functions at the gene expression level, it is crucial to identify genes 65 

that show enriched expression in the identified domains. Due to spatial variation of cell types in tissue, 66 

the difference of gene expression between different domains is mainly driven by cell type composition 67 

variation. On the other hand, information on spatial location and the corresponding histology allows the 68 

construction of an anatomy-based taxonomy of the tissue, which provides a useful perspective on cell 69 

type composition. Although stLearns integrates gene expression, spatial location, and histology 70 

information in clustering, the putative correspondence between cell type difference and organizational 71 

structure of the tissue remains unclear. As reported in Saiselet et al.11, many spatial regions are highly 72 

intermixed in terms of cell types. Without further downstream gene-level analysis, the spatial domains 73 

detected by stLearn still suffer from the lack of interpretability. Recently, new methods such as 74 

Trendsceek12, SpatialDE13, and SPARK14 have been developed to detect spatially variable genes (SVGs). 75 

These methods examine each gene independently and return a p-value to represent the spatial variability 76 

of a gene. However, due to the lack of consideration of tissue taxonomy, genes detected by these methods 77 

do not have a guaranteed spatial expression pattern, making it difficult to utilize these genes for further 78 

biological investigations.  79 

 80 

Rather than considering spatial domain identification and SVG detection as separate problems, we 81 

developed SpaGCN, a graph convolutional network-based approach that considers these two problems 82 

jointly. Using a graph convolutional network with an added iterative clustering layer, SpaGCN first 83 

identifies spatial domains by integrating gene expression, spatial location, and histology together through 84 
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the construction of an undirected weighted graph that represents the spatial dependency of the data. For 85 

each spatial domain, SpaGCN then detects SVGs that are enriched in the domain against its surrounding 86 

regions by differential expression analysis guided by domain information. SpaGCN also has the option to 87 

detect meta genes that are uniquely expressed in a given domain. The spatial domains and the 88 

corresponding SVGs and meta genes detected for these domains provide a comprehensive picture on the 89 

spatial gradients in gene expression in tissue.  90 

 91 

Results 92 

 93 

Overview of SpaGCN and evaluation 94 

SpaGCN is applicable to both sequencing-based and smFISH-based data. As shown in Fig. 1a, SpaGCN first 95 

builds a graph to represent the relationship of all samples (spots in sequencing-based or cells in smFISH-96 

based data) considering both spatial location and histology information. Next, SpaGCN utilizes a graph 97 

convolutional layer to aggregate gene expression information from neighboring samples. Then, SpaGCN 98 

uses the aggregated gene expression matrix to cluster samples using an unsupervised iterative clustering 99 

algorithm15. Each cluster is considered as a spatial domain from which SpaGCN then detects SVGs that are 100 

enriched in a domain by differential expression analysis (Fig. 1b). When a single gene cannot mark 101 

expression pattern of a spatial domain, SpaGCN will construct a meta gene, formed by the combination 102 

of multiple SVGs, to represent gene expression of the domain. Since the expression profile of a spot/cell 103 

is heavily influenced by its local microenvironment, SpaGCN also offers the option of subcluster detection 104 

within each spatial domain. SVGs can also be detected to help in understanding the function of each sub-105 

spatial domain.  106 

 107 

To showcase the strength and scalability of SpaGCN, we applied it to five publicly available datasets, 108 
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including four datasets generated by sequencing-based techniques and one dataset generated by 109 

MERFISH (Supplementary Table 1). The spatial domains identified by SpaGCN agree better with known 110 

tissue layer structure than K-means and Louvain’s clustering. We also compared SVGs detected by SpaGCN 111 

with those detected by SPARK14 and SpatialDE13, and found that the SVGs detected by SpaGCN have more 112 

coherent expression patterns and better biological interpretability than the other two methods. The 113 

specificity of spatial expression patterns revealed by SpaGCN detected SVGs were further confirmed by 114 

Moran’s I statistic16, a metric that quantifies the spatial autocorrelation of detected genes. 115 

 116 

Application to mouse olfactory bulb data  117 

To evaluate the performance of SpaGCN, we first analyzed a mouse olfactory bulb (MOB) dataset17, which 118 

consists of 16,218 genes measured in 262 spots. The main olfactory bulb has five layers, ordered from 119 

surface to the center as follows: glomerular layer, external plexiform layer, mitral cell layer, internal 120 

plexiform layer, and granule cell layer. We compared SpaGCN’s clustering results to K-means and Louvain 121 

by setting the number of clusters at 5 for all three methods. As shown in Fig. 2a, K-means only identified 122 

3 main spatial domains, with only few spots assigned to domains 1 and 3.  Louvain’s method identified 5 123 

main spatial domains. However, since it does not consider spatial and histology information, domains 2, 124 

3, and 4 have blurred boundaries and more outliers than SpaGCN. By contrast, the domains detected by 125 

SpaGCN agree better with the biologically known 5-layer structure of the MOB.  126 

 127 

To understand the functions of the SpaGCN identified spatial domains, we next detected SVGs for each 128 

spatial domain. In total, SpaGCN detected 60 SVGs. Fig. 2b-f shows a randomly selected SVG for each 129 

domain, and all genes show strong specificity for the corresponding domain. The In Situ Hybridization 130 

labelling of these genes from the Allen Brain Institute further confirmed the correspondence of the spatial 131 

domains detected by SpaGCN. Additional SVGs detected by SpaGCN are shown in Supplementary Fig. 1. 132 
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 133 

As a comparison, we also detected SVGs using SpatialDE and SPARK. SpatialDE identified 67 SVGs, but only 134 

12 of them overlapped with SpaGCN results (Supplementary Fig. 2). We further looked into the 55 genes 135 

detected exclusively by SpatialDE and found many of the genes are expressed in only a few spots or are 136 

highly expressed in most of the spots, leading to false detections of significant spatial patterns 137 

(Supplementary Fig. 3). By contrast, SpaGCN avoided this issue by filtering out genes using minimum 138 

within group expression fraction and maximum between group expression fraction. SPARK detected 772 139 

genes, with 49 overlapping with SapGCN (Supplementary Fig. 2). However, we found that the SPARK 140 

results indicate that 274 genes have FDR-adjusted p-values less than 0.00001 with 14 of them having the 141 

smallest identical FDR-adjusted p-value of 4.42e-13. As a result, the SPARK p-values are not informative 142 

in differentiating the degree of spatial variability between different genes. Of note, none of these 14 genes 143 

were detected by SpaGCN. Further examination revealed that some of these genes show spatial variability, 144 

but more than half of them are only expressed in a few spots or highly expressed in most of the spots 145 

(Supplementary Fig. 4). The FDR-adjusted p-value distribution of SPARK and q-value distribution of 146 

SpatialDE are highly skewed toward 0, making it challenging to select informative SVGs based on their p-147 

values or q-values alone (Supplementary Fig. 5).  148 

 149 

To compare SVGs detected by different methods quantitatively, we calculated the Moran’s I statistic, 150 

which measures the spatial autocorrelation for each gene. Fig. 2g shows the distribution of Moran’s I. 151 

Although all SpaGCN detected SVGs have clear spatial patterns, their Moran’s I values are not significantly 152 

higher than the SVGs detected by SPARK and SpatialDE (median of 0.20 for SpaGCN against 0.18 for SPARK 153 

and 0.25 for SpatialDE). Further examination revealed that many SVGs detected by SPARK and SpatialDE 154 

are expressed in multiple adjacent spatial domains. For example, the gene PCP4 uniquely detected by 155 

SpatialDE is expressed in two adjacent layers (domains 2 and 4 defined by SpaGCN) (Supplementary Fig. 156 
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6). By contrast, all the SVGs detected by SpaGCN are domain specific, offering interpretation in alignment 157 

with our knowledge of layer structure. We note that less informative SVGs with clear, but non-domain 158 

specific, spatial patterns, such as PCP4, can also be detected by SpaGCN if the user combines domains 2 159 

and 4 as the target domain in SVG detection. 160 

 161 

Application to mouse posterior brain data 162 

Next, we analyzed a dataset generated from mouse posterior cerebrum, cerebellum and brainstem by 163 

10X Genomics that includes 3,353 spots and 31,053 genes18. We compared the clustering results of 164 

SpaGCN with K-means and Louvain’s clustering. The number of clusters in K-means and resolution in 165 

