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Abstract
Residential GHG emissions in the United States are driven in part by a housing stock where on-site fossil combustion is
common, home sizes are large by international standards, energy efficiency potential is large, and electricity generation in
many regions is GHG-intensive. In this analysis we assess decarbonization pathways for the United States residential
sector to 2060, through 108 scenarios describing housing stock evolution, new housing characteristics, renovation levels,
and clean electricity. The lowest emission scenarios rely on very rapid decarbonization of electricity supply alongside
extensive renovations to existing homes—focused on improving thermal envelopes and heat pump electrification of
heating. Reducing the size, increasing the multifamily share, and increasing the electrification of new homes provide
further emission cuts, and combining all strategies enables emissions reductions of 91% between 2020 and 2050.
Construction becomes the main source of emissions in the most ambitious scenarios, motivating increased attention on
reducing embodied emissions.

Introduction
Reducing GHG emissions rapidly from buildings is central to mitigating global climate change. As a considerable share of
building energy use is already electrified1,2, and complete electrification is technically feasible, emissions from building
energy use can in principle reduce to zero through a combination of electrification and electricity decarbonization. In this
paper we assess decarbonization pathways for the residential sector in the United States, which has one of the highest
levels of per-capita residential energy use in the world (1.5 times the OECD average), and is second to China in terms of
total residential energy use2. Recent reductions of residential energy-related emissions in the US have primarily derived
from a decarbonizing electricity grid, with much smaller reductions coming from energy efficiency and increased use of
electricity for space heating3. Complete decarbonization of electricity generation with renewable energy will be
challenging4,5. Reducing residential energy demand through efficiency and sufficiency can alleviate this challenge, and
support emissions reductions consistent with limiting global climate change to 1.5°C warming6. Two approaches to
improve energy efficiency in buildings are ‘retrofitting’ - renovating existing buildings, and ‘rebuilding’ - replacing older stock
with more efficient new buildings7–10. Comparing these approaches requires consideration of ‘embodied’ emissions from
material production and construction activity, which constitute around 9% of residential emissions in the US11. This share
will grow as buildings become more efficient and energy supply decarbonizes further12. Literature has not converged on
which efficiency approach is preferable13, but so far comparisons of retrofitting and rebuilding have largely focused on
individual buildings or neighbourhoods; rarely have they been compared for building stocks of an entire country10.

‘Sufficiency’ approaches to reducing GHG emissions are a recent addition to climate change mitigation literature, and
target reduced demand for energy, materials and other natural resources, while delivering wellbeing for all14,15. For
residential buildings, sufficiency can be translated into a global convergence of floor area per person16,17 to somewhere in
the range of 15–40 m2/cap18–21. Current average floor area usage in the US is 67 m2/cap in single-family homes, 41
m2/cap in multifamily homes, and 60 m2/cap across all house types22. This is one of the highest levels globally; floor area
consumption in the UK and Japan is closer to 40 m2/cap, while in many other countries it is lower, but growing23.

Here, we assess emissions from operation, construction, and renovation of residential buildings in the US in 108 scenarios,
from 2020 to 2060. The consideration of embodied emissions, detailed engineering-based energy modelling using high-
resolution housing characteristics, and representation of specific technological and fuel-switching measures based on
recent renovation trends are novel aspects of this work. The scenarios demonstrate GHG mitigation potentials of increased
renovation and electrification in existing homes and modifications to the characteristics of new construction, under
different electricity supply scenarios. Results show substantially higher emission reductions from renovation than
rebuilding, and underline the necessity for rapid decarbonization of electricity supply.
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Description Of Scenarios
108 emissions scenarios (3 x 4 x 3 x 3) are developed, defined by three scenarios describing evolution of the US housing
stock22, four scenarios describing characteristics of new housing, three renovation scenarios, and three electricity supply
scenarios24,25 (Table 1). The scenarios reflect different approaches to climate change mitigation; sufficiency approaches
are represented in the High multifamily growth and Reduced floor area scenarios, retrofit-efficiency approaches are
represented in the Renovation scenarios, rebuild-efficiency approaches are represented in the High stock turnover and
Increased Electrification scenarios, while energy supply decarbonization is represented in the Electricity supply scenarios.
In most cases, alterations to historic trends are not implemented to maximum technical potential, but instead scale up
strategies to optimistic but ‘attainable’ levels. The scenarios are not optimized to achieve any emissions reduction target.
Further description of the scenarios, and the overall approach—including limitations—is provided in the Methods section.
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Table 1
Description of the dimensions which combine to generate the 108 scenarios

Housing Stock
Evolution

Description

1. Baseline stock
growth

Stock turnover based on historical rates by house type and region.

2. High stock
turnover

Housing stock turnover rates increase by factor of 1.5

3. High multifamily
growth (c.f. Supp.
Figures 17, 18, 21)

Multifamily population share grows by 0.25 percentage points per year in counties with 20-year
population growth > 5%.

