[1]. Gibbs, H.M.: Optical bistability: Controlling Light with Light. Academic, New York (1985)
[2]. Hu, X., Jiang, P., Ding, C., Yang, H., Gong, Q.: Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nat. Photon. 2(3), 185–189 (2008)
[3]. Cotter, D., Manning, R.J., Blow, K.J., Ellis, A.D., Kelly, A.E., Nesset, D., Phillips, I.D., Poustie, A.J., Rogers, D.C.: Nonlinear Optics for High-Speed Digital Information Processing. Sci. 286(54444), 1523–1528 (1999)
[4]. Priya, N.H., Swarnakar, S., Krishna, S.V.,Kumar, S.: Design and analysis of a photonic crystal-based all-optical 3-input OR gate for high-speed optical processing. Opt. Quant. Electron. 53(720), 1–17 (2021)
[5]. Tang, Y., Zeng, X., Liang, J.: Surface plasmon resonance: an introduction to a surface spectroscopy technique. J. Chem.Educ. 87(7) 742–746 (2010)
[6]. Holmgaard, T., Bozhevolnyi, S.I.: Theoretical Analysis of Dielectric-loaded Surface Plasmon-polariton Waveguides. Phys. Rev. B. 75(24), 1–12 (2007)
[7]. Wu, Y.D.: Nonlinear all-optical switching device by using the spatial soliton collision. Fib. and Int. Opt. 23, 387–404 (2004)
[8]. Kumar, S., Singh, L., Chen, N.K.:Design of All-Optical Universal Gates Using Plasmonics Mach-Zehnder Interferometer for WDM Applications. Plasmonics. 13, 1277–1286 (2017)
[9]. Hayashi, S., Okamoto, T.: Plasmonics: visit the past to know the future. J. Phys. D: Appl. Phys. 45, 1–24 (2012)
[10]. Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature. 424, 824–830 (2003)
[11]. Zhang, Q., Huang, X.G., Lin, X.S., Tao, J., Jin, X.P.: A subwavelength coupler-type MIM optical filter. Opt. Exp.17(9), 7549–7554 (2009)
[12]. Talebi, N., Mahjoubfar, A., Shahabadi, M.: Plasmonic ring resonator, J. Opt. Soc. Am. B 25(12) 2116–2122 (2008)
[13]. Gramotnev, D.K., Bozhevolnyi, S.I.: Plasmonics beyond the diffraction limit. Nat. Photon. 4, 83–91 (2010)
[14]. Feng, N., Brongersma, M.L., Negro, L.D.: Metal – Dielectric Slot-Waveguide Structures for the Propagation of Surface Plasmon Polaritons at 1. 55 µm. IEEE J. of Quant. Electron. 43(6), 479–485 (2007)
[15]. Zia, R., Schuller, J.A., Chandran, A., Brongersma, M.L.: Plasmonics: the next chip-scale technology. Materialstoday 9(7), 20–27 (2006)
[16]. Pile, D.F., Ogawa, T., Gramotnev, D.K., Matsuzaki, Y., Vernon, K.C., Yamaguchi, K., Okamoto, T., Haraguchi, M., Fukui, M.: Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl. Phys. Lett. 87(26), 1–3 (2005)
[17]. Charbonneau, R., Lahoud, N., Mattiussi, G., Berini, P.: Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons. Opt. Exp. 13(3), 977–984 (2005)
[18]. Jung, J.H.: Optimal design of dielectric-loaded surface plasmon polariton waveguide with genetic algorithm. J. of the Opt. Soc. of Korea. 14(3), 277–281 (2010)
[19]. Rao, D.G.S., Swarnakar, S., Palacharla, V., Raju, K.S.R., Kumar, S.: Design of all-optical AND, OR, and XOR logic gates using photonic crystals for switching applications, Photon. Netw. Commun. 41, 109–118 (2021)
[20]. Fakhruldeen, H.F., Mansour, T.S.: All-Optical NOT Gate Based on Nanoring Silver-Air Plasmonic Waveguide. Int.J. of Engg. & Tech. 7(4), 2818–2821 (2018)
[21]. Pal, A., Ahmed, M.Z., Swarnakar, S.: An optimized design of all-optical XOR, OR, and NOT gates using plasmonic waveguide. and Quant. Electron. 53(2), 1–13 (2020)
[22]. Birr, T., Zywietz, U., Chhantyal, P., Chichkov, B.N., Reinhardt, C.: Ultrafast surface plasmon-polariton logic gates and half-adder. Opt. Exp. 23(25), 31755–31765 (2015)