Louvain were set to generate the same number of clusters as SpaGCN (10 clusters). Fig. 3a shows that 166 

Louvain’s clustering is similar to SpaGCN, but the spatial domains detected by SpaGCN are more spatially 167 

contiguous than Louvain’s results. The integrity of SpaGCN’s spatial domains stems from the aggregation 168 

of gene expression based on spatial information and histology, which ensures that the genes detected by 169 

differential expression analysis have clear spatial expression patterns. 170 

 171 

SpaGCN detected 523 SVGs for the 10 spatial domains while SPARK and SpatialDE detected 9,678 and 172 

12,676 SVGs, respectively (Supplementary Fig. 7). We hypothesized that the substantially larger number 173 

of SVGs detected by SPARK and SpatialDE are due to the lack of spatial expression patterns that exist in 174 

the data. To confirm this hypothesis, we calculated the Moran’s I statistic for all detected SVGs (Fig. 3b). 175 

The Moran’s I values of SpaGCN detected SVGs are much higher than those detected by SPARK and 176 

SpatialDE (median of 0.50 for SpaGCN against 0.21 for SPARK and 0.16 for SpatialDE). Closer examination 177 

of the SVGs detected by SPARK and SpatialDE revealed that most of the SVGs suffer from one of the two 178 

problems observed previously in the MOB dataset: they are (1) only expressed in a few spots or highly 179 

expressed in most of the spots, suggesting high false positive rates for SPARK and SpatialDE or (2) spatially 180 
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variable, but expressed in multiple adjacent spatial domains, making it difficult to interpret. Another 181 

limitation of these two methods is that the FDR-adjusted p-value from SPARK and q-value from SpatialDE 182 

are not informative. Genes with similar p-values/q-values do not necessarily show similar spatial pattern 183 

and a smaller p-value/q-value does not guarantee a better spatial pattern (Supplementary Fig. 8 and 184 

Supplementary Fig. 9). The p-value and q-value distributions of SPARK and SpatialDE are highly skewed 185 

toward 0 (Supplementary Fig. 10). By contrast, the SVGs detected by SpaGCN were enriched in specific 186 

spatial domains (Supplementary Fig. 11) and their expression patterns are transferable to an adjacent 187 

tissue slice in the mouse posterior brain (Supplementary Fig. 12). Further, multiple domain adaptive 188 

filtering criteria implemented in SpaGCN allow it to eliminate false positive SVGs and ensure all detected 189 

SVGs have clear spatial expression patterns.  190 

 191 

To illustrate why appropriate filtering is important, we use domains 1, 5, and 8 as an example. For each of 192 

these domains, SpaGCN detected a single SVG enriched in that region. As shown in Fig. 3c, PVALB is 193 

enriched in domain 1, and TRM62 is enriched in domain 8. Although domains 1 and 8 are adjacent to each 194 

other, these two SVGs can still well mark these domains. NRGN is a SVG that SpaGCN detected for domains 195 

5 and 7. The high expression of NRGN in domains 5 and 7 also indicate that these two domains are 196 

neuroanatomically similar – both consisting of cortex and the pyramidal layer of the hippocampus. Both 197 

the cortex and hippocampus are regions that are on the curved surface of the brain.  This posterior brain 198 

tissue section has the top part of the curved surface in domain 5 and the bottom part of the curved surface 199 

in domain 7. Domains 5 and 7, which would be contiguous in a complete 3D reconstruction, are 200 

artifactually separated due to the way the section was cut. Therefore, it is not surprising that in addition 201 

to NRGN, SpaGCN also detected many other SVGs, such as APP, ATP6V1G2, CALM2, CHN1, CLSTN1, 202 

ARPP21, CYP46A1, DCLK1, LINGO1, and MARCKS, that are highly expressed in both domains 5 and 7 203 
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(Supplementary Fig. 11). The unique and powerful SVG detection procedure in SpaGCN ensures that genes 204 

like these are not missed. 205 

 206 

SpaGCN did not identify any SVGs for domain 0. However, we reason that a meta gene, formed by the 207 

combination of multiple genes, may better reveal spatial patterns than any single genes. We used domain 208 

0 as an example to show how SpaGCN can create informative meta genes to mark a spatial domain (Fig. 209 

3d). First, by lowering the filtering thresholds, SpaGCN identified KLK6 which is highly expressed in the 210 

lower part of domain 0. Using KLK6 as a starting gene, SpaGCN used a novel approach to find a log-linear 211 

combination of gene expression of KLK6, MBP and ATP1B1, which accurately marked the spatial domain 212 

0. In this meta gene, KLK6 and MBP are considered as positive markers because they are highly expressed 213 

in some spots in domain 0, whereas ATP1B1 is considered a negative marker as it is mainly expressed in 214 

regions other than domain 0. Previous studies have shown that KLK6 and MBP expression is restricted to 215 

oligodendrocytes, while ATP1B1 is mainly expressed in neurons and astrocytes19. This resonates the fact 216 

that domain 0 represents white matter which is dominated by oligodendrocytes and has few neuronal cell 217 

bodies.  Therefore, the genes that make up this meta gene have meaningful biological interpretation. 218 

Using this meta gene detection procedure, we also detected meta genes for domains 2, 7, 8 and 9, and 219 

found that these meta genes are transferrable to an adjacent tissue slice (Supplementary Fig. 13). 220 

 221 

The expression profile and biological function of a spot is heavily influenced by its neighboring spots. The 222 

surrounding spots can trigger a response pathway or signal the spot to perform certain tasks. Although 223 

the spots in one spatial domain detected by SpaGCN are spatially coherent and have similar gene 224 

expression patterns, they may still have different functions since their surrounding spots are different. For 225 

instance, spots located near the boundary of a spatial domain may have different functions compared to 226 

spots located in the inner part of the domain. To learn more about the effect of different neighborhoods 227 
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on the spots, we performed sub-domain detection. For example, domain 2 is located in the center of the 228 

tissue slice and surrounded by multiple other spatial domains. As a result, the neighboring environment 229 

for spots in domain 2 varies. As shown in Fig. 3e, domain 2 was separated into 5 sub-domains which are 230 

located either in the center or different boundary regions of domain 2, suggesting that differences in the 231 

neighborhoods of spots contribute to within-domain heterogeneity. SVGs detected for each sub-domain 232 

can help us understand the gene expression variability of spots within each sub-domain.  233 

 234 

Application to LIBD human dorsolateral prefrontal cortex data 235 

In addition to the datasets described previously, SpaGCN also showed advantage over competing methods 236 

when evaluated on the LIBD human dorsolateral prefrontal cortex (DLPFC) data20. The LIBD study 237 

sequenced 12 slices from DLPFC that spans six neuronal layers plus white matter. We started from 238 

analyzing slice 151673, which includes 3,639 spots and 33,538 genes. As the original publication manually 239 

annotated the tissue into 7 layers, for fair comparison, the number of clusters was also set at 7 for SpaGCN, 240 

K-means, and Louvain. As shown in Fig. 4a, K-means and Louvain failed to separate the tissue into layers 241 

with clear boundary. By contrast, SpaGCN successfully identified layer structures with clear boundaries. 242 

The Adjusted Rand Indexes (ARIs) for the SpaGCN, K-means, and Louvain identified domains are 0.42, 0.24, 243 

and 0.33, respectively, suggesting that the SpaGCN results better agree with the manually curated layer 244 

structure reported in the original study. 245 

 246 

To further validate the identified spatial domains, we then detected SVGs. In total, SpaGCN detected 61 247 

SVGs, with 53 of them specific to domain 4, which corresponds to the white matter region (Supplementary 248 

Fig. 14). Patterns of SVGs for other domains are not very clear. These results indicate that gene expression 249 

profiles of spots from white matter are distinct from spots in the neuronal layers, while gene expression 250 

differences among the six neuronal layers are much smaller and more difficult to distinguish using 251 
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individual marker genes. SVGs detected by SPARK and SpatialDE also suffered from the same problem. 252 

SPARK detected 3,187 SVGs with 1,131 of them having FDR-adjusted p-values equal to 0, most of which 253 

only marked the white matter region. We also found that the SVGs detected by SPARK lack domain 254 

specificity (Supplementary Fig. 15). SpatialDE detected 3,654 SVGs with 806 of them having q-values equal 255 

to 0, but these genes do not necessarily show better spatial pattern than genes with larger q-values 256 