New Housing
Characteristics

Description

A. Baseline Future floor area distributions by metro region and house type unchanged from 2010s.
Slow/moderate growth of electrification of end uses differentiated by Census Division

B. Reduced floor
area (RFA)

(c.f. Supp. Figures
17, 18, 21)

No new housing unit is larger than 279 m2. Increased shares of new housing built in the 185–
278 m2 size range. Average size of new single-family reduces 25% from 258 to 192 m2.

C. Increased
Electrification (IE)
(c.f. Supp. Figure
16)

More rapid increase of all-electric new homes, based on spread of electricity and gas prices by
Census Division. All new homes all-electric by 2030 in every Census Region except Northeast,
which reaches all-electric new construction by 2040

D. IE & RFA Combination of new housing characteristic scenarios B and C

Renovation of
Existing Stock

Description

Regular Renovation
(RR)

(c.f. SI Section 2)

Renovation continues at historic rates, moderate efficiency improvements and slow
electrification of space/water heating

Advanced
Renovation (AR)

Renovation rates increase by factor of 1.5 relative to historic levels (leading to earlier
retirements of existing equipment), with high efficiency improvements and moderate increase
in electric share of space/water heating equipment replacements

Extensive
Renovation (ER)

Similar to AR except higher share of heat pumps in space/water heating renovations. 100%
electric heat pump replacements of fossil heating equipment from 2025

Electricity Supply
Scenarios

Description

Mid-Case Electricity
(MC)

(c.f. Supp. Figure
23)

Reference scenario from NREL Standard Scenarios24, national average GHG intensity of 169
kgCO2/kWh by 2050

Low Renewable
Energy Cost
Electricity (LREC)

NREL Standard Scenario with lowest GHG intensity, reaching national average of 82
kgCO2/kWh by 2050

Carbon Free
Electricity by 2035
(CFE)

Government target for carbon-free electricity generation by 203525. Trajectory assumed to map
LREC until 2025, reach half of 2025 intensity by 2030, and reach 0 kgCO2/kWh by 2035
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Assessment Of Climate Change Mitigation Strategies
All 108 scenarios meet the 2030 emissions target of 50% reduction compared to 200525 (825 MtCO2e/yr), but none meet a

1.5°C-consistent 2030 target of 50% reduction compared to 20206 (450 MtCO2e/yr), although some come close. For 2050

targets, 52 out of 108 scenarios meet the Paris 2015 target of 20% of 2005 emissions26 (330 MtCO2e/yr) (Fig. 1), but none

comes close to a 1.5°C goal of (net-)zero emissions by 20506. Electricity supply and renovation scenarios have the largest
influence on future emissions (Fig. 1). Following the LREC electricity supply scenario results in substantially lower
emission pathways than the MC scenario, approaching the 2050 Paris target if combined with advanced renovation, or
exceeding it when combined with extensive renovation. Only the lowest-emission scenarios with carbon free electricity
(CFE) from 2035 come close to the 2030 1.5°C target. Due to residual emissions from residential fossil fuels and
construction, none of the CFE scenarios reach zero emissions in 2050. After electricity emissions reach zero in 2035,
subsequent emissions reductions in CFE scenarios are more gradual, with emissions from fossil fuel combustion and
construction declining very slowly from 2045 onwards (Fig. 1, Fig. 3d). Cumulative 2020-2060 emissions range from 11.9 -
28.7 GtCO2e in the scenarios assessed (Fig. 2). A current-population-based allocation of the remaining global carbon

budget to meet 1.5°C with 50% likelihood27 gives the US a carbon budget of 21 GtCO2e from all sources from 2020. This

budget would be even smaller under fair effort-sharing allocations28.

Within each electricity supply and renovation scenario set, the nature of housing stock evolution and the characteristics of
new housing provide further, smaller variations in emissions. Building new homes with reduced floor area (RFA) and
increased electrification (IE) lowers emissions. Annual emissions are lower by 34-56 MtCO2e/yr by 2050 if building IE-RFA
new homes, while cumulative 2020-2060 emissions see reductions of 1.1-1.8 GtCO2e (Fig. 2). With more gradual
decarbonization of electricity (MC), RFA has greater potential for emission reductions than IE, but if electricity supply
decarbonizes completely by 2035, these two strategies have approximately the same cumulative potential (Fig. 2c). These
strategies are complementary, so the largest emission reductions occur when they are combined.

Due to higher embodied emissions22 and the larger size of newer housing (Supp. Fig. 18), increasing the rate of stock
turnover increases emissions in all scenarios (Fig. 2), despite improvements in efficiency which accompany faster growth
of new housing. As a result, retrofitting is found to have greater emission reductions potential than rebuilding in all of our
scenarios. As more existing buildings are renovated to become more efficient and electrified, there is a smaller reduction of
energy-related emission resulting from higher stock turnover. This is because faster and deeper renovations lower the
emissions avoided through accelerated retirement of older homes. Similar to the RFA new housing scenarios, increasing
the share of multifamily housing in new construction reduces both embodied emissions, and future energy-related
emissions. Depending on the electricity, renovation, and new housing characteristics scenario, high multifamily housing
stock growth reduces cumulative 2020-2060 emissions by 0.30-0.84 GtCO2e (Fig. 2).