[23]. Gogoi, N., Sahu P.P.: Design of All-optical Inverter using Nonlinear Plasmonic Two-mode Waveguide. Adv. Res. In Elect. and Electron. Engg. 2(11), 35–38 (2015)
[24]. Taflove, A., Hagness, S.C.:Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House (2000)
[25]. Anguluri, S.P.K., Banda, S.R., Krishna, S.V., Swarnakar, S., Kumar, S.: The design, analysis, and simulation of an optimized all-optical AND gate using a Y-shaped plasmonic waveguide for high-speed computing devices. J Comput Electron (2021). https://doi.org/10.1007/s10825-021-01748-x
[26]. Kumar, S., Singh, G., Bisht, A., Sharma, S., & Amphawan, A.: Proposed new approach to the design of universal logic gates using the electro-optic effect in Mach–Zehnder interferometers. Applied Optics, 54(28), 8479 (2015).https://doi:10.1364/ao.54.008479
[27]. Kim, J.Y., Kang, J.M., Kim, T.Y., Han, S.K.: 10 Gbit∕s all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures. Electronics Letters, 42(5), 303(2006).https://doi:10.1049/el:20063501
[28]. Nozhat, N., Alikomak, H., Khodadadi, M.: All-optical XOR and NAND logic gates based on plasmonic nanoparticles. Optics Communications, 392, 208–213(2017). https://doi:10.1016/j.optcom.2017.02.007
[29]. Singh, A., Pal, A., Singh, Y.,Sharma, S.: Design of optimized all-optical NAND gate using metal-insulator-metal waveguide. Optik, 182, 524–528 (2019).https://doi:10.1016/j.ijleo.2019.01.098
[30]. Rao, D.G.S., Swarnakar, S., Kumar, S.: Performance analysis of all-optical NAND, NOR, and XNOR logic gates using photonic crystal waveguide for optical computing applications, Optical Engineering 59(5), 057101 (2020). https://doi.org/10.1117/1.OE.59.5.057101
[31]. Isfahani, M.B., AhamdiTameh, T., Granpayeh, N., & Maleki Javan, A. R.: All-optical NOR gate based on nonlinear photonic crystal microring resonators. Journal of the Optical Society of America B, 26(5), 1097 (2009).https://doi:10.1364/josab.26.001097
[32]. Nozhat, N., Granpayeh, N.: All-optical logic gates based on nonlinear plasmonic ring resonators. Applied Optics, 54(26), 7944 (2015).https://doi:10.1364/ao.54.007944
[33]. Singh, P., Tripathi, D. K., Dixit, H. K.: Designs of all-optical NOR gates using SOA based MZI. Optik - International Journal for Light and Electron Optics, 125(16), 4437–4440(2014). https://doi:10.1016/j.ijleo.2014.02.032
[34]. Kotb, A., Guo, C.: All-optical multifunctional AND, NOR, and XNOR logic gates using semiconductor optical amplifiers. Physica Scripta. (2020).https://doi:10.1088/1402-4896/aba057
[35]. Moradi, M., Danaie, M., Orouji, A.A.: Design of all-optical XOR and XNOR logic gates based on Fano resonance in plasmonic ring resonators. Opt Quant Electron 51, 154 (2019). https://doi.org/10.1007/s11082-019-1874-0
[36]. Fu, Y., Hu, X., Lu, C., Yue, S., Yang, H.,Gong, Q.: All-Optical Logic Gates Based on Nanoscale Plasmonic Slot Waveguides. Nano Letters, 12(11), 5784–5790 (2012).https://doi:10.1021/nl303095s
[37]. Moniem, T.A.: All-optical XNOR gate based on 2D photonic-crystal ring resonators. Quantum Electronics, 47(2), 169–172 (2017).https://doi:10.1070/qel16279
[38]. Swarnakar, S., Reddy, S.K., Harijan, R., Kumar, S.: “Modelling and design of all-optical NAND gate using metal-insulator-metal (MIM) waveguides based Mach- Zehnder Interferometers. Opt. Quant. Electron. 53(493), 1-13 (2021)