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Abstract
Background: Exosomes are nanosized vesicles, play a vital role in breast cancer (BC) occurrence,
development, invasion, metastasis, and drug resistance. Nevertheless, studies about exosome-related
genes in breast cancer are limited. Besides, the interaction between the exosomes and tumor immune
microenvironment (TIME) in BC are still unclear. Hence, we procced to study the potential prognostic
value of exosome-related genes and their relationship to immune microenvironment in BC.

Methods: 121 exosome-related genes were provided by ExoBCD database and 7 final genes were selected
from the intersection of 33 differential expression genes (DEGs) and 19 prognostic genes in BC. Based on
the expression levels of the 7 genes, downloaded from The Cancer Genome Atlas (TCGA) database, as
well as the regression coefficients, the exosome-related signature was constructed. As a result, the
patients in TCGA and GEO database were separated into low- and high- risk groups, respectively.
Subsequently, R clusterProfiler package was applied to identify the distinct enrichment pathways between
high-risk group and low-risk group. The ESTIMATE method was used to calculate ESTIMATE Score and
CIBERSORT was applied to evaluate the immune cell infiltration. Eventually, the different expression
levels of immune checkpoint related genes were analyzed between the two risk groups.

Results: Results of BC prognosis vary from different risk groups. The low-risk groups were identified with
higher survival rate both in TCGA and GEO cohort. The DEGs between high- and low- risk groups were
found to enrich in immunity, biological processes, and inflammation pathways. The BC patients with
higher ESTIMATE scores were revealed to have better overall survival (OS). Subsequently, CD8+ T cells,
naive B cells, CD4+ resting memory T cells, monocytes, and neutrophils were upregulated, while M0
macrophages and M2 macrophages were downregulated in the low-risk group. At last, 4 genes reported
as the targets of immune checkpoint inhibitors were further analyzed. The low-risk groups in TCGA and
GEO cohorts were indicated with higher expression levels of LAG-3, CD274, TIGIT and CTLA-4.

Conclusion: According to this study, exosomes are closely associated with the prognosis and immune cell
infiltration of BC patients. These findings may make contributions to improve immunotherapy and bring a
new sight for BC treatment strategies.

1 Introduction
Breast cancer is the most frequently diagnosed malignancy among women all over the word. Its
incidence is increasing every year and its mortality rate is the second highest among female
malignancies[1]. Thanks to the improvements in early detection and treatment, approximately 70-80% of
BC patients with non-metastatic disease in early stage can be cured[2]. Despite of the multidisciplinary
approaches, including surgery, chemotherapy, radiotherapy, and molecular targeted therapy, advanced BC
patients with distant metastases are still considered remediless[3]. In addition, resistance to endocrine
therapy or chemotherapy in BC patients also poses certain challenges to reduce the mortality of them[4].
Several problems remain elusive and sufficient evidence is lacking to fully clarify the mechanisms of
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breast carcinogenesis. Therefore, it is urgent for us to have a better grasp of the potential mechanisms
involved in the progression of BC and the effective treatments against BC.

Recently, immune checkpoint inhibitors and biomarker-driven therapies have been validated as
prospective candidates for a subset of BC treatments[5]. Substantial inflammatory cells were reported to
infiltrate in BC, which were observed not only around the tumor but also abundantly in the tumor
stroma[6]. Some previous studies indicated that the interrelationship between CD8+ T cells and immune
escape was close. Besides, the infiltration of macrophages, antigen-presenting cells (APCs), CD4+ T cells,
dendritic cells (DCs), and other tumor-infiltrating immune cells was significantly correlated with the BC
prognosis[7–9]. Immunotherapy has recently made significant advances in the field of antitumor therapy.
Based on immune modulation between the cancer cells and the tumor microenvironment (TME),
immunotherapy offered clinical benefits over conventional treatments via sustained anti-tumor immune
responses stimulated[10]. The two non-tumor components in the TME are mainly stromal and immune
cells. Hence, the aberrant gene expression generated by epigenetic alterations in TME cells were proposed
to predict the clinical outcomes of tumors[11].

In 1985, exosomes were first reported in incubation of sheep reticulocytes, produced from intracellular
vesicles membrane by means of budding[12]. After that, exosomes were identified released from several
cell types, including but not limited to endothelial cells, immune cells, and tumor cells[13]. As a type of
homogenous membrane vesicles, exosomes can be collected in body fluids with an average size of 40-
150nm, for instance, serum, saliva, urine, and cerebrospinal fluid[14]. Later studies further demonstrated
that exosomes played a vital role in intercellular communication and molecular transfer, containing cell-
type specific exosomal proteins, lipids, and nucleic acids, as well[15]. In the interaction of cancer cells and
their surrounding microenvironment, exosomes were involved in shaping the tumor immune responses by
targeting MDSC, CAF, TAM, immune suppressive Treg cells and so on[16–18]. Recently, exosomes have
been reported involved in various cancer progression[19–21]. In breast cancer, exosomes were shown to
deliver mRNAs that could lead to tumor information transformation in non-tumorigenic cells[22]. In
melanoma, exosomes were found to have a relationship with pre-metastatic niche formation, which could
transfer MET to bone marrow progenitor cells[23]. Interestingly, several studies shown that a portion of
the human epidermal growth factor receptor (HER) family was associated with exosomes in BC, gastric
cancer and pancreatic cancer[19–21]. Hence, understanding the certain functions of exosomes in the
TME can further provide novel sight in exosome-based biomarkers and immunotherapy for tumor
diagnosis and treatment.

The aim of this study was to investigate the relationship between exosome-related genes and the TIME in
breast cancer. The gene profile data of BC patients were downloaded from the TCGA
(http://cancergenome.nih.gov/) and GEO database (https://www.ncbi.nlm.nih.gov/geo/). After that,
exosome-associated genetic data were extracted from ExoBCD database[24] to analyze to establish an
exosome risk model. Subsequently, the prognosis of BC patients was predicted according to the
exosome-related risk model. Furthermore, as an entry point, the exosome-related risk score was adopted
to identity the distinction in immune cell infiltration rate. Accordingly, we searched further for correlations
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between exosome-related risk scores and TIME, and investigated 4 genes previously reported to be
associated with immune checkpoint blockade (ICB) as well[25]. This important therapy will be used to
develop various interesting combination treatment strategies in the future.