In scenarios with most rapid emission reductions, the majority of emissions occur by 2030 (Fig. 3d), while in the Baseline
scenario (base stock evolution and new housing characteristics, MC electricity supply, regular renovation) or scenarios
with moderate reductions (Fig. 3a, 3b), growth of cumulative emissions slows but remains steady throughout the coming
decades. Comparing Fig. 3a and Fig. 3b illustrates the limitations of employing electricity supply or renovation-based
strategies on their own. With extensive renovation, but gradual decarbonization of electricity supply (Fig. 3a), emissions
from residential fossil combustion decline markedly, but emissions from electricity remain sizable. Conversely, reducing
electricity emissions intensity with regular renovation of existing homes (Fig. 3b) produces large decreases in electricity
emissions, but emissions from fuel use remain large, and are locked in for decades (beyond 2060) through installation of
fossil-based replacement heating equipment. The most impressive emission reductions result from the combination of
rapid decarbonization of electricity, extensive renovation, and construction of new homes which are smaller, electrified, and
have a greater multifamily share. With the most optimistic combination of non-electricity scenarios, the additional benefits
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from completely decarbonizing electricity by 2035 compared to a low- but not zero-carbon electricity scenario (i.e. CFE vs
LREC) are still immense, reducing 2050 emissions from 222 to 84 MtCO2e/yr (Fig. 3c, Fig. 3d) and reducing cumulative
emissions to 2060 from 17.5 to 11.9 GtCO2e. In these low emission (CFE-ER) scenarios, the majority of emissions from
2050 onwards are from construction. Construction related emissions incorporate assumed improvements in material
production and construction activities - average embodied emissions per unit floor area fall from 201 to 155 kgCO22e/m2

between 2020 and 206022. Further reductions in the emissions intensity of new construction can result from building
homes without basements or garages, substituting wood for concrete structural elements, using low-carbon cementitious
materials, and avoiding insulation with high-GWP blowing agents22,29−31. A faster reduction of the emission intensity of
construction materials and activities could alter the current finding that higher stock turnover generates higher emissions
in all scenarios.

Our lowest emission scenario shows combined energy and embodied emissions of 0.22 ton CO22e/cap by 2050, down
from 2.71 ton CO22e/cap in 2020. This is considerably lower than 2050 per-capita US residential emissions in the lowest

emission scenario from Goldstein et al.32 (0.62 ton CO22e/cap, energy emissions only), but higher than 0.15 ton CO22e/cap

from the lowest emission scenario by Pauliuk et al.20 (embodied emissions and energy emissions from heating, cooling,
and hot water only) or 0.17 ton CO2e/cap from the IEA’s sustainable development scenario33 (energy emissions only).

Sequencing Of Mitigation Strategies
While some strategies are largely independent (e.g. renovating existing homes and building smaller new homes), the
mitigation potentials of stock evolution, new housing characteristics, and renovation strategies are influenced by the
extent of electricity decarbonization. Compared to a ‘2020 electricity grid’ and ‘no renovation’ situation (not part of our
scenario set, shown for reference by the brown dotted line in Fig. 4), our baseline scenario (dotted black line in Fig. 4)
generates substantial emission reductions. Beyond this baseline, mitigation actions are ordered in Fig. 4a according to
greatest cumulative emission mitigation potential, grouped into strategies affecting electricity supply (blue), renovation of
existing homes (orange), and stock evolution/characteristics of new housing (pink/purple). Rapid electricity
decarbonization delivers the greatest emission cuts, and increases the mitigation potential of extensive renovations (ER)
and increased electrification (IE) of new homes. Stacking strategy groups in the reverse order (Fig. 4b) shows that the
sufficiency strategies of reduced floor area and increased multifamily in new construction bring about greater emission
cuts if the electricity grid decarbonizes less rapidly (MC), as the associated reductions in energy demand translate into
larger emission reductions.

The reduction of residential sector emissions will be best achieved by prioritising rapid decarbonization of electricity
supply alongside high-efficiency renovations of existing homes, with heat pump replacements for fossil-based heating
equipment, and much improved building envelopes. Incorporating more multifamily and smaller single-family in new
construction provides immediate reductions of embodied emissions22, ensures energy-related emission independent of
electricity supply scenario, and lowers peak electricity demand. These strategies lower 2050 annual electricity demand by
around 6%. Lower electricity demand, particularly during peak hours, reduces the amount of electricity infrastructure
required28, lessening the challenges associated with rapidly deploying new of carbon-free generation35.