(Supplementary Fig. 16). Although SPARK and SpatialDE detected much larger numbers of SVGs than 257 

SpaGCN (Supplementary Fig. 17), the genes detected by these two methods lack ability to distinguish 258 

different degrees of spatial variability in expression as their p-value and q-value distributions are highly 259 

skewed toward 0 (Supplementary Fig. 18). Fig. 4b shows that the Moran’s I values for SpaGCN detected 260 

SVGs are significantly higher than those detected by SpatialDE and SPARK (median of 0.39 for SpaGCN 261 

against 0.09 for SPARK and 0.08 for SpatialDE). For 3 out of the 6 neuronal layers, SpaGCN detected a 262 

single SVG to mark that region (Fig. 4c). For example, NEFM is enriched in domain 0 (layer 3) and PCP4 is 263 

enriched in domain 1 (layer 4). Although it is difficult to identify single genes to mark the other neuronal 264 

layers, SpaGCN was able to find layer-specific meta genes. As shown in Fig. 4c, the meta gene formed by 265 

KRT19, MYL9, MBP, GFAP, and SNAP25 for domain 5 is specific to layer 1. Since layer 1 only has few spots, 266 

it is difficult to find a highly enriched gene. However, by adding depleted genes like MBP and SNAP25, the 267 

expression pattern in this region is strengthened. Furthermore, the SVGs and meta genes detected by 268 

SpaGCN are transferrable to slice 151676 obtained from the same study (Supplementary Fig. 19 and 269 

Supplementary Fig. 20). 270 

 271 

To show the SVGs and meta genes detected by SpaGCN are useful for downstream analysis, we performed 272 

K-means clustering on slice 151676 using SVGs and meta genes detected from slice 151673 by SpaGCN. 273 

Specifically, we selected 2 SVGs or meta genes detected by SpaGCN for each spatial domain, resulting in 274 

14 features (18 unique genes involved in total) used in K-means clustering. Comparing with manually 275 
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curated layer assignment reported in the original study, this clustering analysis had an ARI of 0.25 (Fig. 276 

4d). We performed similar clustering analysis using SVGs detected by SpatialDE and SPARK. When only 277 

using their top 18 SVGs, the ARI is only 0.07 for SpatialDE and 0.05 for SPARK. Even when using the 806 278 

most significant SpatialDE detected SVGs, the ARI is only 0.14. When using the 1,114 most significant 279 

SPARK detected SVGs, the ARI is 0.15 (Fig. 4e). The ARIs of both SpatialDE and SPARK are much lower than 280 

SpaGCN, even though both used many more SVGs than SpaGCN, which further confirmed the lack of 281 

spatial expression specificity for genes detected by these methods. 282 

 283 

Application to human primary pancreatic cancer tissue 284 

We also analyzed a human primary pancreatic cancer tissue dataset5, which includes 224 spots and 16,448 285 

genes across 3 manually annotated sections, to show SpaGCN’s ability in detecting tumorous regions. The 286 

original study identified and annotated the cancer region on the histology image. However, the cancer 287 

region detected by their clustering method based on gene expression information alone did not closely 288 

match the pathologist annotated cancer region (Fig. 5a). Since the cancer region in the histology image is 289 

darker in color than non-cancer regions, it is informative for clustering. To give histology information 290 

higher weight, we increased the scaling parameter 𝑠𝑠 in SpaGCN from 1 to 2 when calculating distance 291 

between each spot pair. This step ensured that spots in the same dark region in the histology are more 292 

likely to be clustered together. Fig. 5a shows that domain 2 detected by SpaGCN has a better 293 

correspondence to the cancer region than clusters reported in the original study. In total, SpaGCN 294 

detected 12 SVGs, with 3, 8, and 1 SVGs for domains 0, 1, and 2, respectively (Fig. 5b; Supplementary Fig. 295 

21). Furthermore, a meta gene using KRT17, MMP11, and SERPINA1 marked the cancer region better than 296 

the originally identified SVG KRT17 (Fig. 5c). KRT17 functions as a tumor promoter and regulates 297 

proliferation in pancreatic cancer21, and MMP11 has been found to be a prognostic biomarker for 298 

pancreatic cancer22. Our identification of KRT17 and MMP11 as the two positive genes for the cancer 299 



  

 

14 
 

region agree well with pancreatic cancer biology. SPARK and SpatialDE detected 203 and 163 SVGs, 300 

respectively (Supplementary Fig. 22). However, the Moran’s I values for their SVGs are much lower than 301 

those detected by SpaGCN, suggesting their lack of spatial expression patterns (Fig. 5d). 302 

 303 

Application to MERFISH mouse hypothalamus data 304 

Next, we show that SpaGCN can also be applied to smFISH-based data. To this end, we analyzed a MERFISH 305 

dataset generated from the preoptic region of hypothalamus in mouse brain2, which includes 5,665 cells 306 

and 161 genes. One important difference between MERFISH and sequencing-based spatial 307 

transcriptomics data is that the captured tissue area is much smaller and less genes are measured, making 308 

it difficult to detect spatial domains since the cells within such a small area are more similar to each other. 309 

Thus, when utilizing these types of data, we suggest increasing the contribution of neighboring cells when 310 

calculating the weighted gene expression of each cell. Using this approach, SpaGCN detected spatial 311 

domains that agreed well with the annotated hypothalamic nuclei (Fig. 6a), with domain 2 corresponding 312 

to ACA, domain 3 corresponding to PS, and domain 7 corresponding to MnPo. By contrast, the domains 313 

identified from the Hidden Markov Random Field (HMRF) approach showed little overlap with the 314 

hypothalamic region annotation. Using SpaGCN, we further detected 19 SVGs including DGKK, ERMN, and 315 

SLN that showed enriched expression patterns for domains 2, 3, and 7 (Fig. 6b; Supplementary Fig. 23). 316 

 317 

Discussion 318 

Identification of spatial domains and detection of SVGs are important steps in spatial transcriptomics data 319 

analysis. In this paper, we presented SpaGCN, a graph convolutional network-based approach that 320 

integrates gene expression, spatial location, and histology to model spatial dependency of gene 321 

expression for clustering analysis of spatial domains and identification of domain enriched SVGs or meta 322 

genes. Through the use of a convolutional layer in an undirected weighted graph, SpaGCN aggregates 323 
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gene expression of each spot from its neighboring spots, which enables the identification of spatial 324 

domains with coherent gene expression and histology. The subsequent domain guided differential 325 

expression analysis also enables the detection of SVGs or meta genes with enriched expression patterns 326 

in the identified domains. SpaGCN has been extensively tested on datasets from different species, regions, 327 

and tissues generated using both sequencing- and smFISH-based techniques. The results consistently 328 

showed that SpaGCN can identify spatial domains with coherent gene expression and histology and detect 329 

SVGs and meta genes that have much clearer spatial expression patterns and biological interpretations 330 

than genes detected by SPARK and SpatialDE. Additionally, the SpaGCN detected SVGs and meta genes 331 

are transferrable and can be utilized for downstream analyses in independent tissue sections. 332 

 333 

The spatial domain detection step in SpaGCN is flexible. For datasets with clear layer structure in histology 334 

image, such as the mouse posterior brain data and human primary pancreatic cancer data, higher weight 335 

can be given to histology by increasing the scaling parameter 𝑠𝑠 in SpaGCN when calculating distance 336 

between each spot pair, which results in spatial domains that are more similar to the anatomy-based 337 

taxonomy in the histology image. Another important scaling parameter in SpaGCN is the characteristic 338 

length scale 𝑙𝑙,  which controls the relative contribution from other spots when aggregating gene 339 

expression. By varying 𝑙𝑙, users can get spatial domain separations with different patterns in which a higher 340 𝑙𝑙 will result in spatial domains with higher contiguity. 341 

 342 

The SVG detection procedure in SpaGCN is also flexible. While we mainly demonstrated SVG detection for 343 

a single domain, SpaGCN also allows users to combine multiple domains as one target domain or specify 344 

which neighboring domains to be included in DE analysis. Additionally, SpaGCN allows the users to 345 

customize SVG filtering criteria based on p-value and three additional metrics, i.e., in-fraction, in/out 346 
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fraction ratio, and fold change, to select SVGs. The resulting genes can be ranked by any of these metrics 347 

to select SVGs with desired spatial expression patterns. 348 

 349 

SpaGCN is computationally fast and memory efficient. To showcase the computational advantage of 350 