2 Materials And Methods

2.1 Workflow
A combination of several methods was applied to construct a 7-exosome-related-gene signature and
explore the potential mechanisms by which these genes affect the prognosis of breast cancer (Figure 1).

2.2 Data acquisition
RNA-sequencing expression data and clinical information of breast cancer patients were extracted from
TCGA database and the corresponding information from GSE20685 was collected from GEO database as
the training set and the validation set, respectively. After batch normalization, part of patients was
excluded because of incomplete clinical data and an OS of less than 90 days. With complete information
828 BC samples from TCGA database were included as training set and 327 BC samples from GEO
database were included as validation set for subsequent analysis. In addition, 121 exosome-related
genes collected from ExoBCD database were provided in Supplementary Table1.

2.3 Construction of a risk model
The exosome-related independent prognostic genes were screened via Cox regression univariate analysis
of OS and presented by Forest plots. The DEGs between BC samples and normal breast tissue samples in
training set were analyzed by edger package. The genes that met cutoff criteria of |log2fold change
(FC)|> 1 and p -value < 0.05 were considered as DEGs, visualized by volcano plot. Afterward, the
overlapping exosome-related genes of DEGs and prognostic genes were screened out via drawing Venn
diagrams for subsequent analysis. In order to reduce redundant genes and obviate model overfitting, the
least absolute shrinkage and selection operator (LASSO) Cox regression model was established to
determine all independent prognostic genes[26]. The exosome-related genes expression levels were used

to construct the risk score formula as: Risk score = ∑ n
i=1 Expi*Coei . (N = 7, Expi represented the

expression level of each selected gene, and Coei denoted the corresponding Cox regression coefficient.)
According to the median risk score, patients with breast cancer were separated into low- and high- risk
groups. Survival analyses were carried out in different risk groups by means of the “survminer” R
package. Time-dependent ROC curve analyses was further performed to assess the predictor efficacy of
this gene signature. As consequence, univariate and multivariate COX regression analyses were
conducted to validate that the exosome-related risk score was an independent factor of prognosis for
patients suffering from breast carcinoma. The hazard ratio (HR) was calculated to identify the 95%
confidence interval. Hierarchical clustering was adopted to analyze the relationship between expression

( )
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levels of 7 selected genes and molecular characteristics as well as clinical features, presented by heat
map.

2.4 Functional enrichment analysis
Gene Ontology (GO) enrichment analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analyses were conducted for DEGs between high-risk groups and low-risk groups with the R
clusterProfiler package. Biological process (BP), cellular component (CC), and molecular function (MF)
are involved in GO terms. P values < 0.05 were considered significant in functional enrichment analysis.

2.5 Assessment of the tumor immune microenvironment
Estimation of Stromal and Immune cells in Malignant Tumor tissues using expression (ESTIMATE)
algorithm consist of Immune Score, Stromal Score and ESTIMATE Score[27]. The proportion of the
immune-stromal component of TME was calculated by “estimate” R package. The respective scores
implied the ratio of the corresponding compositions in the TME.

2.6 Evaluation of immune cell type components
As a commonly used method for estimating and analyzing immune cells infiltration, CIBERSORT
(http://cibersort.stanford.edu/) was used to evaluate the proportion of distinct cell subtypes from mixed
cell specimens by RNA-seq expression profile. 22 marked immune cell subtypes are consist of 7 types of
T cells, naive and memory B cells, plasma cells and myeloid subsets and LM22 is usually used to present
the annotated gene expression signatures. Therefore, CIBERSORT was employed to calculate the ratios of
22 marked immune cell subtypes among different risk groups[28]. The assumption of immune cell types
was accurate and statistics at P<0.05 were used for further analysis. Eventually, the ratios of tumor
immune infiltrating cell (TIIC) types for each tumor specimen were assessed, as well. The Wilcoxon test
was carried out to characterize TIIC between tissues in different exosome-related risk groups.

2.7 Correlations between immune checkpoint genes and
exosome-related risk score
The genes reported to play significant roles in immune responses were collected. Afterwards, the
GGPUBR, ggplot2, and ggExtra packages of R software were used to determine the associations of gene
expression levels with different exosome-related risk scores.

2.8 Statistical analysis
All statistics analysis were performed via R software (Version 4.0.5) (https://www.r-project. org/).
Wilcoxon test was employed to examine the differences between variables of two groups. The survival
data was assessed by Kaplan-Meier curve. The univariate and multivariate Cox regression analysis were
employed to identify the independent prognostic factors. P<0.05 was regarded as of a statistical
significance.

3 Results
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3.1 Identification of 7 exosome associated DEGs in the
TCGA cohort with prognostic relevance
The exosome-related gene set was downloaded from ExoBCD database, containing 121 genes participate
in exosome-related regulation. Among them, 117 genes were ascertained in TCGA cohort. Subsequently,
19 exosome-related genes were identified to associate with BC patients’ OS via univariate Cox regression
analysis (P<0.05), presented by forest plot in Figure 2A. Afterwards, 112 normal breast tissues and 828
breast carcinoma tissues were enrolled in this study, resulting that 33 overlapping DEGs were identified by
edger package (Figure 2B). Consequently, 7 overlapping exosome-related genes were selected from DEGs
and independent prognostic genes via Venn diagrams (Figure 2C).

3.2 Construction and validation of a gene-based prognostic
model
To avoid the elimination of significant prognostic genes, 7 genes stated above were subjected to LASSO
regression analysis. LASSO coefficient overview of 7 selected genes were shown in Figure 3A and 10-fold
cross-validation outcome was generated to confirm the preferred value of the penalty parameter λ (λ = 
0.0009570788) (Figure 3B). The 7 vital genes were EPCAM, PIGR, KRT14, DOK7, CD24, CYP19A1, and
CXCL13. Furthermore, a prognostic risk model for evaluating BC patients’ OS was established based on
the expression levels of the 7 vital genes stated above and their regression coefficients as described
below: Risk score = (0.153 × expression level of EPCAM) + (-0.042× expression level of PIGR) + (-0.040 ×
expression level of KRT14) + (-0.069× expression level of DOK7) + (0.154 × expression level of CD24) +
(0.105× expression level of CYP19A1) + (-0.106 × expression level of CXCL13). Afterwards, the patients
were separated into high- and low- risk groups based on the median risk score (Figure 4C).