Technological And Policy Challenges To Mitigation
The first pillar of reducing residential emissions is rapid decarbonization of electricity supply. Technical challenges for
decarbonization relying on renewables include diurnal and seasonal balancing of supply and demand, and maintaining
grid stability with very high penetration of inverter-based (wind and solar) technologies5. The MC / LREC scenarios24

project factor 4.8 / 6 increases in wind and solar generating capacity between 2020 and 2050, with average annual
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increases of 26 / 35 GW respectively. Between 2019 and 2020, wind and solar capacity grew by 30 GW36. Using current
technology-specific land requirements37, land use for wind and solar would grow to 1,994 / 2,691 ha by 2050, from 536 ha
in 2020, in MC / LREC scenarios respectively. The closest description of an electricity supply system comparable to our
CFE scenario is the 2050 100% renewable electricity scenario from Cole et al.4, which requires average annual increases of
wind and solar capacity of 60 GW between 2020-2050. Such an electricity grid is estimated to have non-linear increases in
incremental carbon abatement costs above 95% renewable generation4. Increased transmission connection between
Eastern and Western Interconnections in the US could facilitate up to 85% renewable generation by 2038 with a benefit-
cost ratio that increases with higher penetration of renewables38. Increased transmission and electricity storage capacity
help to smooth regional and temporal imbalances in electricity demand and supply, and are expected to feature heavily in
future electricity grids with increased end-use electrification and high penetration of variable renewable generation39. For
longer term (seasonal) temporal supply-demand imbalances, alternative solutions such as power-to-hydrogen may be
required5.

The second major pillar of decarbonizing the residential sector is extensive renovation of existing homes, involving major
improvements to building envelopes through increased insulation and reduced infiltration, and replacement of space and
water heating equipment with high efficiency heat pumps and electric water heaters. Section 2 of the Supplementary
Information details the modelled changes in equipment and envelope characteristics in the renovation scenarios. With
extensive renovation, envelope upgrades will improve 7 million housing units per year by 2040, while 6-8 million homes will
replace heating equipment annually from 2030, with almost all of the replacements being heat pumps. Heat pumps
typically cost more upfront than fossil-based heating systems40, so some subsidy will likely be required to encourage
adoption, although per-unit costs may decline with increases in heat pump sales41. In RR and AR scenarios, the greatest
renovation energy reductions come from envelope retrofits. In ER scenarios, the greatest reductions come from heating
equipment replacements (Supplementary Tables 7-8). The potential to reduce energy use through envelope and heating
equipment renovations is particularly large in older (built <1960) single-family homes in cold climates.

Residential renovations in the US are supported by a patchwork of utility, federal, and local initiatives, including utility
efficiency programs, low-income weatherization programs, and tax credits. Federal standards set minimum efficiency
levels for replacement equipment, but the levels have historically been set separately for electric and fossil equipment and
thus have not encouraged adoption of more efficient electric equipment over fossil alternatives42. Very few state or utility
efficiency programs reward energy or emissions savings from fuel switching43, while numerous states discourage or
prohibit fuel-switching44. The Better Energy, Emissions, and Equity initiative45 launched in May 2021 aims to accelerate the
adoption of heat pump water heaters and improve the performance of cold climate heat pumps. The proposed Build Back
Better Act also includes rebates for qualifying electrification projects, which could boost heat pump replacements. Heat
pump electrification of space heating can be more cost-effective when purchasing new or replacement air conditioners, so
that heating and cooling equipment costs are combined46.

Challenges surrounding building fewer very large homes or more multifamily homes are not technological, but relate to
policy and societal norms. Policy options here include introducing size limits (as implemented in the RFA scenario),
removing zoning and other local land-use restrictions on denser housing types47,48, and restructuring Federal tax policies
which increase the costs of multifamily construction relative to single-family49 and subsidize ownership of large single-
family homes for higher-income households50,51. Because older homes are smaller than new homes, RFA and high
multifamily stock evolution could stabilize floor area per capita at current levels22, but are not likely to induce substantial
reductions (Supp. Figure 17). Reducing floor area consumption to 40 m2/cap would thus require approaches beyond
modifying the characteristics of new housing, such as household sharing52, or dividing existing homes into multiple units
(also commonly prevented by local land-use restrictions47). As construction becomes increasingly important in the lowest
emission scenarios, these more extensive measures targeting reduced floor area could make zero emissions targets more
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attainable. Otherwise, the elimination of embodied emissions will rely on material efficiency20 and advances in low-carbon
material selection and production29,30.