SpaGCN, we recorded its run time and memory usage for the mouse posterior brain data and compared 351 

with SPARK and SpatialDE. All analyses were conducted on Mac OS 10.13.6 with single Intel® Core(TM) i5-352 

8259U CPU @2.30GHz and 16GB memory. As shown in Supplementary Fig. 24, SpaGCN completed spatial 353 

domain and SVG detection in less than one minute, whereas the computing time is ~13 minutes for 354 

SpatialDE and more than 18 hours for SPARK. Furthermore, SpaGCN only required 1.3 GB of memory, 355 

whereas SpatialDE and SPARK required more than 3.1 GB and 7.2 GB of memory, respectively. With the 356 

increasing popularity of spatial transcriptomics in biomedical research, we expect SpaGCN will be an 357 

attractive tool for large-scale spatial transcriptomics data analysis. Results from SpaGCN will enable 358 

researchers to accurately identify spatial domains and SVGs in their studies.  359 
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Figure legends 373 

 374 

Figure 1. Workflow of SpaGCN. a, SpaGCN starts from integrating gene expression, spatial location and 375 

histology information using a graph convolutional network (GCN), then separates spots into different 376 

spatial domains using unsupervised iterative clustering. The GCN is based on an undirected weighted 377 

graph in which the edge weight between every two spots is determined by Euclidean distance between 378 

the two spots, defined by the spatial coordinates (𝑥𝑥,𝑦𝑦) and the 3-rd dimensional coordinate 𝑧𝑧, obtained 379 

from the RGB values in the histology image. b, For each detected spatial domain, SpaGCN identifies SVGs 380 

or meta genes by domain guided differential expression analysis. 381 

 382 

Figure 2. Spatial domains and SVGs detected in the mouse olfactory bulb dataset. a, Histology image of 383 

the tissue section and spatial domains detected by SpaGCN, Louvain’s method, and K-means clustering. 384 

b-f, Spatial expression patterns of SVGs detected by SpaGCN for domains 0 (LCAT), 1 (NR2F2), 2 (CACNB3), 385 

3 (SLC17A7), and 4 (NECAB2), and the corresponding in situ hybridization of these SVGs obtained from the 386 

Allen Brain Atlas. g, Boxplot of Moran’s I values for SVGs detected by SpaGCN, SPARK, and SpatialDE. 387 

 388 

Figure 3. Spatial domains and SVGs detected in the mouse brain posterior brain dataset. a, Histology 389 

image of the tissue section and spatial domains detected by SpaGCN, Louvain’s method, and K-means 390 

clustering. b, Boxplot of Moran’s I values for SVGs detected by SpaGCN, SPARK, and SpatialDE. c, Spatial 391 

expression patterns of SVGs detected by SpaGCN for domain 1 (PVALB), 8 (TRIM62), and 5 (NRGN). d, 392 

Spatial expression patterns of genes KLK6, MBP, ATP1B1, which form the specific marker meta gene for 393 

domain 0 (KLK6 + MBP - ATP1B1).  e, Clustering results for 5 sub-domains detected by SpaGCN for domain 394 

2, and the spatial expression patterns of SVGs for sub-domains 0 (KCNC3), 1 (CAMK2A), and 2 (NRSN2). 395 

 396 
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Figure 4. Spatial domains and SVGs detected in the LIBD human dorsolateral prefrontal cortex dataset. 397 

a, Manually annotated layer structure for slice 151673 from the original study20, and spatial domains 398 

detected by SpaGCN, Louvain’s method, and K-means clustering. b, Boxplot of Moran’s I values for SVGs 399 

detected by SpaGCN, SPARK, and SpatialDE for slice 151673. c, Spatial expression patterns of SVGs for 400 

domain 0 (NEFM) and domains 1 (PCP4), and a meta gene formed by KRT19, MYL9, MBP, GFAP, and 401 

SNAP25 for domain 5 (KRT19 + MYL9 – MBP + GFAP – SNAP25). d, Manually annotated layer structure for 402 

slice 151676 from the original study20, and K-means clustering results for slice 151676 using 18 genes 403 

selected by SpaGCN, SPARK, and SpatialDE. For SpaGCN, we selected the following genes, domain 0 (NEFL, 404 

NEFM), domain 1 (PCP4, TMSB10 + PCP4 – KRT19), domain 2 (CCK + KRT17 – MT-ND1, CPLX2 + KRT17 – 405 

MT-ND2), domain 3 (CAMK2N1, ENC1), domain 4 (MBP, FTL), domain 5 (KRT19 + MYL9 – MBP + GFAP – 406 

PLP1, KRT8 + MYL9 – MBP + GFAP – PLP1), and domain 6 (GFAP, MBP), resulting in 18 unique genes in 407 

total. For SPARK and SpatialDE, the 18 SVGs with the smallest FDR-adjusted p-value or q-value were 408 

randomly selected. e, ARIs between manually annotated layers and K-means’ clustering using SVGs 409 

selected by different methods. For SpaGCN, we only used the selected SVGs and meta genes, with 18 410 

genes involved in total while for SPARK and SpatialDE, we used top 18, 100, 200, 500 and all SVGs with 411 

the identical smallest FDR-adjusted p-value or q-value. 412 

 413 

Figure 5. Spatial domains and SVGs detected in the human primary pancreatic cancer tissue dataset. a, 414 

Histology image of the tissue section with manually annotated regions from the original study5, spatial 415 

domains detected by SpaGCN, and clustering results from the original study. b, Spatial expression pattern 416 

of SVGs detected by SpaGCN for domain 0 (AEBP1) and domain 1 (SERPINA1). c, Spatial expression 417 

patterns of genes KRT17, MMP11, SERPINA1, which form the specific marker meta gene for domain 2 418 

(KRT17 + MMP11 - SERPINA1).  d, Boxplot of Moran’s I values for SVGs detected by SpaGCN, SPARK, and 419 

SpatialDE.   420 
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 421 

Figure 6. Spatial domains and SVGs detected in the MERFISH mouse brain hypothalamus dataset. a, 422 

Spatial domains detected by SpaGCN and the HMRF method overlayed with annotated hypothalamic 423 

nuclei from the original study2, and cell type distribution from the original study. d, Spatial expression 424 

patterns of SVGs detected by SpaGCN for domain 2 (ERMN), domain 3 (DGKK), and domain 7 (SLN). 425 
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Methods 426 

 427 

Data preprocessing 428 

SpaGCN takes spatial gene expression and histology image data (when available) as input. The spatial gene 429 

expression data are stored in an 𝑁𝑁 × 𝐷𝐷 matrix of unique molecular identifier (UMI) counts with 𝑁𝑁 samples 430 

and 𝐷𝐷 genes, along with the (𝑥𝑥,𝑦𝑦) 2-dimensional spatial coordinates of each sample. In sequencing-based 431 

data, each sample represents a spot containing multiple cells, whereas in single-molecule fluorescence in 432 

situ hybridization (smFISH)-based data, each sample represents a single cell. For simplicity, we will use 433 

‘spot’ to refer to a sample, as most of the data analyzed in this paper are sequencing based. Genes 434 

expressed in less than three spots are eliminated. The gene expression values in each spot are normalized 435 

such that the unique molecular identifier (UMI) count for each gene is divided by the total UMI count 436 

across all genes in a given spot, multiplied by 10,000, and then transformed to a natural log scale. 437 