In Figure 4A, the Kaplan-Meier curves suggested that patients with high-risk score are indicated worse
survival rates in the training set (P<0.01). After that, the time-dependent ROC analysis was conducted at
2, 3 and 5 years to assess the predictive efficacy of this risk model. As consequence, the prognostic
features identified were verified robust efficient in predicting OS in BC patients via the area under the
curve (AUC) (AUC=0.705, 0.742 and 0.669; at 2,3 and 5 years, respectively, Figure 4B). Similarly, 327
patients of GSE20685 were enrolled as the validation set and the risk score for each sample was work out
based on the exosome-related signature mentioned. Figure 4E shows that patients with high-risk score
are indicated worse survival rates in validation set according to the Kaplan-Meier curves (P<0.01).
Remarkably, the risk model had been shown to have promising long-term prognostic predictive efficacy,
as reflected in the time-dependent ROC analysis (AUC=0.727, 0.691 and 0.695; at 2,3 and 5 years,
respectively, Figure 4F). Hence, the exosome-related genes signature to evaluate BC patient’s prognosis
was successfully constructed. Subsequently, based on the median risk score, the BC patients in training
and validation sets were separated as high-risk groups and low-risk groups (Figure 4C and 4G). As shown
in Figure 4D and 4H, patients with higher risk scores were manifested poorer prognosis whereas patients
with lower risk scores were manifested better prognosis.
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To further assess the efficacy of the 7-gene signature predicting the prognosis of BC patients as an
independent factor, the 7-gene signature along with some covariates, for instance, tumor stage, ER, PR,
HER2 and age were subjected to the univariate and multivariate Cox regression analysis. Consequently,
the results revealed that the exosome-related risk score was an independent prognostic factor for BC
patients in TCGA cohorts (Figure 5A and B), also in GEO cohorts (Figure 5D and E). Heat maps were
applied to show clinical characteristics, molecular features, and distinct expression levels of 7 screened
genes through hierarchical clustering in training set (Figure 5C) and validation set (Figure 5F).

3.3 GO and KEGG functional enrichment analysis
GO and KEGG analysis were performed in the DEGs between high and low risk groups to identify the
signaling pathways and biological functions associated with exosome-related risk score. As a result, the
first 30 GO terms including CC, BP and MF were displayed in Figure 6. Additionally, 10 and 30 enriched
KEGG pathways in training and validation set were manifested in Figure 7, respectively. Most of these GO
terms and the KEGG pathways were associated with immune activation as well as biological functions.

3.4 Correlation of ESTIMATE score and 7-gene signature
The ESTIMATE algorithm was applied to derive an ESTIMATE fraction for each sample, indicating the
overall extent of immune infiltration and the TME landscape. As presented in Figure 8, in both cohorts,
stromal scores, immune scores, and ESTIMATE scores were proved higher in low-risk groups rather than
high-risk groups (P<0.05). Consequently, combined with the result showed in Figure 4A and E, the high
stromal, immune and ESTIMATE scores manifested a better OS, on the other hand, the low scores were
associated with the poor OS.

3.5 Distribution of infiltrative immune cells in breast cancer
The functional enrichment analysis revealed that the DEGs between high-risk and low-risk groups were
generally enriched in the pathways related to inflammation, immune responses, etc. Therefore, the
CIBERSORT algorithm was adopted to obtain the TIIC ratios and to construct TIIC profiles. Figure 9A and
B show the proportions of infiltrating immune cells in training set and validation set, respectively. As
presented in Figure 10A and B, naive B cells (P<0.001), CD8+ T cells (P<0.001), CD4+ resting memory T
cells (P<0.001), and Monocytes(P<0.001) were upregulated, whereas M0 macrophages (P<0.001) were
downregulated in low-risk group of training cohort. As for validation cohort, Neutrophils (P<0.001) were
upregulated, while M2 macrophages (P<0.001) were downregulated in low-risk group. Consequently, the
study targeting exosome-related genes could be a groundbreaking finding for the immunotherapy of
tumor sufferers in the future.

3.6 The relationship between exosome-related risk model
and immune checkpoint genes
The expression levels of immune checkpoint genes associated with the therapeutic response to immune
checkpoint inhibitors were investigated. PD-L1(CD274), LAG3, CTLA4 and TIGIT were previously reported
to be the targets of immune checkpoint inhibitors. As shown in Figure 11, the expression levels of 4
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mentioned genes were higher in low-risk group in TCGA cohorts. Likewise, in GEO cohorts, the expressing
levels of them were upregulated in low-risk group statistically with P<0.01, except CTLA4 (P>0.05).

4 Discussion
Breast cancer is the highest incidence and deadliest type of carcinoma for women worldwide, presenting
highly heterogeneous biological and clinical characteristics[29]. As a kind of nanosized vesicles,
exosomes play vital roles in tumor development and progression. Importantly, they can regulate cell-to-
cell communication in the tumor microenvironment via proteins, lipids and RNA cargo transferred[30].
Most recently, ICB therapy has made promising progress in cancer immunotherapy. In 2017, Chen and
colleagues raised the idea that tumors with lower PD-L1 expression level and fewer infiltrating cytotoxic T
cells were considered as immune “cold” tumors, where ICB therapy achieved only limited results. Fatally,
“cold” tumors account for the majority[31]. Increasing evidence suggested that exosomes had the
potentiality to work as biomarkers for a variety of malignant tumors including breast carcinoma. Previous
study in pancreatic cancer identified that exosomes released from tumor contained a membrane bound
protein called GPC1, considered as a sensitive and unique biomarker in early-stage disease[32].
Interestingly, a study in breast cancer indicated that the expression level of serum exosomal-annexin A2
(exo-AnxA2) could be detected higher in women with carcinoma compared with non-cancer, particularly
for triple-negative breast cancer (TNBC) rather than luminal or HER2-positive breast cancer[33]. These
results suggested that exosomes played an important role in BC progression and the possibility to
construct a prognostic model by these exosome-related genes. In the current study, we adopted
bioinformatics analysis to examine changes in the expression profiles of 121 exosome-related genes in
breast cancer and the relationship with OS. Among them, 7 exosome-related genes were identified to
establish a novel prognostic signature. Subsequently, the BC patients in TCGA and GEO cohorts were
divided into high and low risk groups respectively according to the prognostic signature. Moreover, the
DEGs between the high-risk group and the low-risk group were identified and the functional analysis were
further performed, proposing that immune-related biological processes were highly enriched. Eventually,
the infiltration ratios of distinct immune cells in breast cancer samples were analyzed. The results
revealed that the groups at high risk of exosomes were immunologically 'cold', while the groups at low
risk were immunologically 'hot'.