Conclusion
In this analysis we assess decarbonization pathways for residential buildings in the US in 108 scenarios to 2060,
incorporating embodied and energy-related emissions. Our study is the most comprehensive assessment of
decarbonization pathways for housing in the US, delivering new insights into how much emissions can be reduced from
different combinations of specific mitigation actions. The pathways with largest emission reductions rely on rapid
decarbonization of electricity alongside extensive electrification-focused renovations of existing housing. As the US
housing stock grows slowly, most of the energy related emissions in 2060 will be from housing units that exist today.
Despite this, increasing the turnover of housing stock is not a promising strategy to reduce residential emissions, because
the benefits from more efficient new homes are partially offset by new homes being larger, and due to increased embodied
emissions from new construction. Retrofitting is therefore generally preferable to rebuilding as a means to reduce GHG
emissions in the US housing stock. Envelope and heating equipment retrofits are particularly beneficial in cold climates
with large shares of old single-family homes. In new homes, increasing the prevalence of electric heating facilitates greater
emission reductions, particularly when combined with rapid grid decarbonization. Reduced floor area and increased
multifamily in new housing generates immediate reductions in embodied emissions, and locks in lower future energy-
related emissions. These sufficiency-oriented strategies for new homes can integrate with denser urban development,
helping to reduce emissions from transport in addition to housing53. Approaching zero emissions by 2050 will require the
elimination of all residential fossil combustion, zero-carbon electricity, and more comprehensive reductions of embodied
emissions, through reduced floor area growth and innovations in material production.

Methods
Housing Stock and Characteristics Scenarios

Housing stock evolution and new housing characteristics scenarios are based on scenarios developed by Berrill and
Hertwich22, which is the source of estimated embodied emissions from material production and construction, and where a
full description of the housing stock model (HSM) can be found. County population projections54 drive the housing stock
model22, and are scaled to the mid-range scenario from the most recent U.S. Census Bureau population projections to
206055. The scenarios are extended for this work to include the new housing characteristics scenario of increased
electrification in new housing, and to describe scenarios renovation of existing housing. The HSM is run at the resolution
of US counties, and incorporates dynamics of region- and house-type-specific vacancy rates, which influences local
demand for new construction. Vacancy rates by Census Region and house type are assumed to gradually converge, which
translates into higher construction rates in counties with comparatively low vacancy rates. The Baseline stock scenario (1)
assumes a continuation of historic loss rates, which are defined for each house type, age-range, Census Division, and
vacancy status combination. High stock turnover (scenario 2) is simulated by increasing housing stock turnover rates by a
factor of 1.5. High multifamily stock growth (scenario 3) is a scenario representing both sufficiency (as it lowers growth in
floor-area per person) and more intensive urbanization, facilitated in part by lowering regulatory barriers to multifamily
construction in urban centers. This is simulated by increasing the county multifamily population share by 0.25 percentage
points annually in counties with population growth of at least 5% over twenty years, for two periods, 2020–2040, and
2040–2060. For instance, a county with a multifamily population share of 20% in 2020 and sufficiently high population
growth to 2060 will see their multifamily population share grow to 30% by 2060. This approach avoids increasing of
multifamily population share in counties with low or negative population growth, which we consider to be less likely.
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Emissions from material production and onsite energy and transport in new construction are calculated for 51 housing
archetypes22, capitalizing on high resolution representation of US housing characteristics by house type, size, foundation
type, heights, etc., in the ResStock housing characteristics data46. Embodied emissions from renovation activities are
included for envelope renovations only. For a given archetype, an envelope renovation is assumed to require 10% of the
cement, gypsum, glass and wood products, and 70% of the insulation materials required for an equivalent new
construction22. Embodied emissions from energy equipment such as furnaces and heat pumps are not considered. It is
worth emphasizing that increased emissions from higher stock turnover are estimated at the entire stock level. It is
probable that for certain homes with large renovation challenges which can be replaced with relatively low embodied
emissions, demolition and rebuilding may be a more practical solution to lower life-cycle emissions. The baseline housing
stock growth scenario already projects increased construction in many urban areas, due to an assumption of converging
vacancy rates by house type and Census Region22. Higher housing stock growth in areas with low vacancy rates, which
are largely urban areas with stringent land-use restrictions47, could help to alleviate issues of housing affordability and
supply56, which are outside of the scope of the current analysis.

The new housing characteristics scenarios are implemented by altering the ResStock housing characteristics data for new
housing cohorts before generating a representative sample of new housing built in eight five-year periods spanning 2021-
2060 (2021-2025, 2026-2030, etc.). Future housing characteristics are modified depending on anticipated adoption of
residential building energy codes by states57, updates to federal energy appliance standards58, and assumptions on
electrification and efficiency improvement of equipment and insulation. Building energy codes mostly apply to building
envelope characteristics, such as insulation and infiltration levels, energy ratings of windows, etc.59, while the federal
efficiency standards apply to energy consuming equipment and appliances such as space and water heaters, air-
conditioning systems, refrigerators, etc. We also incorporate assumptions regarding changes and trends in housing and
energy appliance characteristics that are not directly based on codes and standards, but more related to household
preferences and energy and appliance prices, such increased adoption of electric equipment used for space and water
heating, increased use of heat pumps, and continued growth of air-conditioning equipment ownership.