 438 

Conversion of spatial transcriptomics data into graph-structured data 439 

After preprocessing, SpaGCN converts the gene expression and histology image data into a weighted 440 

undirected graph, 𝐺𝐺(𝑉𝑉,𝐸𝐸). In this graph, each vertex 𝑣𝑣 ∈ 𝑉𝑉 represents a spot and every two vertices in 𝑉𝑉 441 

are connected via an edge with a specified weight. We focus our analysis on spatial transcriptomics data 442 

with histology information, but the method can be easily adapted to analyze smFISH-based data, for which 443 

histology information is not available. 444 

 445 

Calculation of distance between two vertices 446 

The distance between any two vertices 𝑢𝑢 and 𝑣𝑣 in the graph reflects the relative similarity of the two 447 

corresponding spots. This distance is determined by two factors: 1) the physical locations of spots 𝑢𝑢 and 448 𝑣𝑣 in the tissue slice, and 2) the corresponding histology information of these two spots. Although some 449 
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spots are physically close to each other in the tissue, the histology image may reveal that they belong to 450 

different tissue layers. Therefore, SpaGCN considers two spots to be close if and only if 1) the two spots 451 

are physically close, and 2) they have similar pixel features as shown in the histology image. To define a 452 

distance metric considering both aspects, SpaGCN extends the 2-dimensional space in the tissue slice into 453 

a 3-dimensional space that incorporates histology information. For spot 𝑣𝑣, its physical location in the 454 

tissue slice is represented by 2-dimensional coordinates (𝑥𝑥𝑣𝑣 ,𝑦𝑦𝑣𝑣). To determine the corresponding pixel in 455 

the histology image for spot 𝑣𝑣,  SpaGCN maps spot 𝑣𝑣  to the histology image according to its pixel 456 

coordinates  (𝑥𝑥𝑝𝑝𝑣𝑣 ,𝑦𝑦𝑝𝑝𝑣𝑣).  Instead of using the color of the pixel at (𝑥𝑥𝑝𝑝𝑣𝑣 ,𝑦𝑦𝑝𝑝𝑣𝑣), SpaGCN draws a square 457 

centered on (𝑥𝑥𝑝𝑝𝑣𝑣 ,𝑦𝑦𝑝𝑝𝑣𝑣)   containing 50 × 50  pixels and calculates the mean color value for the RGB 458 

channels, (𝑟𝑟𝑣𝑣 ,𝑔𝑔𝑣𝑣, 𝑏𝑏𝑣𝑣), of all pixels that fall in the square. This step smooths the color value and ensures 459 

that the color is not dominated by a single pixel. To derive a single value to represent the histology image 460 

features, SpaGCN uses a weighted sum of the RGB values as follows, 461 

 462 

𝑧𝑧𝑣𝑣 =
𝑟𝑟𝑣𝑣 × 𝑉𝑉𝑟𝑟 +  𝑔𝑔𝑣𝑣 × 𝑉𝑉𝑔𝑔 + 𝑏𝑏𝑣𝑣 × 𝑉𝑉𝑏𝑏𝑉𝑉𝑟𝑟 +  𝑉𝑉𝑔𝑔 + 𝑉𝑉𝑏𝑏 , 463 

 464 

where  𝑉𝑉𝑟𝑟 = Variance(𝑟𝑟𝑣𝑣)  , 𝑉𝑉𝑔𝑔 = Variance(𝑔𝑔𝑣𝑣) , and 𝑉𝑉𝑏𝑏 = Variance(𝑏𝑏𝑣𝑣)  for all 𝑣𝑣 ∈ 𝑉𝑉.  In this 465 

transformation, higher weight is given to the channel with larger variance so that this combined value 𝑧𝑧𝑣𝑣 466 

captures an accurate representation of the patterns in the histology image. 467 

 468 

Next, SpaGCN rescales 𝑧𝑧𝑣𝑣 as  469 

 470 

𝑧𝑧𝑣𝑣∗ =
𝑧𝑧𝑣𝑣 − 𝜇𝜇𝑧𝑧𝜎𝜎𝑧𝑧 × max�𝜎𝜎𝑥𝑥 ,𝜎𝜎𝑦𝑦� × 𝑠𝑠, 471 

 472 



  

 

23 
 

where 𝜇𝜇𝑧𝑧 is the mean of 𝑧𝑧𝑣𝑣, 𝜎𝜎𝑥𝑥 ,𝜎𝜎𝑦𝑦 ,𝜎𝜎𝑧𝑧 are the standard deviations of  𝑥𝑥𝜈𝜈, 𝑦𝑦𝜈𝜈  and 𝑧𝑧𝜈𝜈 , respectively, for 𝜈𝜈 ∈473 𝑉𝑉, and 𝑠𝑠 is a scaling factor. In our analysis, 𝑠𝑠 is usually set at 1 to make sure that 𝑧𝑧𝑣𝑣∗  has the same scale 474 

variance as 𝑥𝑥𝑣𝑣 and 𝑦𝑦𝑣𝑣, and we set 𝑠𝑠 to a value larger than 1 when the goal is to increase the weight of 475 

histology. The coordinates of spot 𝑣𝑣 are set to be (𝑥𝑥𝑣𝑣 ,𝑦𝑦𝑣𝑣 , 𝑧𝑧𝑣𝑣∗) in the extended 3-dimensional space. Finally, 476 

the Euclidean distance between every two spots 𝑢𝑢 and 𝑣𝑣 is calculated as 477 

 478 𝑑𝑑(𝑢𝑢, 𝑣𝑣) = �(𝑥𝑥𝑢𝑢 − 𝑥𝑥𝑣𝑣)2 + (𝑦𝑦𝑢𝑢 − 𝑦𝑦𝑣𝑣)2+(𝑧𝑧𝑢𝑢∗ − 𝑧𝑧𝑣𝑣∗)2 . 479 

 480 

Calculation of weight for each edge and construction of graph 481 

The weight of each edge (𝑢𝑢, 𝑣𝑣)  measures the degree of relatedness between spots 𝑢𝑢  and 𝑣𝑣  and is 482 

negatively associated with their distance. The graph structure 𝐺𝐺 is stored in an 𝑁𝑁 × 𝑁𝑁 adjacency matrix 483 𝑨𝑨 = [𝑤𝑤(𝑢𝑢, 𝑣𝑣)], where the edge weight between spot 𝑢𝑢 and spot 𝑣𝑣 and is defined as  484 

 485 

𝑤𝑤(𝑢𝑢, 𝑣𝑣) = exp �−𝑑𝑑(𝑢𝑢, 𝑣𝑣)2
2𝑙𝑙2 � . 486 

 487 

The hyperparameter 𝑙𝑙, also known as the characteristic length scale, determines how rapidly the weight 488 

decays as a function of distance. A similar function has been employed in SpatialDE13. Let 𝑰𝑰 denote the 489 

identity matrix. For spot 𝑣𝑣, the corresponding row sum of 𝑨𝑨 − 𝑰𝑰, denoted by 𝑎𝑎𝑣𝑣, can be interpreted as the 490 

relative contribution of other spots to its gene expression. We choose the value of 𝑙𝑙 such that the average 491 

of 𝑎𝑎𝑣𝑣 across all spots is equal to a pre-specified value, e.g. 0.5. 492 

 493 

Graph convolutional layer 494 
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SpaGCN reduces the dimension of the preprocessed gene expression matrix using principal component 495 

analysis (PCA). The top 50 principal components are used as input, which work well for all datasets 496 

analyzed in this paper. Next, utilizing the power of a graph convolutional network, SpaGCN concatenates 497 

the gene expression information and edge weights in 𝐺𝐺 to cluster the nodes. Following Kipf and Welling23, 498 

the graph convolutional layer can be written as  499 

 500 𝑓𝑓(𝑿𝑿,𝑨𝑨) = 𝛿𝛿(𝑨𝑨𝑿𝑿𝑨𝑨), 501 

 502 

where 𝑿𝑿 is the 𝑁𝑁 × 50 embedding matrix obtained from PCA, 𝑨𝑨 is a 50 × 50 matrix representing filter 503 

parameters of the convolutional layer, and 𝛿𝛿(∙) is a non-linear activation function such as ReLU. The graph 504 

convolutional layer ensures that a corresponding row of parameters in 𝑨𝑨 will control the aggregation of 505 

neighborhood information for each feature in 𝑿𝑿, thus offering the flexibility of feature specific aggregation 506 

of information provided by neighboring spots. The filter parameters in 𝑨𝑨 are shared across all vertices in 507 

the graph and are automatically updated during an iterative training progress. Through graph convolution, 508 

SpaGCN has aggregated the gene expression information according to the edge weights specified in 𝐺𝐺. 509 