The 7 prognostic genes associated with exosomes consist of EpCAM, PIGR, KRT14, DOK7, CD24,
CYP19A1, and CXCL13. As one of the first tumor-related antigens, epithelial cell adhesion/activating
molecule (EpCAM/CD326) has been reported highly overexpressed in primary and metastatic breast
cancer, leading to poor prognosis[34]. Furthermore, study in hepatocellular carcinoma (HCC) suggested
that tumor growth and invasion were associated with EpCAM-positive cells, which was one of the
components of targeting Wnt/beta-catenin signaling pathway[35]. Cluster of differentiation 24 (CD24) is
a glycosyl-phosphatidyl-inositol (GPI)-anchored glycoprotein, that has been demonstrated as a vital role
in multiple areas. In cancer, CD24 is highly expressed in various tumor cells, including breast cancer cells,
and associated with the growth, invasion, and migration of tumor cells[36–40]. In immunology, as a
primarily costimulatory molecule, CD24 can achieve effective immunosuppression and tumor immune
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escape via activating a series of intracellular signal pathways and regulating multiple immune cells, for
instance, T cells, B cells, macrophages, and NK cells[41]. Notably, Barkal and colleagues revealed that the
macrophages enhanced their capability to engulf tumors and slowed down the development of
macrophage-dependent tumors in vivo through gene knockout to blocking CD24 and Siglec-10[42]. This
is consistent with our conclusion, the infiltration level of M0 macrophages is higher in high-risk group.
Polymeric immunoglobulin receptor (PIGR) is a critical element of the mucosal immune system and
intermediates epithelial cell transfection of immunoglobulins. And the expression level of PIGR was
demonstrated decreased in nasopharyngeal carcinoma cells by Qi and colleagues, related to poor
prognosis[43, 44]. Several studies suggested DOK7 as a potential tumor-suppressor gene, because of the
significantly low expression levels in BC tissues compared with normal tissues. The lower expression
level of DOK7 was associated with the greater aggressive clinical behaviors and poorer prognosis in
BC[45]. The mechanistic studies by Yue et al. illustrated that DOK7 inhibited proliferation and invasion of
BC cells through PI3K/PTEN/AKT pathway[46]. CXCL13 may be another potential protective factor for BC
patients’ prognosis. Although, CXCL13 has been reported in many types of carcinomas to drive signaling
pathways associated with proliferation and invasive, including PI3K/AKT pathway[47] and Wnt/beta-
catenin signaling pathway[48], in patients with HER2-positive BC or TNBC, increased CXCL13
corresponded with better survival[49]. In addition, CXCL13 has been shown to increase B cell and T cell
infiltration in multiple tumor types and associate with greater prognosis and survival[50, 51].

In our study, the results of functional enrichment analysis indicated that many GO terms and KEGG
pathways were associated with biological processes and immune cells activation. In 1996,
immunologists were interested in the relationship between exosomes and cells from immune system.
They found that Epstein-Barr virus-transformed B lymphocytes could secrete exosomes by fusion of
MVBs with the plasma membrane[52]. Furthermore, some discoveries suggested that exosomes played
key roles in adaptive immune responses. Exosomes released from these kinds of cells harbor MHC class
II dimers bound to antigenic peptides and the exosomes were indicated to present the MHC–peptide
complexes to specific T cells. In addition, dendritic cells (DCs) in mice were reported to secrete exosomes
with functional MHC class I–peptide complexes, which could improve the triggering of CD8+ T-
lymphocyte-dependent immune responses[53, 54]. Recently, exosomes have been shown to be involved in
promoting immune responses. Studies in human pancreatic and colorectal tumours conducted by
Gastpar R and his colleagues suggested that NK cells cultured with tumour-derived Hsp70-positive
exosomes were induced to liberate granzyme B that activated apoptosis[55]. As the mechanisms of
exosomes in antigen-specific immune responses were better understood, several studies showed that
tumor-released exosomes also carried a variety of immunosuppressive molecules, such as CD8 and CD4
T lymphocytes[56, 57], NK cells[58], regulatory T lymphocytes[59] and myeloid cells[60]. Hence, we
reasonably assumed that exosomes were closely associated with anti-tumor immunity in BC. Furtherly,
The CIBERSORT algorithm was applied to derive the ratios of various kinds of tumor-infiltrating immune
cells to reveal the relationship between exosomes and immune cell infiltration in BC. The result indicated
that the infiltrated tumor-killing immune cells were significantly reduced in high-risk group instead of low-
risk group, such as CD8+ T cells and activated NK cells. However, the immune cells that promoted tumor
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progression and migration, M2 macrophages and M0 macrophages, were reduced in low-risk group
instead of high-risk group. As a marker of tumor progression and drug resistance, TIME was
characterized by tumor inflammation promoting and tumor cells immune surveillance[61]. Recent studies
in tumors observed that some immune activities were associated with exosomes. Studies in exosomes
secreted from prostate cancer cells indicated that exosomes contained ligands for natural killer group 2D
(NKG2D) could downregulate the expression of NKG2D on NK cells and impair the cytotoxicity of NK
cells[58, 62]. Besides, those exosomes secreted by HCC cells with chemotherapy treatment efficiently
stimulated NK cells to product the granzyme B, hence promoted the tumoricidal function[63]. In tumor
microenvironment, those tumor cell-derived exosomes could influence the DCs status. The results of
experiments in vitro indicated that exosomes produced by TS/A BC cells could block the differentiation
progression of DC from myeloid cells[64]. In terms of macrophages, type 1 macrophages (M1) were
involved in anti-tumor immune responses by acting as antigen-presenting cells whereas type 2
macrophages (M2) acted in the pro-tumor immunity as the common phenotype of tumor-related
macrophages[15]. Several studies revealed that the M2 status was correlated with the progression of
tumors and poor prognostic outcomes of patients. Yang M et al. reported that exosomes derived from M2
could promote BC cell growth and invasion by transferring miR-223[65]. Additionally, neutrophils status
was reported to be regulated and differentiated via the stimulation from TME, as a result, to further
moderate tumor immune responses and regulate tumor progression. Bobrie A and colleagues
investigated on the value to Rab27a in exosome secreted by BC cells, consequently, exosomes were
identified to induce systemic mobilization to neutrophils to facilitate tumor progression[66]. Not only
different kinds of immune cells, but also other cellular components of TME, including MSCs, endothelial
cells and fibroblasts, played significant roles in tumor progression[15]. Accordingly, a conclusion was
raised that the exosomes were markedly associated with the ratio of tumor-related immune cells
infiltrating in BC, and the low-risk cohort tended to possess higher ratio of cytotoxic lymphocyte
infiltration.