In the Base new housing characteristics scenario (A), housing built in the next four decades has the same regionally-
specific characteristics as housing built in the 2010s. The exception is fuel choice for space and water heating, cooking,
and clothes drying, where we assume electricity to be a more common choice in new housing, and the electricity share to
increase every decade. Increases in electrification of new housing is defined for four Census Regions, based on projected
price differences between electricity and natural gas60. Price differences are largest (and electrification rates assumed to
be lowest) in the Northeast, while price differences are smallest (and electrification rates assumed to be highest) in the
South. In between are the West and Midwest Regions, which are assumed to have similar moderate electrification rates,
with West slightly higher than Midwest in the 2020s. While the rates of change are defined by Census Regions, individual
characteristics are specified, and change, at higher spatial resolution. For instance, heating fuel characteristics are defined
for every PUMA61, so PUMAs with initially low shares of natural gas (for instance due to absence of gas distribution
networks) will continue to have low shares of natural gas in new construction, which decline over time in line with the
scenario.

In the Reduced Floor Area scenario (B), no new housing unit exceeds a size of 279 m2 (3,000 ft2), an arbitrary limit which is
chosen based on the floor area bins used in the ResStock housing characteristics database. This scenario represents a
sufficiency measure aimed at limiting growth of floor area per person, by replacing ‘very large’ new homes with moderately
large new homes (Supp. Fig. 17). Housing that previously fit into the two largest size categories of 279-371 m2 (3,000–
3,999 ft2) or 372+ m2 (4,000+ ft2) are reassigned to be in one of the 186-232 m2 (2,000–2,499 ft2) or 232-279 m2 (2,500–
2,499 ft2) ranges with 50:50 probability (Supp. Fig. 21). Multifamily and manufactured housing are essentially unaffected
by this change, as very few of those housing types exceed 279 m2, but for single-family housing, this scenario reduces
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mean floor area of new houses by 25%, from 258 m2/house to 193 m2/house22 (Supp. Fig. 18). One alternative approach
to modelling scenarios of reduced floor area in new housing would be to increase the share of homes built in the smallest
size ranges, below 93 m2 (1,000 ft2), representing growth in accessory dwelling units currently seen in urban areas of the
US with housing shortages62. In the Increased Electrification scenario (C), electrification of new housing is much more
rapid, with all Regions reaching complete electrification by 2030 except the Northeast, which is fully electric by 2040
(Supp. Fig. 16). The Increased Electrification and Reduced Floor Area scenario (D) simply combine the new housing
characteristics scenarios B and C. Further information on new housing characteristics scenarios is provided in section 3 of
the Supplementary Information.

Renovation and Electricity Supply Scenarios

Our analysis represents the most comprehensive assessment of the emission reductions from residential retrofits over the
coming decades, incorporating energy-relevant characteristics of existing housing units up to the county and Public Use
Microdata Area (PUMA) level and empirical data on recent renovation trends, and estimating energy reductions of
renovation actions with a detailed physical simulation model. We consider energy related renovations applying to
addition/replacement of space heating, space cooling, and water heating equipment, and envelope upgrades for
crawlspaces, unfinished basements, external walls, and unfinished attics, which increase the R-value of those building
assemblies and reduce the infiltration of the building envelope. These renovation categories capture the main types of
retrofits which offer substantial potential for energy reductions46. Two pieces of information are required for each
renovation, the rate of renovation in the housing stock (i.e. the probability of a housing unit making a specific type of
renovation in a given year), and the characteristics of a given system post-renovation, conditional on its pre-renovation
status. Our estimates of future renovation rates and fuel-switching trends are based on data from American Housing
Surveys (AHS) covering the period 1995-201963, which include information on whether homes replaced or added central
AC, space heating equipment, water heaters, or insulation. These questions were only asked of owner-occupied
households. Without specific data for tenant-occupied households, we assume that the renovation rates and
characteristics identified for owner-occupied homes apply to all homes.

We define three renovation scenarios, which we term ‘regular’, ‘advanced’, and ‘extensive’. The standard renovation
scenario is based on a continuation of recent trends, a moderately optimistic implementation of the depth of renovations,
and low-moderate rates of replacing fossil heating equipment with electric alternatives. In the advanced renovation
scenario, we multiply the probability of undergoing renovations by a factor of 1.5, and we give stronger preference to
higher efficiency replacements, including a higher shift towards electric space and water heating systems, and heat pumps
in particular. In the extensive renovation scenario, much higher rates of electrification of space and water heating takes
place, with 100% of replacements of fossil heating renovations with electric heat pumps from 2025 on. This does not
mean that all fossil heating equipment is replaced by heat pumps in 2025, but if a fossil-based heating system is replaced,
it is replaced by a heat pump. Tables and figures showing the assumptions and results of the renovation scenarios are
presented in the Supplementary Information Section 2. Renovations are only applied to housing built before 2020, the
energy efficiency of homes built between 2020-2060 is assumed to remain static (Supp. Table 6). Apart from the effect of
replacing fossil heating equipment with heat pumps, neglecting renovation of newly built homes is not expected to have
an influence on overall results, as renovation of new homes would only start to take effect from ~2040 onwards, and most
homes built from 2020 onwards already have relatively high efficiency.