The output of this layer is an aggregated matrix that includes information on gene expression, spatial 510 

location, and histology. The graph convolutional layer was implemented based on Kipf and Welling23, 511 

where the backpropagation is operated via a localized first-order approximation of spectral graph 512 

convolution. 513 

 514 

Spatial domain identification by clustering 515 

Next, based on the output from the above graph convolutional layer, SpaGCN employs an unsupervised 516 

clustering algorithm to iteratively cluster the spots into different spatial domains15. Each cluster identified 517 

from this analysis is considered to be a spatial domain, which contains spots that are coherent in gene 518 
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expression and histology. To initialize cluster centroids, we use Louvain’s method7 on the aggregated 519 

output matrix from the graph convolutional layer. If the number of domains in the tissue is known, the 520 

resolution parameter in Louvain will be set to generate the same number of spatial domains. Otherwise, 521 

we vary the resolution parameter from 0.2 to 1.0 and select the resolution that gives the highest 522 

Silhouette score24.  523 

 524 

To update the cluster assignments iteratively, we define a metric to measure the distance from a spot to 525 

a cluster centroid using the Student’s 𝑡𝑡-distribution as a kernel. The distance between the embedded 526 

point ℎ𝑖𝑖 for spot 𝑖𝑖 and centroid 𝜇𝜇𝑗𝑗  for cluster 𝑗𝑗 527 

 528 

𝑞𝑞𝑖𝑖𝑗𝑗 =
�1 + �ℎ𝑖𝑖 − 𝜇𝜇𝑗𝑗�2�−1∑ �1 + �ℎ𝑖𝑖 − 𝜇𝜇𝑗𝑗′�2�−1𝐾𝐾𝑗𝑗′=1  , 529 

 530 

can be interpreted as the probability of assigning cell 𝑖𝑖 to cluster 𝑗𝑗. 531 

 532 

Next, we iteratively refine the clusters by defining an auxiliary target distribution 𝑃𝑃 based on 𝑞𝑞𝑖𝑖𝑗𝑗  533 

 534 

𝑝𝑝𝑖𝑖𝑗𝑗 =
𝑞𝑞𝑖𝑖𝑗𝑗2 ∑ 𝑞𝑞𝑖𝑖𝑗𝑗𝑁𝑁𝑖𝑖=1�∑ �𝑞𝑞𝑖𝑖𝑗𝑗′2 ∑ 𝑞𝑞𝑖𝑖𝑗𝑗′𝑁𝑁𝑖𝑖=1� �𝐾𝐾𝑗𝑗′=1 , 535 

 536 

which upweights spots assigned with high confidence, and normalizes the contribution of each centroid 537 

to the overall loss function to prevent large clusters from distorting the hidden feature space. Now that 538 

we have the soft assignment 𝑞𝑞𝑖𝑖𝑗𝑗  and the auxiliary distribution 𝑝𝑝𝑖𝑖𝑗𝑗, we can define the objective function as 539 

a Kullback-Leibler (KL) divergence loss, 540 
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 541 

𝐿𝐿 = 𝐾𝐾𝐿𝐿(𝑃𝑃||𝑄𝑄) = � � 𝑝𝑝𝑖𝑖𝑗𝑗𝑙𝑙𝑙𝑙𝑔𝑔 𝑝𝑝𝑖𝑖𝑗𝑗𝑞𝑞𝑖𝑖𝑗𝑗𝐾𝐾𝑗𝑗=1𝑁𝑁𝑖𝑖=1  . 542 

 543 

The network parameters and cluster centroids are simultaneously optimized by minimizing 𝐿𝐿  using 544 

stochastic gradient descent with momentum. This unsupervised iterative clustering algorithm has been 545 

previously utilized for scRNA-seq analysis and showed superior performance over Louvain’s method25,26.  546 

 547 

Detection of spatially variable genes  548 

We are interested in detecting spatially variable genes (SVGs) that are enriched in each spatial domain. 549 

We note that some genes may be expressed in multiple but disconnected domains. Although they are not 550 

uniquely expressed in a particular domain, these genes are still useful for understanding spatial variation 551 

of gene expression and can be used to form meta genes that are uniquely expressed in a specific domain. 552 

Therefore, rather than doing differential expression (DE) analysis using spots from a target domain versus 553 

all other spots, we first select spots to form a neighboring set of the target domain. The goal is to detect 554 

genes that are highly expressed in the target domain  but are not expressed or are expressed at low levels 555 

in the neighboring spots. To determine which spots should be considered as neighbors, we draw a circle 556 

with a prespecified radius around each spot in the target domain. All spots from non-target domains that 557 

reside in the circle are considered its neighbors. The radius is set such that all spots in the target domain 558 

have approximately 8 neighbors on average. Next, neighbors of all spots in the target domain are collected 559 

and form a neighboring set. For each non-target domain, if more than 50% (default) of its spots are in the 560 

neighboring set, this domain is then selected as a neighboring domain. This criterion is set to avoid the 561 

situation when a domain is selected as a neighboring domain, but only a small proportion of its spots are 562 

adjacent to the target domain.  563 

 564 
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After neighboring domains are determined, SpaGCN then performs DE analysis between spots in the 565 

target domain and the neighboring domain(s) using Wilcoxon rank-sum test. Genes with a false discovery 566 

rate (FDR) adjusted p-value <0.05 are selected as SVGs. To ensure only genes with enriched expression 567 

patterns in the target domain are selected, we further require a gene to meet the following three criteria: 568 

1) the percentage of spots expressing the gene in the target domain, i.e., in-fraction, is >80%; 2) for each 569 

neighboring domain, the ratio of the percentages of spots expressing the gene in the target domain and 570 

the neighboring domain(s), i.e., in/out fraction ratio, is >1; and 3) the expression fold change between the 571 

target and neighboring domain(s) is >1.5. If a user is interested in finding SVGs for a particular combination 572 

of spatial domains, SpaGCN offers the option to do so. 573 

 574 

Detection of spatially variable meta genes 575 

The spatial domain-specific DE analysis described above typically detects SVGs with enriched expression 576 

for the majority of the domains. For domains in which no such SVGs are detected, we aim to identify a set 577 

of genes that, when combined to form a meta gene, shows an enriched expression pattern in the given 578 

domain. To identify genes to form a meta gene, we employ a multi-step approach. First, we lower the 579 

thresholds for SVG filtering, e.g., change the minimum fold change threshold from 1.5 to 1.2, to identify 580 

genes showing weaker enriched expression pattern in the target domain. In the presence of multiple such 581 

weaker SVGs, we randomly select one of them as the base gene and denote it as 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔0. Second, we aim 582 

to aggregate expression from other genes to the base gene to enhance the spatial pattern for the target 583 

domain. To achieve this goal, we first calculate the mean expression level of 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔0 for spots in the target 584 

domain as 𝑔𝑔0. Then, all spots from non-target domains with 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔0’s expression level higher than 𝑔𝑔0 are 585 

extracted to form a control group. Next, we perform DE analysis using spots from the target domain 586 

against spots in the control group using Wilcoxon rank-sum test. The gene with the smallest FDR-adjusted 587 

p-value and higher expression in the target domain is selected as 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔0+ . Similarly, we perform DE 588 
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analysis using spots from the control group against those from the target domain and select a gene with 589 

the smallest FDR-adjusted p-value and higher expression in the control group as 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔0−. The meta gene’s 590 

expression is calculated as 591 

 592 

log(𝑚𝑚𝑔𝑔𝑡𝑡𝑎𝑎_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔1) = log(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔0) + log(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔0+) − log(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔0−) + 𝐶𝐶0, 593 

 594 

where 𝐶𝐶0 is a constant to make log(𝑚𝑚𝑔𝑔𝑡𝑡𝑎𝑎_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔1) non-negative. The log transformation is used to rescale 595 

expression and make the expression levels comparable across different genes. We have found that 596 

including negative genes can strengthen spatial expression pattern for domains that do not have enriched 597 

positive marker genes. This algorithm can be used iteratively to find additional genes to form an updated 598 

meta gene with a clearer spatial pattern for the target domain. For the (𝑡𝑡 + 1)𝑡𝑡ℎ iteration, the meta gene 599 

expression is calculated as 600 

 601 

log(𝑚𝑚𝑔𝑔𝑡𝑡𝑎𝑎_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡+1) = log(𝑚𝑚𝑔𝑔𝑡𝑡𝑎𝑎_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡) + log(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡+) − log(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡−) + 𝐶𝐶𝑡𝑡   602 