Recent research findings suggested that exosomes were able to control the core immunologic processes
and regulate inflammatory response. Immune cell exosomes were identified to involve in stem cell
mobilization, immunological regulation, and tissue remodeling[67]. Immunotherapy is increasingly
becoming the key to BC treatment. Yang Y et al. found that PD-L1 could be carried by BC cell-derived
exosomes and transferred to tumor cells expressed low levels of PD-L1 to blocked T cell activity[68].
Notably, exosome-related immunotherapeutic exoPDL1 was able to be applied to develop novel drugs
with minimum toxicity and considerable clinical effectiveness[67]. Furthermore, immune checkpoints, a
key of facilitating tumor immunosuppression, were analyzed in different risk groups to detect the
correlation between exosomes and immune checkpoint inhibitors. Stimulation of immune checkpoint
targets can block tumor attack. In our study, high-risk group predicated on 7-exosome-related gene risk
model was found to associate with lower expression levels of immune checkpoint genes and poor clinical
outcomes. As a result, mammary tumor in high-risk group were considered immunologically “cold” and
difficult to gain benefits from ICBs. However, the tumors in low-risk group were considered
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immunologically “hot” and more possible to get benefits from ICBs[31]. Accordingly, the exosome-related
risk model had highly potential to predict the efficacy of ICBs in treatment for patients suffered from BC.

It was the first study to construct an exosome-related risk model for breast cancer based on 7 exosome-
related genes by use of public databases with retrospective data. This risk model can serve as an
independent prognostic factor in BC patients. In addition, some limitations in current research should be
noticed. Some of the clinical data in the TCGA or GEO cohorts were incomplete and the absent data may
not be random, leading to the bias in the analysis of clinical relevance. Therefore, it requires more
extensive multi-center clinical validation to further back up our ideas. Besides, this prognostic model was
built only from exosome-related genes and various other hotspot biomarkers were not enrolled.
Consequently, further experimental validation of the relationship between immune cells and exosomes is
needed to provide new perspectives in immunotherapy and tumor treatment.

5 Conclusion
In summary, by combining bioinformatics tools and related algorithms, we identified a novel exosome-
related risk model associated with immune infiltration. It can be served as a potential independent
prognostic factor and bring new insights into anti-tumor immunity for breast cancer.

Declarations

Ethics approval and consent to participate
No applicable.

Consent for publication
No applicable.

Availability of data and materials
The datasets presented in this study can be found in online repositories. The names of the
repository/repositories and accession number(s) can be found in the article/Supplementary materials.

Competing interests
The authors declare that they have no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.



Page 12/28

Funding
No funding.

Authors' contributions
Conception and design: Qiaonan Guo, Pengjun Qiu, Jianqing Lin. Development of methodology: Qiaonan
Guo, Pengjun Qiu. Acquisition of data (databases acquiring and data processing, etc.): Qiaonan Guo,
Pengjun Qiu. Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational
analysis): Qiaonan Guo, Pengjun Qiu, Jianpeng Chen. Writing, review, and/or revision of the manuscript:
Qiaonan Guo, Kelun Pan, Pengjun Qiu, Jianqing Lin. Administrative, technical, or material support (i.e.,
reporting or organizing data, constructing databases): Qiaonan Guo, Pengjun Qiu. Study supervision:
Jianqing Lin. All authors reviewed the manuscript. The authors disclose no potential conflicts of interest.

Acknowledgements
The authors would like to thank all researchers contributed to the TCGA and GEO data sets included.

References
1. Siegel R, Miller K, Jemal A: Cancer statistics, 2020. CA Cancer J Clin 2020, 70(1):7–30.

2. Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, Ruddy K, Tsang J,
Cardoso F: Breast cancer. Nature reviews Disease primers 2019, 5(1):66.

3. Olver I: New initiatives in the treatment of breast cancer. The Medical journal of Australia 2016,
205(10):449–450.

4. Zhu L, Tian Q, Jiang S, Gao H, Yu S, Zhou Y, Yan Y, Ren Y, He J, Wang B: A Novel Ferroptosis-Related
Gene Signature for Overall Survival Prediction in Patients With Breast Cancer. Frontiers in cell and
developmental biology 2021, 9:670184.

5. Bergin A, Loi S: Triple-negative breast cancer: recent treatment advances. F1000Research 2019, 8.

6. Eiró N, Fernandez-Garcia B, González L, Vizoso F: Cytokines related to MMP-11 expression by
inflammatory cells and breast cancer metastasis. Oncoimmunology 2013, 2(5):e24010.

7. Harao M, Forget M, Roszik J, Gao H, Babiera G, Krishnamurthy S, Chacon J, Li S, Mittendorf E,
DeSnyder S et al: 4-1BB-Enhanced Expansion of CD8 TIL from Triple-Negative Breast Cancer Unveils
Mutation-Specific CD8 T Cells. Cancer immunology research 2017, 5(6):439–445.

8. Bieniasz-Krzywiec P, Martín-Pérez R, Ehling M, García-Caballero M, Pinioti S, Pretto S, Kroes R, Aldeni
C, Di Matteo M, Prenen H et al: Podoplanin-Expressing Macrophages Promote Lymphangiogenesis
and Lymphoinvasion in Breast Cancer. Cell metabolism 2019, 30(5):917-936.e910.