We calculate energy related GHG emissions using standard emission factors for combustion of fossil fuels64, and annual
average CO2 intensity for three electricity supply scenarios; Mid-Case (MC) and Low Renewable Energy Cost (LREC) from

NREL’s standard scenarios24, and a scenario involving 100% Carbon Free Electricity (CFE) by 203525 (Supplementary
Figure 23). The MC is the baseline electricity supply scenario, while LREC is the NREL standard scenario with the fastest
decline of electricity GHG intensities. For CFE, in the absence of a detailed electricity supply scenario detailing electricity
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generation by source, we assume the same intensities as LREC until 2025, which then half between 2025 and 2030, before
reaching zero by 2035. Electricity GHG intensities are combined with electricity consumption calculations at the level of 18
regional transmission organizations (RTOs). Regarding coverage of different GHGs from different stages of supply chains,
energy-related emission intensities describe CO2 emissions from combustion only24, excluding upstream emissions such
as fugitive methane releases from fossil fuel extraction or embodied emissions from electricity generation and
transmission infrastructure. Residential fossil combustion includes non-CO2 combustion products, but CO2 emissions

account for over 99% of total combustion GHGs64. Embodied emissions from material production and construction22 are
based on material life cycle assessment databases, environmental product declarations and literature, and include non-
CO2 GHGs. To estimate the land requirements of wind and solar generation in the electricity supply scenarios24, we divide

the generating capacity of onshore wind, utility PV, and distributed PV65 by technology-average power density coefficients
for renewable electricity in the US37; 3.1 We/m2 for onshore wind, 5.8 We/m2 for utility PV, 6.7 We/m2 for distributed PV, and

9.7 We/m2 for concentrate solar power. Our estimates of land area for wind generation capacity do not include the
offshore area required for offshore wind.

Energy Simulation

Calculation of energy consumption in the US housing stock is done using ResStock, a residential energy simulation tool
with high resolution characterization of the US housing stock. Built on the OpenStudio/EnergyPlus building energy
simulation engine, ResStock draws on an extremely rich description of US residential building characteristics at various
geographical resolutions ranging from national to county and PUMA depending on the characteristic in question46,61.
Housing stocks in Hawaii and Alaska are not included in ResStock (or the analysis presented here) due to limited
availability of housing characteristics data in these states. Without a reliable approach to estimate, or reduce energy
consumption in vacant housing, we do not incorporate current or future energy consumption in vacant housing units in
this analysis.

Energy simulations representing the entire contiguous US housing stock are made for the year 2020, and for every 5 years
between 2025 and 2060, for each housing stock, new housing characteristics, and renovation scenario combination.
Energy-related GHG emissions are calculated based on energy consumption by energy carrier in each year, and are
interpolated for the intervening years in which energy demand is not simulated (e.g. 2021-2024) using the spline() function
in R. In order to capture the heterogenous characteristics of the US housing stock in a representative manner46, we
simulate energy consumption in a large number of houses for each scenario and simulation year, so that one simulation
represents somewhere in the range of 590-800 homes. 180,000 simulations are used to represent the 2020 occupied
housing stock of 122,516,868 homes. In all, 3.412 million building simulations are used to represent the complete set of
scenarios. For each simulation, the weighting factor (how many homes are represented) is modified over the projection
period to reflect the loss of housing of a given type, cohort, and county combination from the occupied housing stock,
based on the housing stock model outputs22.

Model integration

Supplementary Figure 1 summarizes the data inputs, assumptions, and various components of the model, which produces
outputs of annual energy consumption by end-use and fuel, GHG emissions associated with energy use and material flows
and GHG from new construction, for housing stocks by type and cohort in each county. As ResStock does not contain data
for Alaska and Hawaii, our scenario results apply to the contiguous United States, where 99% of national energy-related
GHG emissions occur66. As a basis for the Paris 2050 target and 50% 2030 target in Figure 1, we calculate total residential
emissions in 2005 by combining residential energy emissions67 with emissions from investment in new housing in 2005,
using data from Berrill et al.11, scaled by 0.99 to exclude Alaska and Hawaii. As a basis for the 1.5°C target in 2030, we use
total 2020 residential emissions as calculated by our model.