 603 

In the (𝑡𝑡 + 1)𝑡𝑡ℎ iteration, after adding 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡+ and subtracting 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡−, SpaGCN will select the (𝑡𝑡 + 1)𝑡𝑡ℎ 604 

control group based on 𝑚𝑚𝑔𝑔𝑡𝑡𝑎𝑎_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡+1. The size of the new control group, which is the number of spots 605 

not in the target domain but have higher expression of 𝑚𝑚𝑔𝑔𝑡𝑡𝑎𝑎_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡+1 than spots in the target domain, 606 

should be smaller than the size of the 𝑡𝑡𝑡𝑡ℎ  control group, to ensure that 𝑚𝑚𝑔𝑔𝑡𝑡𝑎𝑎_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡+1  has a clearer 607 

spatial pattern than 𝑚𝑚𝑔𝑔𝑡𝑡𝑎𝑎_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡. Also, 𝑚𝑚𝑔𝑔𝑡𝑡𝑎𝑎_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡+1 is expected to have a larger difference of mean 608 

expression between the target and control groups than 𝑚𝑚𝑔𝑔𝑡𝑡𝑎𝑎_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡 . Therefore, at each iteration, 609 

SpaGCN checks whether both criteria are met, and the search of additional genes will stop otherwise. An 610 

illustration of this iterative meta gene search is shown in Supplementary Fig. 25. 611 

 612 
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Evaluation of spatially variable genes using Moran’s I statistic 613 

The Moran’s I statistic16 is a measure of spatial autocorrelation, which can be used to measure the degree 614 

of spatial variability in gene expression27. The Moran’s I value ranges from –1 to 1, where a value close to 615 

1 indicates a clear spatial pattern, a value close to 0 indicates random spatial expression, and a value close 616 

to –1 indicates a chess board like pattern. To evaluate the spatial variability of a given gene, we calculate 617 

the Moran’s I using the following formula,  618 

 619 

𝐼𝐼 =
𝑁𝑁𝑊𝑊∑ ∑ [𝑤𝑤𝑗𝑗 𝑖𝑖𝑗𝑗 (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑥𝑥𝑗𝑗 − 𝑥̅𝑥)]𝑖𝑖 ∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2𝑖𝑖 , 620 

 621 

where 𝑥𝑥𝑖𝑖  and 𝑥𝑥𝑗𝑗  are gene expression of spots 𝑖𝑖 and 𝑗𝑗, 𝑥̅𝑥 is the mean expression of the gene, 𝑁𝑁 is the total 622 

number of spots, 𝑤𝑤𝑖𝑖𝑗𝑗  is spatial weight between spots 𝑖𝑖 and 𝑗𝑗 calculated using the 2-dimensional spatial 623 

coordinates of the spots, and 𝑊𝑊 is the sum of 𝑤𝑤𝑖𝑖𝑗𝑗. For each spot, we select the 𝑘𝑘 nearest neighbors using 624 

spatial coordinates. Moran’s I statistic is robust to the choice of 𝑘𝑘 and is set at 4 in our analysis. We assign 625 𝑤𝑤𝑖𝑖𝑗𝑗 = 1 if spot 𝑗𝑗 is in the nearest neighbors of spot 𝑖𝑖, and 𝑤𝑤𝑖𝑖𝑗𝑗 = 0 otherwise. 626 

 627 

Detection of subclusters within a spatial domain  628 

To better characterize heterogeneity within a spatial domain due to the influence of its neighborhood, 629 

SpaGCN can further detect sub-domains within each spatial domain by utilizing information from 630 

neighboring spots. SpaGCN draws a circle around each spot with a pre-specified radius, and all spots that 631 

reside in the circle are considered as neighbors of this spot. The value of the radius is set to ensure that 632 

every spot in the target domain have ten neighbors on average. Next, SpaGCN records the number of 633 

neighbors from different spatial domains for each spot and stores this information in a 𝑇𝑇 × 𝐾𝐾 matrix, 634 

where 𝑇𝑇  is the number of spots in the target domain and 𝐾𝐾  is the total number of spatial domains 635 
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detected. The value for the 𝑖𝑖𝑡𝑡ℎ  row and 𝑗𝑗𝑡𝑡ℎ  column is the number of neighbors of spot 𝑖𝑖 belonging to 636 

domain 𝑗𝑗. Next, this matrix is fed into a K-means classifier to detect sub-clusters. Differential expression 637 

analysis as described above can be performed to identify subcluster enriched genes. 638 

 639 

Data availability 640 

We analyzed multiple spatial transcriptomics datasets. Publicly available data were acquired from the 641 

following websites or accession numbers: (1) mouse olfactory bulb 642 

(https://drive.google.com/drive/folders/1C4l3lBaYl7uuV2AA2o0WDzO_mkc_b0pv?usp=sharing); (2) 643 

mouse posterior brain (https://support.10xgenomics.com/spatial-gene-644 

expression/datasets/1.0.0/V1_Mouse_Brain_Sagittal_Posterior); (3) LIBD human dorsolateral prefrontal 645 

cortex Dorsolateral pre-frontal cortex (http://research.libd.org/spatialLIBD/); (4) human primary 646 

pancreatic cancer data (GSE111672); (5) MERFISH mouse hypothalamus data 647 

(https://datadryad.org/stash/dataset/doi:10.5061/dryad.8t8s248). Details of the datasets analyzed in 648 

this paper were described in Supplementary Table 1. 649 

 650 

Software availability 651 

An open-source implementation of the SpaGCN algorithm can be downloaded from 652 

https://github.com/jianhuupenn/SpaGCN 653 

 654 

Life sciences reporting summary 655 

Further information on experimental design is available in the Life Sciences Reporting Summary.  656 

 657 

References 658 

https://drive.google.com/drive/folders/1C4l3lBaYl7uuV2AA2o0WDzO_mkc_b0pv?usp=sharing
https://support.10xgenomics.com/spatial-gene-expression/datasets/1.0.0/V1_Mouse_Brain_Sagittal_Posterior
https://support.10xgenomics.com/spatial-gene-expression/datasets/1.0.0/V1_Mouse_Brain_Sagittal_Posterior
http://research.libd.org/spatialLIBD/
https://datadryad.org/stash/dataset/doi:10.5061/dryad.8t8s248
https://github.com/jianhuupenn/SpaGCN


  

 

31 
 

1. Asp, M., Bergenstrahle, J. & Lundeberg, J. Spatially resolved transcriptomes-next generation 659 

tools for tissue exploration. Bioessays 42, e1900221 (2020). 660 

2. Moffitt, J.R., et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic 661 

preoptic region. Science 362, eaau5324 (2018). 662 

3. Eng, C.L., et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 663 

568, 235-239 (2019). 664 

4. Rodriques, S.G., et al. Slide-seq: A scalable technology for measuring genome-wide expression at 665 

high spatial resolution. Science 363, 1463-1467 (2019). 666 

5. Moncada, R., et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq 667 

reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat Biotechnol 38, 333-342 668 

(2020). 669 

6. Chen, W.T., et al. Spatial transcriptomics and in situ sequencing to study Alzheimer's disease. 670 

Cell 182, 976-991 e919 (2020). 671 

7. Blondel, V.D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in 672 

large networks. Journal of Statistical Mechanics: Theory and Experiment 2008, P10008 (2008). 673 

8. Pham, D., et al. stLearn: integrating spatial location, tissue morphology and gene expression to 674 

find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. bioRxiv 675 

(2020). 676 

9. Zhao, E., et al. BayesSpace enables the robust characterization of spatial gene expression 677 

architecture in tissue sections at increased resolution. bioRxiv (2020). 678 

10. Zhu, Q., Shah, S., Dries, R., Cai, L. & Yuan, G.C. Identification of spatially associated 679 

subpopulations by combining scRNAseq and sequential fluorescence in situ hybridization data. 680 

Nat Biotechnol 36, 1183-1190 (2018). 681 



  

 