Page 13/28

9. Michea P, Noël F, Zakine E, Czerwinska U, Sirven P, Abouzid O, Goudot C, Scholer-Dahirel A, Vincent-
Salomon A, Reyal F et al: Adjustment of dendritic cells to the breast-cancer microenvironment is
subset specific. Nat Immunol 2018, 19(8):885–897.

10. Kennedy L, Salama A: A review of cancer immunotherapy toxicity. CA Cancer J Clin 2020, 70(2):86–
104.

11. Hui L, Chen Y: Tumor microenvironment: Sanctuary of the devil. Cancer Lett 2015, 368(1):7–13.

12. Pan B, Teng K, Wu C, Adam M, Johnstone R: Electron microscopic evidence for externalization of the
transferrin receptor in vesicular form in sheep reticulocytes. The Journal of cell biology 1985,
101(3):942–948.

13. Yu B, Zhang X, Li X: Exosomes derived from mesenchymal stem cells. International journal of
molecular sciences 2014, 15(3):4142–4157.

14. EL Andaloussi S, Mäger I, Breakefield X, Wood M: Extracellular vesicles: biology and emerging
therapeutic opportunities. Nature reviews Drug discovery 2013, 12(5):347–357.

15. Huang Y, Liu K, Li Q, Yao Y, Wang Y: Exosomes Function in Tumor Immune Microenvironment. Adv
Exp Med Biol 2018, 1056:109–122.

16. Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin J, Boireau W, Rouleau A, Simon
B, Lanneau D et al: Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-
dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. The
Journal of clinical investigation 2010, 120(2):457–471.

17. Xiang X, Poliakov A, Liu C, Liu Y, Deng Z, Wang J, Cheng Z, Shah S, Wang G, Zhang L et al: Induction
of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer 2009, 124(11):2621–2633.

18. Berchem G, Noman M, Bosseler M, Paggetti J, Baconnais S, Le Cam E, Nanbakhsh A, Moussay E,
Mami-Chouaib F, Janji B et al: Hypoxic tumor-derived microvesicles negatively regulate NK cell
function by a mechanism involving TGF-β and miR23a transfer. Oncoimmunology 2016,
5(4):e1062968.

19. Bryant R, Pawlowski T, Catto J, Marsden G, Vessella R, Rhees B, Kuslich C, Visakorpi T, Hamdy F:
Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer 2012,
106(4):768–774.

20. Kim H, Song K, Park Y, Kang Y, Lee Y, Lee K, Kim H, Ryu K, Bae J, Kim S: Elevated levels of circulating
platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a
metastasis predictor. European journal of cancer (Oxford, England: 1990) 2003, 39(2):184-191.

21. Wu J, Shen Z: Exosomal miRNAs as biomarkers for diagnostic and prognostic in lung cancer. Cancer
medicine 2020, 9(19):6909–6922.

22. Melo S, Sugimoto H, O'Connell J, Kato N, Villanueva A, Vidal A, Qiu L, Vitkin E, Perelman L, Melo C et
al: Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis.
Cancer Cell 2014, 26(5):707–721.

23. Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M,
Williams C, García-Santos G, Ghajar C et al: Melanoma exosomes educate bone marrow progenitor



Page 14/28

cells toward a pro-metastatic phenotype through MET. Nat Med 2012, 18(6):883–891.

24. Wang X, Chai Z, Pan G, Hao Y, Li B, Ye T, Li Y, Long F, Xia L, Liu M: ExoBCD: a comprehensive
database for exosomal biomarker discovery in breast cancer. Briefings in bioinformatics 2021, 22(3).

25. Saleh R, Toor S, Khalaf S, Elkord E: Breast Cancer Cells and PD-1/PD-L1 Blockade Upregulate the
Expression of PD-1, CTLA-4, TIM-3 and LAG-3 Immune Checkpoints in CD4 T Cells. Vaccines 2019,
7(4).

26. Wang H, Lengerich B, Aragam B, Xing E: Precision Lasso: accounting for correlations and linear
dependencies in high-dimensional genomic data. Bioinformatics (Oxford, England) 2019,
35(7):1181–1187.

27. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, Treviño V, Shen H,
Laird P, Levine D et al: Inferring tumour purity and stromal and immune cell admixture from
expression data. Nature communications 2013, 4:2612.

28. Newman A, Liu C, Green M, Gentles A, Feng W, Xu Y, Hoang C, Diehn M, Alizadeh A: Robust
enumeration of cell subsets from tissue expression profiles. Nature methods 2015, 12(5):453–457.

29. Sousa B, Ribeiro A, Paredes J: Heterogeneity and Plasticity of Breast Cancer Stem Cells. Adv Exp
Med Biol 2019, 1139:83–103.

30. Wu C, Du S, Zhang J, Liang A, Liu Y: Exosomes and breast cancer: a comprehensive review of novel
therapeutic strategies from diagnosis to treatment. Cancer Gene Ther 2017, 24(1):6–12.

31. Chen Y, Zhang Y, Lv J, Li Y, Wang Y, He Q, Yang X, Sun Y, Mao Y, Yun J et al: Genomic Analysis of
Tumor Microenvironment Immune Types across 14 Solid Cancer Types: Immunotherapeutic
Implications. Theranostics 2017, 7(14):3585–3594.

32. Melo S, Luecke L, Kahlert C, Fernandez A, Gammon S, Kaye J, LeBleu V, Mittendorf E, Weitz J, Rahbari
N et al: Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 2015,
523(7559):177–182.

33. Chaudhary P, Gibbs L, Maji S, Lewis C, Suzuki S, Vishwanatha J: Serum exosomal-annexin A2 is
associated with African-American triple-negative breast cancer and promotes angiogenesis. Breast
cancer research: BCR 2020, 22(1):11.

34. Osta W, Chen Y, Mikhitarian K, Mitas M, Salem M, Hannun Y, Cole D, Gillanders W: EpCAM is
overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Res
2004, 64(16):5818–5824.

35. Terris B, Cavard C, Perret C: EpCAM, a new marker for cancer stem cells in hepatocellular carcinoma.
J Hepatol 2010, 52(2):280–281.