Page 12/20

Limitations

Here we draw attention to several limitations of our modelling approach. Similar to any prospective scenario analysis,
there are uncertainties inherent to the model input parameters, which usually grow larger as the time period gets further
into the future. In place of sensitivity analyses to assess the uncertainty around each input parameter, for this study we
generated a large scenario space by selecting ranges of input values for parameters considered to be influential on future
emission trajectories, such as the rate and depth of renovations, decarbonization of electricity supply, etc. Combining the
selected values for each varying input parameter created 108 unique scenarios (Table 1). The range of emissions
trajectories demonstrated by these scenarios are not however intended to represent all possible future emission pathways.
Parameter values excluded from our scenarios space which would likely result in notable differences to the range of
emission pathways estimated include higher or lower population and housing stock growth trajectories, electricity supply
scenarios resulting in slower decarbonization of electricity, and slower renovation rates. A rather pessimistic scenario,
assuming fixed electricity GHG intensity at 2020 levels and no renovation of existing housing, is however included in our
illustration of annual emissions 2020-2060 in Figure 4. This could reasonably be considered as a worst-case outcome for
future emissions, and shows almost no change in the level of annual emissions over the next forty years.

Our calculations of embodied emissions from construction are based on a previous study22, and incorporate moderately
optimistic assumptions on reduction in GHG-intensity of material production, which reduces emissions per m2 floorspace
by on average 23% from 2020-2060. More ambitious reductions in the GHG intensity of construction could result from
greater technological advances in the production of high-emitting materials such as cement, steel, and insulation products,
increased use of lower-carbon materials in construction29, and low-carbon electrification of construction site energy use
and transport. A faster decarbonization of construction activity could alter our current conclusions on increased emissions
from faster housing stock turnover. However, the finding of much greater emission reduction potential from renovation of
existing housing, compared to faster rebuilding, would not be changed even with much faster decarbonization of
construction.

To keep the number of required simulations to a reasonable level, we only assess renovations to housing built until 2020,
none of the new housing built 2021-2060 are assumed to undergo renovation. This results in overestimations of energy
emissions from new housing, particularly in the later decades of the analysis. However, as average energy intensity is
already lower in housing built after 2020 than existing housing, pre- and post-renovation (Supplementary Tables 5-6), and
as even in 2060 most energy-related emissions come from existing housing (Figure 3), this simplifying assumption is
considered to have negligible influence on our results and overall findings. Scenarios with increased electrification of new
housing can serve as a proxy for futures in which the housing stock built after 2020 undergoes greater electrification-
focused renovation.

Finally, in the estimation of GHG emissions from electricity generation we use projections of annual average emissions for
18 regional transmission organizations (RTOs). Although Standard Scenario GHG intensities are available at a spatial
higher resolution of 134 local balancing areas39, the larger RTOs were preferred to represent the average energy supply mix
of electricity consumed by households. Further, annual average emission intensities were used instead of short-run or long-
run marginal emission rates, as the annual average were readily available from the Cambium scenario data downloader65.
Using marginal emission rates may be more suitable when considered the time of day of residential electricity demand vis-
à-vis electricity demand from other sectors, or when considering the longer term growth in electricity demand from
residential buildings compared to other sectors. Such temporal considerations and intersectoral interactions were outside
of the scope of the present analysis, and represent a promising avenue for future research considering increased
electrification in all sectors39.
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Figure 1

Annual emission trajectories for all 108 scenarios of strategy combinations, with respect to emission reduction targets in
2030 and 2050. Trajectories are grouped by combinations of electricity supply and renovation scenarios; MC = Mid-Case
Electricity, LREC = Low-Cost Renewable Electricity; CFE = Carbon Free Electricity by 2035. RR = Regular Renovation, AR =
Advanced Renovation, ER = Extensive Renovation. Variations within electricity and renovation scenario combinations
result from differences in new housing characteristics and stock evolution scenarios
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Figure 2

Cumulative 2020–2060 emissions in each scenario, grouped by electricity supply scenarios. RE = Renewable Electricity;
Red. FA = reduced floor area; Inc. Elec. = Increased Electrification; TO = turnover; MF = multifamily; RR = Regular
Renovation; AR = Advanced Renovation; ER = Extensive Renovation
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Figure 3

Annual (Ann.) and Cumulative (Cum.) GHG emissions by source for four selected scenarios. Energy emissions are
disaggregated by energy carrier in housing built before 2020 (<2020) and after 2020 (>2020). Embodied (Emb.) emissions
are split into emissions from new construction (Constr.) and renovation (Renov.). ‘Oil’ includes fuel oil and propane/LPG.
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Figure 4

Emission reduction potential of individual strategies sequenced by their total reduction potential, relative to emissions in
the Baseline stock, Base Housing Characteristics, Regular Renovation, and Mid-Case electricity GHG scenario. Strategies
are grouped by those relating to electricity grid (blue), renovation (orange), and new housing characteristics (NHC) or
housing stock evolution (HSE) (pink/purple). NHC and HSE strategies apply only to housing built after 2020. The residual
emissions correspond to the scenario with lowest emissions – with all 5 indicated strategies employed. NR = No
Renovation
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