32 
 

11. Saiselet, M., et al. Transcriptional output, cell types densities and normalization in spatial 682 

transcriptomics. J Mol Cell Biol, mjaa028 (2020). 683 

12. Edsgard, D., Johnsson, P. & Sandberg, R. Identification of spatial expression trends in single-cell 684 

gene expression data. Nat Methods 15, 339-342 (2018). 685 

13. Svensson, V., Teichmann, S.A. & Stegle, O. SpatialDE: identification of spatially variable genes. 686 

Nat Methods 15, 343-346 (2018). 687 

14. Sun, S., Zhu, J. & Zhou, X. Statistical analysis of spatial expression patterns for spatially resolved 688 

transcriptomic studies. Nat Methods 17, 193-200 (2020). 689 

15. Xie, J., Girshick, R. & Farhadi, A. Unsupervised deep embedding for clustering analysis. 690 

Proceedings of the 33rd International Conference on Machine Learning 48(2016). 691 

16. Li, H., Calder, C.A. & Cressie, N. Beyond Moran’s I: testing for spatial dependence based on the 692 

spatial autoregressive model. Geographical Analysis 39, 357-375 (2007). 693 

17. Stahl, P.L., et al. Visualization and analysis of gene expression in tissue sections by spatial 694 

transcriptomics. Science 353, 78-82 (2016). 695 

18. Dataset. https://support.10xgenomics.com/spatial-gene-696 

expression/datasets/1.0.0/V1_Mouse_Brain_Sagittal_Posterior. (2020). 697 

19. Zhang, Y., et al. Purification and Characterization of Progenitor and Mature Human Astrocytes 698 

Reveals Transcriptional and Functional Differences with Mouse. Neuron 89, 37-53 (2016). 699 

20. Maynard, K.R., et al. Transcriptome-scale spatial gene expression in the human dorsolateral 700 

prefrontal cortex. bioRxiv (2020). 701 

21. Li, D., et al. KRT17 Functions as a Tumor Promoter and Regulates Proliferation, Migration and 702 

Invasion in Pancreatic Cancer via mTOR/S6k1 Pathway. Cancer Manag Res 12, 2087-2095 (2020). 703 

22. Lee, J., Lee, J. & Kim, J.H. Identification of Matrix Metalloproteinase 11 as a Prognostic 704 

Biomarker in Pancreatic Cancer. Anticancer Res 39, 5963-5971 (2019). 705 

https://support.10xgenomics.com/spatial-gene-expression/datasets/1.0.0/V1_Mouse_Brain_Sagittal_Posterior
https://support.10xgenomics.com/spatial-gene-expression/datasets/1.0.0/V1_Mouse_Brain_Sagittal_Posterior


  

 

33 
 

23. Kipf, T.N. & Welling, M. Semi-supervised classification with graph convolutional networks. 706 

International Conference on Learning Representations arXiv:1609.02907(2017). 707 

24. Rousseeuw, P.J. Silhouettes: a graphical aid to the interpretaion and validation of cluster 708 

analysis. Computational and Applied Mathematics 20, 53-65 (1987). 709 

25. Li, X., et al. Deep learning enables accurate clustering with batch effect removal in single-cell 710 

RNA-seq analysis. Nat Commun 11, 2338 (2020). 711 

26. Lakkis, J., et al. A joint deep learning model for simultaneous batch effect correction, denoising 712 

and clustering in single-cell transcriptomics. bioRxiv (2020). 713 

27. Abdelaal, T., Mourragui, S., Mahfouz, A. & Reinders, M.J.T. SpaGE: spatial gene enhancement 714 

using scRNA-seq. Nucleic Acids Res 48, e107 (2020). 715 

 716 



Figures

Figure 1

Work�ow of SpaGCN. a, SpaGCN starts from integrating gene expression, spatial location and histology
information using a graph convolutional network (GCN), then separates spots into different spatial
domains using unsupervised iterative clustering. The GCN is based on an undirected weighted graph in



which the edge weight between every two spots is determined by Euclidean distance between the two
spots, de�ned by the spatial coordinates (฀฀,฀฀) and the 3-rd dimensional coordinate ฀฀, obtained from the
RGB values in the histology image. b, For each detected spatial domain, SpaGCN identi�es SVGs or meta
genes by domain guided differential expression analysis.

Figure 2



Spatial domains and SVGs detected in the mouse olfactory bulb dataset. a, Histology image of the tissue
section and spatial domains detected by SpaGCN, Louvain’s method, and K-means clustering. b-f, Spatial
expression patterns of SVGs detected by SpaGCN for domains 0 (LCAT), 1 (NR2F2), 2 (CACNB3), 3
(SLC17A7), and 4 (NECAB2), and the corresponding in situ hybridization of these SVGs obtained from the
Allen Brain Atlas. g, Boxplot of Moran’s I values for SVGs detected by SpaGCN, SPARK, and SpatialDE.

Figure 3



Spatial domains and SVGs detected in the mouse brain posterior brain dataset. a, Histology image of the
tissue section and spatial domains detected by SpaGCN, Louvain’s method, and K-means clustering. b,
Boxplot of Moran’s I values for SVGs detected by SpaGCN, SPARK, and SpatialDE. c, Spatial expression
patterns of SVGs detected by SpaGCN for domain 1 (PVALB), 8 (TRIM62), and 5 (NRGN). d, Spatial
expression patterns of genes KLK6, MBP, ATP1B1, which form the speci�c marker meta gene for domain
0 (KLK6 + MBP - ATP1B1). e, Clustering results for 5 sub-domains detected by SpaGCN for domain 2, and
the spatial expression patterns of SVGs for sub-domains 0 (KCNC3), 1 (CAMK2A), and 2 (NRSN2).



Figure 4

Spatial domains and SVGs detected in the LIBD human dorsolateral prefrontal cortex dataset. a,
Manually annotated layer structure for slice 151673 from the original study20, and spatial domains
detected by SpaGCN, Louvain’s method, and K-means clustering. b, Boxplot of Moran’s I values for SVGs
detected by SpaGCN, SPARK, and SpatialDE for slice 151673. c, Spatial expression patterns of SVGs for
domain 0 (NEFM) and domains 1 (PCP4), and a meta gene formed by KRT19, MYL9, MBP, GFAP, and
SNAP25 for domain 5 (KRT19 + MYL9 – MBP + GFAP – SNAP25). d, Manually annotated layer structure
for slice 151676 from the original study20, and K-means clustering results for slice 151676 using 18
genes selected by SpaGCN, SPARK, and SpatialDE. For SpaGCN, we selected the following genes, domain
0 (NEFL, NEFM), domain 1 (PCP4, TMSB10 + PCP4 – KRT19), domain 2 (CCK + KRT17 – MT-ND1, CPLX2
+ KRT17 – MT-ND2), domain 3 (CAMK2N1, ENC1), domain 4 (MBP, FTL), domain 5 (KRT19 + MYL9 –
MBP + GFAP – PLP1, KRT8 + MYL9 – MBP + GFAP – PLP1), and domain 6 (GFAP, MBP), resulting in 18
unique genes in total. For SPARK and SpatialDE, the 18 SVGs with the smallest FDR-adjusted p-value or
q-value were randomly selected. e, ARIs between manually annotated layers and K-means’ clustering
using SVGs selected by different methods. For SpaGCN, we only used the selected SVGs and meta genes,
with 18 genes involved in total while for SPARK and SpatialDE, we used top 18, 100, 200, 500 and all
SVGs with the identical smallest FDR-adjusted p-value or q-value.



Figure 5

Spatial domains and SVGs detected in the human primary pancreatic cancer tissue dataset. a, Histology
image of the tissue section with manually annotated regions from the original study5, spatial domains
detected by SpaGCN, and clustering results from the original study. b, Spatial expression pattern of SVGs
detected by SpaGCN for domain 0 (AEBP1) and domain 1 (SERPINA1). c, Spatial expression patterns of
genes KRT17, MMP11, SERPINA1, which form the speci�c marker meta gene for domain 2 (KRT17 +



MMP11 - SERPINA1). d, Boxplot of Moran’s I values for SVGs detected by SpaGCN, SPARK, and
SpatialDE.

Figure 6

Spatial domains and SVGs detected in the MERFISH mouse brain hypothalamus dataset. a, Spatial
domains detected by SpaGCN and the HMRF method overlayed with annotated hypothalamic nuclei from
the original study2, and cell type distribution from the original study. d, Spatial expression patterns of
SVGs detected by SpaGCN for domain 2 (ERMN), domain 3 (DGKK), and domain 7 (SLN).
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