36. Baumann P, Cremers N, Kroese F, Orend G, Chiquet-Ehrismann R, Uede T, Yagita H, Sleeman J: CD24
expression causes the acquisition of multiple cellular properties associated with tumor growth and
metastasis. Cancer Res 2005, 65(23):10783–10793.

37. Senner V, Sturm A, Baur I, Schrell U, Distel L, Paulus W: CD24 promotes invasion of glioma cells in
vivo. J Neuropathol Exp Neurol 1999, 58(8):795–802.



Page 15/28

38. Schabath H, Runz S, Joumaa S, Altevogt P: CD24 affects CXCR4 function in pre-B lymphocytes and
breast carcinoma cells. J Cell Sci 2006, 119:314–325.

39. Smith S, Oxford G, Wu Z, Nitz M, Conaway M, Frierson H, Hampton G, Theodorescu D: The
metastasis-associated gene CD24 is regulated by Ral GTPase and is a mediator of cell proliferation
and survival in human cancer. Cancer Res 2006, 66(4):1917–1922.

40. Wang W, Wang X, Peng L, Deng Q, Liang Y, Qing H, Jiang B: CD24-dependent MAPK pathway
activation is required for colorectal cancer cell proliferation. Cancer Sci 2010, 101(1):112–119.

41. Yin S, Gao F: Molecular Mechanism of Tumor Cell Immune Escape Mediated by CD24/Siglec-10.
Front Immunol 2020, 11:1324.

42. Barkal A, Brewer R, Markovic M, Kowarsky M, Barkal S, Zaro B, Krishnan V, Hatakeyama J, Dorigo O,
Barkal L et al: CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy.
Nature 2019, 572(7769):392–396.

43. Qi X, Li X, Sun X: Reduced expression of polymeric immunoglobulin receptor (pIgR) in
nasopharyngeal carcinoma and its correlation with prognosis. Tumour biology: the journal of the
International Society for Oncodevelopmental Biology and Medicine 2016, 37(8):11099–11104.

44. Su J, Miao L, Ye X, Cui M, He X: Development of prognostic signature and nomogram for patients
with breast cancer. Medicine 2019, 98(11):e14617.

45. Bracken J, Ghanem T, Kasem A, Jiang WG, Mokbel K: Evidence for Tumour Suppressor Function of
DOK7 in Human Breast Cancer. J Cancer Ther 2014, 05(01):67–73.

46. Yue C, Bai Y, Piao Y, Liu H: DOK7 Inhibits Cell Proliferation, Migration, and Invasion of Breast Cancer
via the PI3K/PTEN/AKT Pathway. J Oncol 2021, 2021:4035257.

47. Zheng Z, Cai Y, Chen H, Chen Z, Zhu D, Zhong Q, Xie W: CXCL13/CXCR5 Axis Predicts Poor Prognosis
and Promotes Progression Through PI3K/AKT/mTOR Pathway in Clear Cell Renal Cell Carcinoma.
Front Oncol 2018, 8:682.

48. Li C, Kang D, Sun X, Liu Y, Wang J, Gao P: The Effect of C-X-C Motif Chemokine 13 on Hepatocellular
Carcinoma Associates with Wnt Signaling. BioMed research international 2015, 2015:345413.

49. Rubio A, Porter T, Zhong X: Duality of B Cell-CXCL13 Axis in Tumor Immunology. Front Immunol
2020, 11:521110.

50. Song I, Heo S, Bang W, Park H, Park I, Kim Y, Park S, Roh J, Gong G, Lee H: Predictive Value of Tertiary
Lymphoid Structures Assessed by High Endothelial Venule Counts in the Neoadjuvant Setting of
Triple-Negative Breast Cancer. Cancer Res Treat 2017, 49(2):399–407.

51. Rachidi S, Qin T, Sun S, Zheng W, Li Z: Molecular profiling of multiple human cancers defines an
inflammatory cancer-associated molecular pattern and uncovers KPNA2 as a uniform poor
prognostic cancer marker. PLoS One 2013, 8(3):e57911.

52. Raposo G, Nijman H, Stoorvogel W, Liejendekker R, Harding C, Melief C, Geuze H: B lymphocytes
secrete antigen-presenting vesicles. The Journal of experimental medicine 1996, 183(3):1161–1172.



Page 16/28

53. Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G,
Amigorena S: Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-
derived exosomes. Nat Med 1998, 4(5):594–600.

54. Bobrie A, Colombo M, Raposo G, Théry C: Exosome secretion: molecular mechanisms and roles in
immune responses. Traffic (Copenhagen, Denmark) 2011, 12(12):1659–1668.

55. Gastpar R, Gehrmann M, Bausero M, Asea A, Gross C, Schroeder J, Multhoff G: Heat shock protein 70
surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells.
Cancer Res 2005, 65(12):5238–5247.

56. Andreola G, Rivoltini L, Castelli C, Huber V, Perego P, Deho P, Squarcina P, Accornero P, Lozupone F,
Lugini L et al: Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing
microvesicles. The Journal of experimental medicine 2002, 195(10):1303–1316.

57. Taylor D, Gerçel-Taylor C, Lyons K, Stanson J, Whiteside T: T-cell apoptosis and suppression of T-cell
receptor/CD3-zeta by Fas ligand-containing membrane vesicles shed from ovarian tumors. Clinical
cancer research: an official journal of the American Association for Cancer Research 2003,
9(14):5113–5119.

58. Clayton A, Mitchell J, Court J, Linnane S, Mason M, Tabi Z: Human tumor-derived exosomes down-
modulate NKG2D expression. Journal of immunology (Baltimore, Md: 1950) 2008, 180(11):7249–
7258.

59. Szajnik M, Czystowska M, Szczepanski M, Mandapathil M, Whiteside T: Tumor-derived microvesicles
induce, expand and up-regulate biological activities of human regulatory T cells (Treg). PLoS One
2010, 5(7):e11469.

60. Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A, Corbelli A, Fais S, Parmiani G, Rivoltini L:
Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming
growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res 2006, 66(18):9290–
9298.

61. Hanahan D, Weinberg R: Hallmarks of cancer: the next generation. Cell 2011, 144(5):646–674.

62. Mincheva-Nilsson L, Baranov V: Cancer exosomes and NKG2D receptor-ligand interactions: impairing
NKG2D-mediated cytotoxicity and anti-tumour immune surveillance. Semin Cancer Biol 2014, 28:24–
30.

