1 Afzelius, B. A. Cilia-related diseases. J Pathol204, 470-477, doi:10.1002/path.1652 (2004).
2 Mitchell, D. R. The evolution of eukaryotic cilia and flagella as motile and sensory organelles. Adv Exp Med Biol607, 130-140, doi:10.1007/978-0-387-74021-8_11 (2007).
3 Carvalho-Santos, Z., Azimzadeh, J., Pereira-Leal, J. B. & Bettencourt-Dias, M. Evolution: Tracing the origins of centrioles, cilia, and flagella. J Cell Biol194, 165-175, doi:10.1083/jcb.201011152 (2011).
4 Goetz, S. C. & Anderson, K. V. The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet11, 331-344, doi:10.1038/nrg2774 (2010).
5 Wanner, A., Salathe, M. & O'Riordan, T. G. Mucociliary clearance in the airways. Am J Respir Crit Care Med154, 1868-1902, doi:10.1164/ajrccm.154.6.8970383 (1996).
6 Randell, S. H., Boucher, R. C. & University of North Carolina Virtual Lung, G. Effective mucus clearance is essential for respiratory health. Am J Respir Cell Mol Biol35, 20-28, doi:10.1165/rcmb.2006-0082SF (2006).
7 Leigh, M. W. et al. Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome. Genet Med11, 473-487, doi:10.1097/GIM.0b013e3181a53562 (2009).
8 Li, Y. et al. Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature521, 520-524, doi:10.1038/nature14269 (2015).
9 Zahid, M. et al. Airway ciliary dysfunction and respiratory symptoms in patients with transposition of the great arteries. PLoS One13, e0191605, doi:10.1371/journal.pone.0191605 (2018).
10 Stewart, E. et al. Airway ciliary dysfunction: Association with adverse postoperative outcomes in nonheterotaxy congenital heart disease patients. J Thorac Cardiovasc Surg155, 755-763 e757, doi:10.1016/j.jtcvs.2017.09.050 (2018).
11 Garrod, A. S. et al. Airway ciliary dysfunction and sinopulmonary symptoms in patients with congenital heart disease. Ann Am Thorac Soc11, 1426-1432, doi:10.1513/AnnalsATS.201405-222OC (2014).
12 Harden, B. et al. Increased postoperative respiratory complications in heterotaxy congenital heart disease patients with respiratory ciliary dysfunction. J Thorac Cardiovasc Surg147, 1291-1298 e1292, doi:10.1016/j.jtcvs.2013.06.018 (2014).
13 Christopher, A. B. et al. The effects of temperature and anesthetic agents on ciliary function in murine respiratory epithelia. Front Pediatr2, 111, doi:10.3389/fped.2014.00111 (2014).
14 Matsuura, S., Shirakami, G., Iida, H., Tanimoto, K. & Fukuda, K. The effect of sevoflurane on ciliary motility in rat cultured tracheal epithelial cells: a comparison with isoflurane and halothane. Anesth Analg102, 1703-1708, doi:10.1213/01.ane.0000216001.36932.a3 (2006).
15 Robertson, A., Stannard, W., Passant, C., O'Callaghan, C. & Banerjee, A. What effect does isoflurane have upon ciliary beat pattern: an in vivo study. Clin Otolaryngol Allied Sci29, 157-160, doi:10.1111/j.0307-7772.2004.00768.x (2004).
16 Joskova, M. et al. Negative impact of anesthesia with midazolam, sufentanil, and propofol used in pediatric flexible bronchoscopy on the tracheal ciliary beat frequency in guinea pigs. J Pharmacol Sci142, 165-171, doi:10.1016/j.jphs.2020.01.005 (2020).
17 Iida, H., Matsuura, S., Shirakami, G., Tanimoto, K. & Fukuda, K. Differential effects of intravenous anesthetics on ciliary motility in cultured rat tracheal epithelial cells. Can J Anaesth53, 242-249, doi:10.1007/BF03022209 (2006).
18 Ingels, K. J., Nijziel, M. R., Graamans, K. & Huizing, E. H. Influence of cocaine and lidocaine on human nasal cilia. Beat frequency and harmony in vitro. Arch Otolaryngol Head Neck Surg120, 197-201, doi:10.1001/archotol.1994.01880260067012 (1994).
19 Welchering, N. et al. Dexmedetomidine and fentanyl exhibit temperature dependent effects on human respiratory cilia. Front Pediatr3, 7, doi:10.3389/fped.2015.00007 (2015).
20 Zhu, N. et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med382, 727-733, doi:10.1056/NEJMoa2001017 (2020).
21 Workman, A. D. & Cohen, N. A. The effect of drugs and other compounds on the ciliary beat frequency of human respiratory epithelium. Am J Rhinol Allergy28, 454-464, doi:10.2500/ajra.2014.28.4092 (2014).
22 Hochwald, G. M. Animal models of hydrocephalus: recent developments. 178, 1-11, doi:10.3181/00379727-178-41977 (1985).
23 Thiesse, J. et al. Lung structure phenotype variation in inbred mouse strains revealed through in vivo micro-CT imaging. J Appl Physiol (1985)109, 1960-1968, doi:10.1152/japplphysiol.01322.2009 (2010).
24 Lawson, G. W. et al. Mouse strain modulates the role of the ciliated cell in acute tracheobronchial airway injury-distal airways. Am J Pathol160, 315-327, doi:10.1016/S0002-9440(10)64375-1 (2002).
25 Ledowski, T., Paech, M. J., Patel, B. & Schug, S. A. Bronchial mucus transport velocity in patients receiving propofol and remifentanil versus sevoflurane and remifentanil anesthesia. Anesth Analg102, 1427-1430, doi:10.1213/01.ane.0000204317.78586.07 (2006).
26 Das, S., MacDonald, K., Chang, H. Y. & Mitzner, W. A simple method of mouse lung intubation. J Vis Exp, e50318, doi:10.3791/50318 (2013).
27 Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat Methods9, 676-682, doi:10.1038/nmeth.2019 (2012).
28 Francis, R. & Lo, C. Ex vivo method for high resolution imaging of cilia motility in rodent airway epithelia. J Vis Exp, doi:10.3791/50343 (2013).
29 Sbalzarini, I. F. & Koumoutsakos, P. Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol151, 182-195, doi:10.1016/j.jsb.2005.06.002 (2005).