63. Lv L, Wan Y, Lin Y, Zhang W, Yang M, Li G, Lin H, Shang C, Chen Y, Min J: Anticancer drugs cause
release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit
effective natural killer cell antitumor responses in vitro. The Journal of biological chemistry 2012,
287(19):15874–15885.

64. Yu S, Liu C, Su K, Wang J, Liu Y, Zhang L, Li C, Cong Y, Kimberly R, Grizzle W et al: Tumor exosomes
inhibit differentiation of bone marrow dendritic cells. Journal of immunology (Baltimore, Md: 1950)
2007, 178(11):6867-6875.

65. Yang M, Chen J, Su F, Yu B, Su F, Lin L, Liu Y, Huang J, Song E: Microvesicles secreted by
macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer 2011,



Page 17/28

10:117.

66. Bobrie A, Krumeich S, Reyal F, Recchi C, Moita L, Seabra M, Ostrowski M, Théry C: Rab27a supports
exosome-dependent and -independent mechanisms that modify the tumor microenvironment and
can promote tumor progression. Cancer Res 2012, 72(19):4920–4930.

67. Bondhopadhyay B, Sisodiya S, Alzahrani F, Bakhrebah M, Chikara A, Kasherwal V, Khan A, Rani J, Dar
S, Akhter N et al: Exosomes: A Forthcoming Era of Breast Cancer Therapeutics. Cancers (Basel) 2021,
13(18).

68. Yang Y, Li C, Chan L, Wei Y, Hsu J, Xia W, Cha J, Hou J, Hsu J, Sun L et al: Exosomal PD-L1 harbors
active defense function to suppress T cell killing of breast cancer cells and promote tumor growth.
Cell Res 2018, 28(8):862–864.

Figures



Page 18/28

Figure 1

Analysis flow chart.
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Figure 2

Identification of exosome-related genes differentially expressed in breast cancer patients with prognostic
significance. (A) Identification of exosome-related genes with prognostic significance via univariate Cox
regression analysis. 19 exosome-related genes were identified associated with prognosis in breast cancer
patients (P<0.05). (B) The 33 overlapping genes differently expressed in normal and tumor tissue were
identified and visualized by volcano map. (C) 7 overlapping genes between DEGs and prognostic
exosome-related genes in the TCGA cohort were ascertained by Venn diagram.

Figure 3

Identification of exosome-related genes in breast cancer patients with prognostic significance through
LASSO Cox regression analysis. (A) LASSO coefficient profiles of 7 exosome-related genes with P<0.01.
(B) The results of the 10-fold cross-validation determined the optimal value of the penalty parameter λ.



Page 20/28

Figure 4

Efficacy and prognosis analysis of the exosome-associated risk model in the training and validation sets.
(A, E) Kaplan–Meier survival curves for BC patients from TCGA cohort and GEO cohort, stratified based
on risk scores (high vs. low); comparisons of the survival time in high-risk groups and low-risk groups
with log-rank tests (p=1.3521E-07 and p = 4.336E-03, respectively). ROC curve analysis of model
accuracy for predicting patient prognosis at 2, 3 and 5 years in the training (B) and validation (F) sets.
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The median value of the risk score in TCGA (C) and GEO (G) cohorts. The distributions of survival status
and risk scores in TCGA (D) and GEO (H) cohorts. 

Figure 5

Independent prognostic value of the exosome-related risk model in the training and validation sets. The
hierarchical clustering showed the associations between signature risk score, expression levels of 7
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exosome-related genes, and clinical features or molecular characteristics in the training and validation
datasets. (A) The forest plots for univariate Cox regression analysis in TCGA cohort showed that risk
score (high risk vs low risk), N status (N0 vs N1 vs N2 vs N3), and AJCC stage (stageⅠ,Ⅱ vs stageⅢ, Ⅳ) were
variables related to prognostic risk. (B) The forest plots for multivariate Cox regression analysis in TCGA
cohort showed that risk score (high risk vs low risk) were independent prognostic factors. (D) The forest
plots for univariate Cox regression analysis in GEO cohort showed that risk score (high risk vs low risk), M
status (M0 vs M1), N status (N0 vs N1 vs N2 vs N3), and T status (T1 vs T2 vs T3 vs T4) were variables
related to prognostic risk. (E) The forest plots for multivariate Cox regression analysis in GEO cohort
showed that risk score (high risk vs low risk), and N status (N0 vs N1 vs N2 vs N3) were independent
prognostic factors. Heatmap illustrated the expression levels of 7 exosome-associated genes and
molecular pathological characteristics or clinical features by use of hierarchical clustering in TCGA (C)
and GEO (F) sets.
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Figure 6

Representative findings from GO enrichment analyses in TCGA cohort and GEO cohort. The outcomes of
biological process enrichment, cellular component enrichment, and molecular function enrichment in
DEGs between high- and low- risk groups in TCGA database(A) and GEO database(B). 
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Figure 7

Representative findings from KEGG enrichment analyses in TCGA cohort and GEO cohort. The outcomes
of KEGG pathways analyses in DEGs between high- and low- risk groups in TCGA database(A) and GEO
database(B).
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Figure 8

The scatter plots reveal that the distribution of stromal score, immune score and ESTIMATE score was
different between high- and low- risk groups in the TCGA cohort (A, B and C) and GEO cohort (D, E and F).
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Figure 9

Immune infiltrations of TCGA and GEO cohort. Barplot showed the relative proportion of immune
infiltration between high- and low- risk groups in TCGA cohort (A) and GEO cohort (B).
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Figure 10

Apparent association of different immune cells between high- and low- risk groups in the TCGA cohort (A)
and GEO cohort (B).
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Figure 11

The expression levels of immune checkpoint genes in different risk groups. The expression levels of
CD274 (A), CTLA4 (B), LAG3 (C) and TIGIT (D) in different risk groups of TCGA set (P<0.001). The
expression levels of CD274 (E), CTLA4 (F), LAG3 (G) and TIGIT (H) in different risk groups of GEO set
(CD274, LAG3 and TIGIT: P<0.001; CTLA4: P=0.45). 
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